Rigid Body Simulation

David Baraff
Robotics Institute and
School of Computer Science

Particle Motion

Particle State

$$\mathbf{Y} = \begin{pmatrix} x(t) \\ v(t) \end{pmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{x}(t) & \mathbf{v}(t) \\ \mathbf{Y} & \mathbf{v}(t) \\ \mathbf{Y} & \mathbf{v}(t) \\ \mathbf{Y} & \mathbf{v}(t) \\ \mathbf{Y} & \mathbf{v}(t) \\ \mathbf{v}(t) & \mathbf{v}(t) \\ \mathbf{v}(t)$$

State Derivative

$$\frac{d}{dt}\mathbf{Y} = \frac{d}{dt} \begin{pmatrix} x(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ F(t)/m \end{pmatrix}$$

$$\frac{d}{dt}\mathbf{Y} = \frac{\mathbf{V}(t)}{\mathbf{F}(t)/m}$$

State Derivative

$$\frac{d}{dt}\mathbf{Y} = \frac{d}{dt} \begin{pmatrix} x_1(t) \\ v_1(t) \\ \vdots \\ x_n(t) \\ v_n(t) \end{pmatrix} = \begin{pmatrix} v_1(t) \\ F_1(t)/m_1 \\ \vdots \\ v_n(t) \\ F_n(t)/m_n \end{pmatrix}$$

$$\frac{d}{dt}\mathbf{Y} = \mathbf{\cdots} \quad 6n \text{ elements} \quad \cdots$$

ODE solution

Rigid Body State

$$\mathbf{Y} = \begin{pmatrix} x(t) \\ ? \\ v(t) \\ ? \end{pmatrix}$$

Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{Y} = \frac{d}{dt} \begin{pmatrix} x(t) \\ ? \\ Mv(t) \\ ? \end{pmatrix} = \begin{pmatrix} v(t) \\ ? \\ F(t) \\ ? \end{pmatrix}$$

Orientation

We represent orientation as a rotation matrix R(t). Points are transformed from body-space to world-space as:

$$p(t) = R(t)p_0 + x(t)$$

He's lying. Actually, we use quaternions.

Angular Velocity

We represent angular velocity as a vector $\omega(t)$, which encodes both the axis of the spin and the speed of the spin.

Angular Velocity

R(t) and w(t) are related by

$$\frac{d}{dt}R(t) = \begin{pmatrix} 0 & -\omega_z(t) & \omega_y(t) \\ \omega_z(t) & 0 & -\omega_x(t) \\ -\omega_y(t) & \omega_x(t) & 0 \end{pmatrix} R(t)$$

 $(\omega(t)^*$ is a shorthand for the above matrix)

Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{Y} = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ Mv(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \omega(t)^* R(t) \\ F(t) \\ < \omega(t) > \end{pmatrix}$$

Need to relate $\omega(t)$ and mass distribution to F(t).

Inertia Tensor

$$I(t) = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$

diagonal terms[†]

$$I_{xx} = M \int_{V} (y^2 + z^2) dV \qquad I_{xy} = -M \int_{V} xy dV$$

Integrals are precomputed.

off-diagonal terms[†]

$$I_{xy} = -M \int_{V}^{xy} dV$$

$$\tau(t) = \sum (p_i - x(t)) \times f_i$$

Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{Y} = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ Mv(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \omega(t)^* R(t) \\ F(t) \\ \tau(t) \end{pmatrix}$$

P(t) – linear momentum

L(t) – angular momentum

What's in the Course Notes

- 1. Implementation of dydt for rigid bodies (bookkeeping, data structures, computations)
- 2. Quaternions derivations and code
- 3. Miscellaneous formulas and examples
- 4. Derivations for force and torque equations, center of mass, inertia tensor, rotation equations, velocity/acceleration of points

Constraints

We want rigid bodies to behave as solid objects, and not inter-penetrate. By applying constraint forces between contacting bodies, we prevent interpenetration from occurring. We need to:

- a) Detect interpenetration
- b) Determine contact points
- c) Compute constraint forces

Simulations with Collisions

Simulations with Collisions

$$\mathbf{Y}(t_0 + \Delta t)_{\mathbf{y}}$$
 $\mathbf{Y}(t_0)$

Simulations with Collisions

Backing up to the Collision Time

Colliding Contact

 $\hat{n} \cdot \dot{p}_a < 0$

Resting Contact

$$\hat{n} \cdot \dot{p}_a = 0$$

Collision Process

A Rigid Body Collision

$$f_{imp} = \infty$$
$$\Delta t = 0$$

$$\Delta t = 0$$

velocity

Colliding Contact

In the Course Notes – Collision Detection

Bounding box check between n objects: yes, you can avoid $O(n^2)$ work. Don't even settle for $O(n \log n)$ – insist on an O(n) algorithm!

