
Symbiosis of Search and Heuristics for Random 3-SAT

Sid Mijnders, Boris de Wilde, and Marijn J. H. Heule!

Delft University of Technology, Delft, The Netherlands

Abstract. When combined properly, search techniques can reveal the full poten-
tial of sophisticated branching heuristics. We demonstrate this observation on the
well-known class of random 3-SAT formulae. First, a new branching heuristic is
presented, which generalizes existing work on this class. Much smaller search
trees can be constructed by using this heuristic. Second, we introduce a variant
of discrepancy search, called ALDS. Theoretical and practical evidence support
that ALDS traverses the search tree in a near-optimal order when combined with
the new heuristic. Both techniques, search and heuristic, have been implemented
in the look-ahead solver march. The SAT 2009 competition results show that
march is by far the strongest complete solver on random k-SAT formulae.

1 Introduction

Satisfiability (SAT) solvers have a rich history of branching heuristics [1]. These heuris-
tics are crucial for fast performance. They can be split into decision heuristics and di-
rection heuristics. The former selects for each node in the tree a decision variable to
branch on. These decision heuristics determine the size of the search tree. For each
free value of the decision variable a child node is created. Direction heuristics provide
the preferred order in which these child nodes should be visited. In case a search tree
contains solutions, effective direction heuristics can boost performance.

Two techniques are designed to repair errors made by branching heuristics. First,
restart strategies [2] are used to compensate for ineffective choices made by deci-
sion heuristics. A new search tree is created after every restart. Second, discrepancy
search [3], a technique used in Constraint Programming, focuses on those parts of the
search tree that mostly follow the preference of the direction heuristics. This technique
only changes the order in which the search tree is traversed.

In this paper, we present a new branching heuristic for look-ahead SAT solvers,
called the recursive weight heuristic. This heuristic is a generalization of earlier look-
ahead evaluation heuristics [4–6]. Regarding the decision heuristic, we show that on
random 3-SAT formulae the search tree is significantly smaller compared to alternative
heuristics. Although the heuristic is quite expensive in terms of computational costs,
performance is clearly improved.

Also, the new direction heuristic results in an observable bias in the distribution
of solutions. To capitalize on this, we developed a new discrepancy search algorithm,
called advanced limited discrepancy search (ALDS), which combines features of im-
proved limited discrepancy search [7] and depth-bounded discrepancy search [8]. We
! Supported by the Dutch Organization for Scientific Research (NWO) under grant 617.023.611

provide both theoretical and experimental evidence to show that the combination of
ALDS and the recursive weight heuristic, traverse the tree in a near-optimal order on
random 3-SAT formulae.

The outline of the paper is as follows: First, we will explain look-ahead heuristics
in Section 2, both the existing work and our new heuristic. In Section 3, various search
techniques will be discussed. The focus will be discrepancy search and our variant
of this technique. Section 4 will offer theoretical and practical results showing that the
combination of ALDS and our heuristic is effective on random3-SAT instances. Finally,
we draw some conclusions in Section 5.

2 Look-ahead heuristics

Most work on branching heuristics in the field of Satisfiability focuses on look-ahead
SAT solvers [1]. In contrast to many other solvers, look-ahead solvers keep track of
various statistical measurements that make it possible to use quite complex heuristics.
In this section, we first will provide an overview of look-ahead SAT solvers. Afterwards,
the branching heuristics in these solvers are discussed. We conclude this section by
introducing an improved heuristic.

2.1 Look-ahead SAT solvers

The look-ahead architecture for SAT solvers is based on the DPLL framework [9]: It
is a complete solving method which selects in each step a decision variable xdecision

and recursively calls DPLL for the reduced formula where xdecision is assigned to false
(denoted by F [xdecision = 0]) and another where xdecision is assigned to true (denoted
by F [xdecision = 1]).

A formula F is reduced by unit propagation: Given a formula F , an unassigned
variable x and a Boolean value B, first x is assigned to B. If this assignment ϕ results in
a unit clause (clause of size 1) then ϕ is expanded by assigning the remaining literal of
that clause to true. This is repeated until no unit clauses are left in ϕ applied to F . We
denote by ϕ ∗ F the reduced formula after unit propagation of applying ϕ on F , with
all satisfied clauses removed. So, more specific than above, F [x =B] := ϕ ∗ F .

