Bypassing Self-Encrypting Drives (SED) in Enterprise Environments

blackhať EUROPE 2015

Daniel Boteanu Kevvie Fowler

November 12th, 2015

Who are we ?

Daniel Boteanu

- Forensic Technology and eDiscovery, KPMG Canada
- M.Eng., M.Sc. Information Security
- Background
 - -IT Security (MCP, MCTS, CSSLP)
 - -Penetration Testing (GPEN)
 - -Forensic Technology (CHFI, GCFA, EnCE)
 - -Security Research

Organiser of nsec.io – 48h CTF + InfoSec conference

Who are we ?

- Kevvie Fowler, GCFA, CISSP
 - Partner, National Cyber Forensics Leader, KPMG Canada
 - Author and co-author to multiple Security and Forensic books
 - Developer of database forensic tools
 - SANS Lethal Forensicator

Agenda

What are SEDs ?

Typical SED Enterprise Deployments

Attack Scenarios

- What / How / Demo
- Mitigations

Detection of Past Exploitation

Real-World Implications

The state of data encryption

- Encryption related vulnerabilities have made recent headlines
 - -Open-source & commercial encryption software
- Concerns over governments ability to bypass data encryption
- Public breach disclosures involving encrypted data
- SED's are referred to by many as a solution to data loss problems

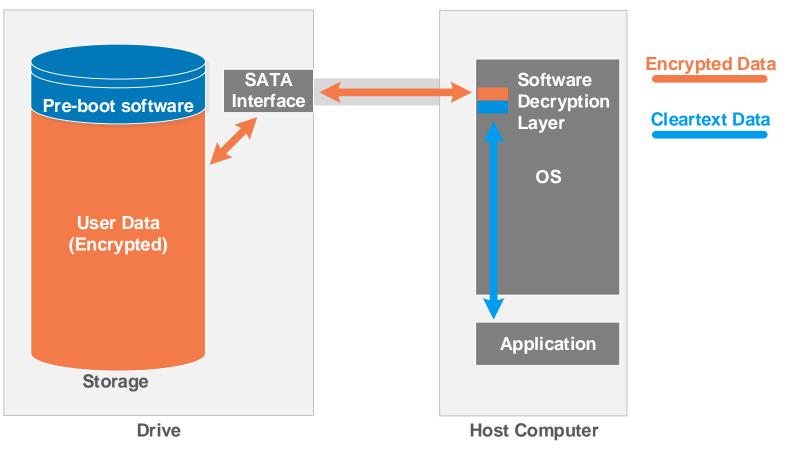
Self-encrypting drives: SED the best-kept secret in hard drive encryption security

Classical Full Disk Encryption (FDE)


- Software-based
- Encryption performed by the OS
- Advantages
 - -Hardware agnostic
 - -Transparent for applications
- Disadvantages
 - -Slow in-place encryption
 - -Performance overhead*

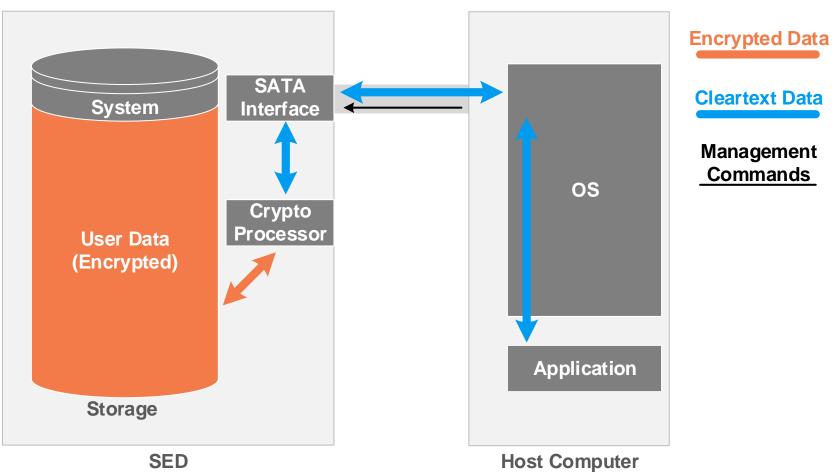
*Hardware acceleration possible (ex: AES-NI)