A coherence based collision detection strategy for convex polyhedra: it's simple, efficient and (relatively) easy to program.

Computing Impulses

Coefficient of Restitution

$$\hat{n} \cdot \dot{p}_a^+ = -\varepsilon (\hat{n} \cdot \dot{p}_a^-)$$

Computing j

$$\hat{n} \cdot \dot{p}_a^+ = -\varepsilon(\hat{n} \cdot \dot{p}_a^-)$$
 $cj + b = d$

Computing j

$$\widehat{n} \bullet (\dot{p}_a^+ - \dot{p}_b^+) = -\varepsilon (\widehat{n} \bullet (\dot{p}_a^- - \dot{p}_b^-))$$

Computing j

$$\widehat{n} \bullet (\widehat{p}_a^+ - \widehat{p}_b^+) = -\varepsilon (\widehat{n} \bullet (\widehat{p}_a^- - \widehat{p}_b^-)) \longrightarrow cj + b = d$$

In the Course Notes – Collision Response

Data structures to represent contacts (found by the collision detection phase).

Derivations and code for computing the impulse between two colliding frictionless bodies for a particular coefficient of ε .

Code to detect collisions and apply impulses.

Conditions on the Constraint Force

To avoid inter-penetration, the force strength f must prevent the vertex p_a from accelerating downwards. If B is fixed, this is written as

$$\hat{n} \cdot \ddot{p}_a \ge 0$$

Computing f

$$\hat{n} \cdot \ddot{p}_a \ge 0$$
 \longrightarrow $af + b \ge 0$

Conditions on the Constraint Force

To prevent the constraint force from holding bodies together, the force must be repulsive:

$$f \ge 0$$

Does the above, along with

$$\hat{n} \cdot \ddot{p}_a \ge 0 \longrightarrow af + b \ge 0$$

sufficiently constrain f?

Workless Constraint Force

Either

$$af + b = 0$$
$$f \ge 0$$

or

$$af + b > 0$$
 $f = 0$

Conditions on the Constraint Force

To make f be workless, we use the condition

$$f \cdot (af + b) = 0$$

The full set of conditions is

$$af + b \ge 0$$
$$f \ge 0$$
$$f \cdot (af + b) = 0$$

Conditions on f_1

Non-penetration:

$$a_{11}f_1 + a_{12}f_2 + b_1 \ge 0$$

Repulsive:

$$f_1 \ge 0$$

Workless:

$$f_1 \cdot (a_{11}f_1 + a_{12}f_2 + b_1) = 0$$

Quadratic Program for f_1 and f_2

Non-penetration:

$$a_{11}f_1 + a_{12}f_2 + b_1 \ge 0$$

$$a_{21}f_1 + a_{22}f_2 + b_2 \ge 0$$

Repulsive:

$$f_1 \ge 0$$

$$f_2 \ge 0$$

Workless:

$$f_1 \cdot (a_{11}f_1 + a_{12}f_2 + b_1) = 0$$

$$f_2 \cdot (a_{21}f_1 + a_{22}f_2 + b_2) = 0$$

In the Course Notes – Constraint Forces

Derivations of the non-penetration constraints for contacting polyhedra.

Derivations and code for computing the a_{ij} and b_i coefficients.

Code for computing and applying the constraint forces $f_i \hat{n}_i$.

Quadratic Programs with Equality Constraints

Non-penetration:

$$a_{11}f_1 + a_{12}f_2 + b_1 = 0$$

 $a_{21}f_1 + a_{22}f_2 + b_2 \ge 0$

Repulsive:

$$f_1 \ge 0$$

$$f_2 \ge 0$$

Workless:

$$f_1 \cdot (a_{11}f_1 + a_{12}f_2 + b_1) = 0$$
 (free)
 $f_2 \cdot (a_{21}f_1 + a_{22}f_2 + b_2) = 0$