Algorithm 1 UNITPROPAGATION(formula F , variable x, B ∈ {0, 1})
1: ϕ := {x ←B}
2: while empty clause /∈ ϕ applied on F and unit clause (y) ∈ ϕ applied on F do
3: ϕ := ϕ ∪ {y ← 1}
4: end while
5: return ϕ ∗ F

The recursion has two kinds of leaf nodes: Either all clauses have been satisfied
(denoted by ϕ ∗F = ∅), meaning that a satisfying assignment has been found, or ϕ ∗F
contains an empty clause (a clause of which all literals have been falsified), meaning a
dead end. In the latter case the algorithm backtracks.

The core of the look-ahead architecture is the LOOKAHEAD procedure, which in-
corporates the branching heuristics (selecting a decision variable and selecting the first
branch) and several reasoning techniques to reduce the size of the formula. Because the
latter are beyond the scope of this paper, we refer the reader to [10] for details. Algo-
rithm 2 shows the top level structure. Notice that the LOOKAHEAD procedure returns
a reduced formula F , variable xdecision, and value B. Figure 1 provides a graphical
overview of the architecture.

Algorithm 2 DPLL(formula F)
1: if F = ∅ then
2: return satisfiable
3: end if
4: < F ; xdecision; B> := LOOKAHEAD(F)
5: if empty clause ∈ F then
6: return unsatisfiable
7: end if
8: if DPLL(F [xdecision = B]) = satisfiable then
9: return satisfiable
10: end if
11: return DPLL(F [xdecision = ¬B])

The LOOKAHEAD procedure, as the name suggests, performs look-aheads. A look-
ahead on x starts by assigning x to true followed by unit propagation. The importance of
x is measured and possible reductions of the formula are detected. After this analysis,
it backtracks, ending the look-ahead. The rationale of a look-ahead operation is that
evaluating the effect of actually assigning variables to truth values and performing unit
propagation is more adequate than taking a cheap guess using statistical data on F .

2.2 Look-ahead evaluation

Branching heuristics in look-ahead SAT solvers are based on evaluating the reduction
of the formula during a look-ahead. This reduction is expressed using the difference
or distance heuristic (in short DIFF). The larger the reduction, the higher the heuristic
value. A DIFF could be based on many statistics, such as the reduction of the number
of variables. Yet, all look-ahead SAT solvers use a DIFF based only on the set of newly
created (i.e. reduced, but not satisfied) clauses, denoted by Cnew [10].

The decision variable xdecision is selected by combining for each variable x i the
values DIFF(F , F [xi = 0]) and DIFF(F , F [xi = 1]). The objective of the decision
heuristic is to construct a small and balanced search tree. The product of these numbers
is generally considered to be an effective heuristic for this purpose [1]. The sum of these
numbers can be used for tie-breaking.

Once xdecision is selected, the direction heuristics decide whether to branch first
on F [xdecision = 0] or F [xdecision = 1]. Most solvers prefer the branch which is the
most satisfiable [1,10]. A heuristic used to determine the most satisfiable branch selects
Boolean value B for which DIFF(F , F [xi = B]) is the smallest.

xa

xb xc

0 1

?

1 0 0

DPLL

x1 x2 x3 x4

FLA

0

3

1

1

0

2

1

2

0 1

1

0

2

1

1

LOOKAHEAD

|Cnew|

Fig. 1. A graphical representation of the look-ahead architecture. Above, the DPLL super-
structure (a binary tree) is shown. In each node of the DPLL-tree, the LOOKAHEAD procedure is
called to select the decision variable and to compute implied variables by additional reasoning.
Black nodes refer to leaf nodes.

Consider the following example formula:

FLA = (¬x1∨x3)∧(x1∨x2∨x3)∧(x1∨¬x2∨x4)∧(x1∨¬x2∨¬x4)∧(x2∨¬x3∨x4)

Since all clauses in FLA have size three or smaller, only new binary clauses can
be created. For instance, during the look-ahead on ¬x 1, three new binary clauses are
created (all clauses in which literal x1 occurs). The look-ahead on x1 will force x3 to be
assigned to true by unit propagation. This will reduce the last clause to a binary clause,
while all other clauses become satisfied. Similarly, we can compute the number of new
binary clauses for all look-aheads – see Figure 1.

Finally, the selection of the decision variable is based on the reduction measure-
ments of both the look-ahead on ¬x i and xi. Generally, the product is used to combine
the numbers. In this example, x2 would be selected as decision variable, because the
product of the reduction measured while performing look-ahead on ¬x 2 and x2 is the
highest (i.e. 4).