Classical Full Disk Encryption (FDE)


Boot process

Classical Full Disk Encryption (FDE)

Accessing encrypted data


- Self-Encrypting Drives (SED)
 - Hardware-based encryption
 - Encryption performed by the drive controller

Advantages

- -No performance overhead
- -Instant in-place encryption
- -Transparent for applications and OS
- Requirements
 - –Compatible motherboard + drive + management component
- Disadvantages ?

Self-Encrypting Drive (SED)

SED Operating Modes

- 1. ATA Security
 - -Subset of ATA Command Set
 - Managed by BIOS / EFI or low-level drive software (ex: hdparm)
 - -Encryption schemes non-standardized
 - -Generally
 - Data encrypted with Media Encryption Key (MEK)
 - MEK encrypted with Key Encryption Key (KEK) and stored on drive
 - KEK generated from ATA User Password

SED Operating Modes

- 2. Trusted Computing Group (TCG) Storage Security Subsystem Class : **Opal**
 - -New commands defined by the Opal standard
 - -Managed by software
 - Pre-boot authentication software available through MBR shadowing
 - -User Data always encrypted
 - Data encrypted with Media Encryption Key (MEK)
 - MEK encrypted with Key Encryption Key (KEK) and stored on drive
 - KEK generated from user password/management software

SED Operating Modes

- 3. Microsoft Encrypted Drive (eDrive)
 - -Opal + IEEE 1667 + UEFI 2.3.1
 - -Managed by Bitlocker
 - -Operation similar to Opal
- 4. Custom / Proprietary implementation
 - -Typically USB hard drives and thumb drives
 - -Managed by software or hardware interface (ex: pinpad)

Typical SED Enterprise Deployments

SED Operating Mode

Opal

BIOS Lockdown

Sometimes

Available Power States

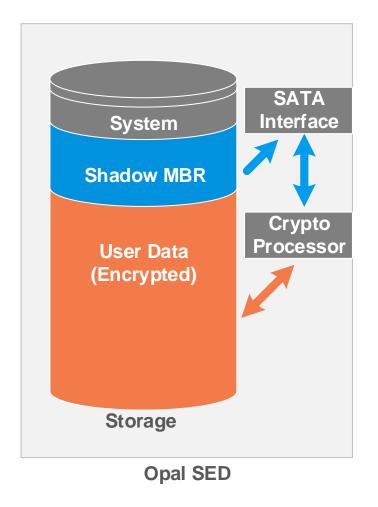
- ■S0 On
- S3 Sleep
- S4 Hibernate
- ■S5 Off

Previous Work

- Software Encryption
 - Recovering encryption key (ex: Cold Boot, Side-channels)
 - Bypass Windows authentication (ex: DMA, BHEU15?)
 - Evil Maid Attack
- ATA Security
 - Hot Plug Attack (Müller et al)
- **Custom Implementation**
 - Targeted research & vulnerabilities (ex: Alendal et al., SySS)

Previous Work

Our research

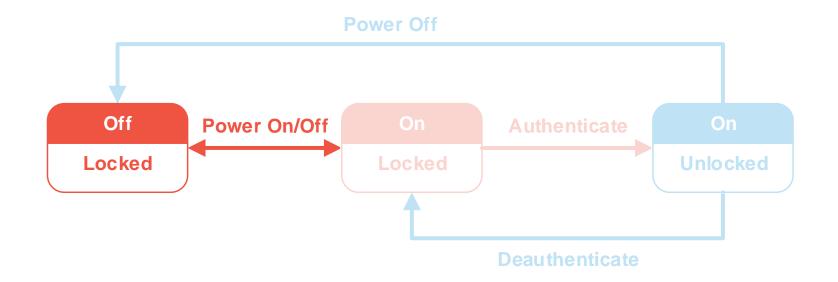

- Research on SEDs in Opal & eDrive modes
- Industry-wide problem
- Typical SED enterprise deployments
- Focus on laptops applicable to other devices

black hat

Opal SED

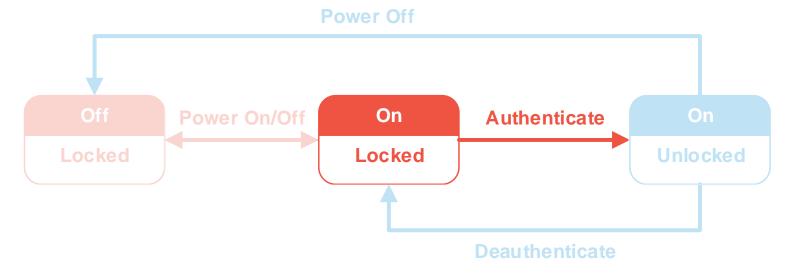
Storage Contents

- System Area
 - -TCG tables (encrypted MEK, settings, etc.)
- Shadow MBR
 - -Pre-boot environment, cleartext
- User Data Area
 - -Always encrypted, with MEK
 - Potential for multiple zones with different keys

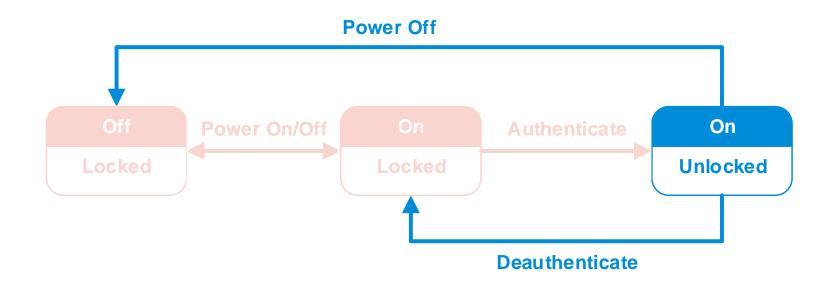


Opal SED – Drive States

Off – Locked


Drive always gets locked when power cycled

Opal SED – Drive States


- On Locked
 - Only Shadow MBR is visible, read-only
 - Boot process
 - -Pre-boot environment loads, user authenticates
 - -Drive decrypts MEK, triggers boot from User Data

Opal SED – Drive States

- On Unlocked
 - Encryption transparent to OS
 - Only User Data is visible
 - Drive remains Unlocked until power cycle or Deauth

Opal Specs version 2.01

2.1 Opal SSC Use Cases and Threats

Protect the confidentiality of stored user data against unauthorized access once it leaves the owner's control (involving a power cycle and subsequent deauthentication)

Tested Configurations

- Combination of
 - Drives
 - –Samsung 850 Pro, SSD, 1 TB, P/N MZ7KE1T0
 - –Samsung PM851, SSD, 256GB, P/N MZ7TE256HMHP 000L7
 - -Seagate ST500LT015, HDD, 500 GB, P/N 1DJ142-500
 - -Seagate ST500LT025, HDD, 500 GB, P/N 1DH142-500
 - Laptops
 - -Lenovo ThinkPad T440s, BIOS version 2.32
 - -Lenovo ThinkPad W541, BIOS version 2.21
 - -Dell Latitude E6410, BIOS version A16
 - -Dell Latitude E6430, BIOS version A16

Tested Configurations

- Combination of
 - Management Software
 - -Microsoft Bitlocker eDrive, version 8.1 Enterprise, Build 9600
 - -Wave EMBASSY Security Center (ESC), version 2.11.1
 - -WinMagic SecurDoc, version 6.4.0.117-HF1

Laptop Power State

- -S0 On
- -S3 Sleep

Agenda

What are SEDs ?

Typical SED Enterprise Deployments

Attack Scenarios

- What / How / Demo
- Mitigations

Detection of Past Exploitation

Real-World Implications

Previous Work

- Software Encryption
- Recovering encryption key (ex: Cold Boot, Side-channels)
 ★ Bypass Windows authentication (ex: DMA, BHEU15?)
 ★ Evil maid attack
 ★ Also applicable to Opal

and eDrive

- ATA Security
- ★Hot Plug Attack (Müller et al)
- **Custom Implementation**
 - Targeted research & vulnerabilities (ex: Alendal et al., SySS)

Details

Steps		Drive State
1.	If laptop is On (SO), put to Sleep (S3)	Off-Locked
2.	Remove drive	Off-Locked
3.	Install SATA data + power extension	Off-Locked
4.	Wake up from Sleep (S3)	On-Locked
5.	Management software unlocks drive	On-Unlocked
6.	Switch SATA data to attacker machine	On-Unlocked

Demo

Vulnerable

All 12 tested Opal & eDrive configurations

Not Vulnerable

None

For ATA Security SEDs

• Müller et al. - modern Lenovo laptops not vulnerable

Confirmed

Mitigations

- Users: Power-off or Hibernate laptop when unattended
- IT Administrators: Disable Sleep Mode (S3)
 –Already recommended by some management software
- Laptop manufacturers: Detect drive unplug in Sleep Mode
 –Hard-reset on tamper
- SED manufacturers: Detect SATA data disconnect
 –Lock SED on tamper

Attack Scenarios

- Hot Plug Attack
- Forced Restart Attack

Details

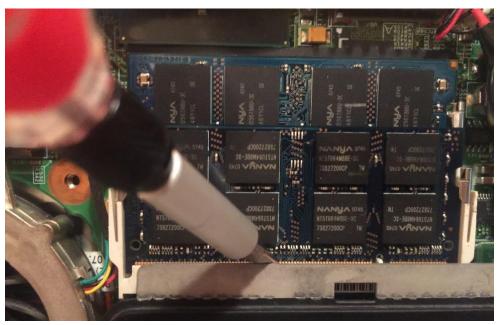
Steps
 Drive State
 1 If lantan is in Slaan (S2), waka up (S0)
 On Upleaker

- 1. If laptop is in Sleep (S3), wake up (S0) **On-Unlocked**
- 2. Trigger soft-reset
- 3. Boot from alternative OS

On-Unlocked On-Unlocked

How to trigger soft-reset ?

By default, Windows soft-resets on BSOD Facedancer – umap – BH Asia 14



How to trigger soft-reset ?

By default, Windows soft-resets on BSOD

Facedancer

Short memory pins

A Potential hardware damage

How to trigger soft-reset ?

By default, Windows soft-resets on BSOD

- Facedancer
- Short memory pins
- Unlucky hardware mix
- Keyboard for testing

Demo using BSOD by Facedancer

Vulnerable

All 8 tested Opal configurations

Not Vulnerable

Modern Lenovo laptops with eDrive SEDs

Attack Scenarios – Forced Restart Attack

Mitigations

- Users: Power-off or Hibernate laptop when unattended
- IT administrators: Disable automatic restart on BSOD
- IT administrators: Lock-down BIOS/EFI
 Prevent boot from external media
- Laptop manufacturers: Power-cycle SED on restart
- OS developers: Reconsider fixing local access BSOD

Attack Scenarios

- Hot Plug Attack
- Forced Restart Attack
- Hot Unplug Attack

Details

- Hot Plug Attack on steroids
- Bypasses potentially disabled Sleep (S3) or Tamper Detection

Steps

1. Expose SATA data and power pins

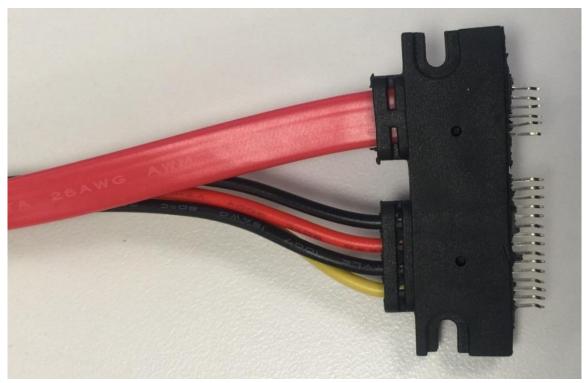
Drive State On-Unlocked

SED in laptop compartment

SED with SATA pins exposed

Hot Unplug Attack

- Hot Plug Attack on steroids
- Bypasses potentially disabled Sleep (S3) or Tamper Detection


Steps

- 1. Expose SATA data and power pins
- 2. Force-supply SATA power on pins

Drive State On-Unlocked On-Unlocked

SATA power and data* pins


* Pin 1 (ground) broken by accident, no impact due to redundant Pin 4 and Pin 7

SED with forced-supplied power

Only SATA power connected at the other end of extension

Hot Unplug Attack

- Hot Plug Attack on steroids
- Bypasses potentially disabled Sleep (S3) or Tamper Detection

Steps

- 1. Expose SATA data and power pins
- 2. Force-supply SATA power on pins
- 3. While maintaining power, remove drive
- 4. Connect SATA data to attacker machine

Drive State On-Unlocked On-Unlocked On-Unlocked On-Unlocked

Vulnerable

- 1 tested eDrive configuration
- Expected all Opal and eDrive configurations to be vulnerable

Not Vulnerable

None

Mitigations

- Users: Power-off or Hibernate laptop when unattended
- Laptop manufacturers: Detect drive enclosure opening
 –Power-cycle SED on tamper

SED manufacturers: Detect SATA data disconnect
 –Lock SED on tamper

Attack Scenarios

- Hot Plug Attack
- Forced Restart Attack
- Hot Unplug Attack
- Key Capture Attack

Attack Scenarios

- Key Capture Attack
 - Theoretical, untested
 - In Sleep Mode (S3), replace SED with tampered drive with custom firmware
 - -Capture authentication commands
 - -Replay authentication to SED

Alternatively, sniff SATA bus for authentication commands

Responsible Disclosure

We disclosed findings with TCG on July $15^{\mbox{th}}$

 TCG agreed to disseminate info to all Storage Work Group members

Coordinated disclosure with CERTAssigned VU#631316 / CVE – pending assignment

Lenovo contacted us to discuss details and potential mitigations

Detection of Past Exploitation

- Hot Plug/Unplug Attack
 - Traces similar to power failure or forced power off

Forced Restart Attack

- BSOD error code (event logs, memory dump)
- Attacker can clean-up traces

Key Capture Attack

Potentially no traces

Real-Word Implications

Yesterday's laptop risk

The SED bypass vulnerability and today's threat landscape increase laptop risk

263 laptops stolen each year per organization

> \$49,256 in loss for each stolen laptop

 Increased number of laptop thefts and cost/impact per incident:

- Size of disks and data stores
- Value of sensitive information
- Breach notification legislations
- Revisiting past laptop theft/loss incidents

 Increased number of criminals targeting laptops as part of an elaborate attack

Initial

Recon

Real-Word Implications

Anatomy of an attack

Initial Breach

- Social Engineering
- Malware
- Zero-Day Vulnerability

Increase Presence

- Internal Recon
- Move Laterally
- Escalate Privileges

Complete Mission

Initial

Recon

Real-Word Implications

Anatomy of an attack

Initial Breach

- Social Engineering
- Malware
- Zero-Day Vulnerability

Increase Presence

- Internal Recon
- Move Laterally
- Escalate Privileges

Complete Mission

SED bypass on 1 system

Black Hat Sound Bytes

SEDs are insecure by-design when laptop is On (S0) or in Sleep Mode (S3)

Hardened deployments can mitigate the risk

Difficult / impossible to detect attacks after the fact

Bypassing SEDs in Enterprise Environments

Thank you

blackhat EUROPE 2015

Daniel Boteanu dboteanu@kpmg.ca

♥@DanielBoteanu

in https://ca.linkedin.com/pub/daniel-boteanu/21/800/bbb