The DIFF heuristic based on the number of newly created clauses was introduced
by Li and Anbulagan [4]. Several extensions have been proposed dealing with how to
weigh clauses in Cnew. If the original formula is 3-SAT, Cnew only consists of binary
clauses. For this special case, Li [5] uses in satz weights based on the occurrences of
variables. Let#(x) denote the number of occurrences of literal x. Each clause (y∨z) ∈

Cnew gets a weight of #(¬y) + #(¬z). A slight variation but much more effective
weight is used by Dubois and Dequen [6] in their solver kcnfs. Their backbone search
heuristic weighs a binary clause (y∨z) by#(¬y)×#(¬z). In case of k-SAT instances,
Kullmann [11] uses in the OKsolver weights based on the length of clauses in C new. A
clause of size k roughly get a weight of γk = 52−k.

2.3 Recursive weight heuristic

We developed a model to generalize existing work on look-ahead branching heuristics.
We refer to this model as the recursive weight heuristic. Let VAR(F) refer to the set of
variables inF and n = |VAR(F)|. The heuristic values hi(x) express for each iteration
i how much literal x is forced to true by the clauses containing x. First, for all literals
x, h0(x) are initialized on 1:

h0(x) = h0(¬x) = 1 (1)

At each step, the heuristics values hi(x) are scaled using the average value µi:

µi =
1
2n

∑

x∈VAR(F)

(
hi(x) + hi(¬x)

)
(2)

Finally, in each next iteration, the heuristic values h i+1(x) are computed in which
literals y get weight hi(¬y)/µi. Weight γ expresses the relative importance of binary
clauses. This weight could also be seen as the heuristic value of a falsified literal.

hi+1(x) =
∑

(x∨y∨z)∈F

(hi(¬y)
µi

· hi(¬z)
µi

)
+ γ

∑

(x∨y)∈F

hi(¬y)
µi

(3)

Earlier work on look-ahead heuristics can be formulated using the model above. For
binary clause (y ∨ z) ∈ Cnew they compute a weight w∗

i (y ∨ z) = hi(¬y) ∗ hi(¬z):

– Li & Anbulagan 1997 [4]: w(y ∨ z) = 1 = h0(¬y) × h0(¬z), in short w×
0 .

– Li 1999 [5]: w(y ∨ z) = #(¬y) + #(¬z) = h1(¬y) + h1(¬z), in short w+
1 .

– Dubois 2001 [6]: w(y ∨ z) = #(¬y) × #(¬z) = h1(¬y) × h1(¬z), in short w×
1 .

Although [5,6] used γ = 5, we observed stronger performance using γ = 3.3. Also,
the size of the tree can be reduced significantly by using weights w×

i with i > 1.
We implementedw×

0 , w
+
1 , w

×
1 ,w

×
2 ,w

×
3 andw×

4 in the look-ahead solvermarch ks
[12] with γ = 3.3. We experimented on 500 random 3-SAT formulae with 450 variables
and 1915 clauses (phase transition density). To provide stable numbers, all instances
were unsatisfiable. Figure 2 shows the results. Clearly, the average size of the tree is
smaller using w×

3 compared to the alternative heuristics. Although w×
3 is much more

expensive to compute, the average time to solve these instances has also decreased.
Regarding the computational costs, we observed that w×

3 resulted in best performance
of all w×

i on random 3-SAT formulae. In case i > 3, the reduction of the size of the
tree is not large enough to compensate for the additional cost to compute the weights.

0

1·105

2·105

3·105

w×
0 w+

1 w×
1 w×

2 w×
3 w×

4

average size

0

50

100

w×
0 w+

1 w×
1 w×

2 w×
3 w×

4

average time

Fig. 2. The influence of different heuristics for the clause weight used for look-ahead evaluation
on the average size of the search tree and the computational costs. The results are average sizes
and times for 500 random 3-SAT formaulae with 450 variables and 1915 clauses.

Our implementation with w×
3 participated as march hi at the SAT competition of

20091. It won the random unsatisfiable category. Apart from a few minor optimizations
and fixes, the only difference compared tomarch ks (the winner in 2007) is the recur-
sive weight heuristic. Both versions competed during SAT 2009 and march hi solved
over 10% more unsatisfiable instances. For many instances in this category it was the
only program to solve them.

3 Heuristic search

Let us take a step back from SAT to consider how to capitalize on direction heuristics
in general. We will first discuss the terminology of direction heuristics, and the ideas
behind the most important heuristic search strategies. Afterwards, we will introduce an
alternative search strategy, which is very powerful in combination with the recursive
weight heuristic.

3.1 Direction heuristics

There are various ways to explore search trees. Searching the entire tree for a specific
goal node is costly. Therefore, search strategies have been developed to guide the search
towards a goal node. To show that a problem has no solutions, the search has to be
complete by visiting all leaf nodes. Complete search strategies will either detect a goal
node or prove that none exists.

If a search tree contains goal nodes, direction heuristics predict which branches have
a higher probability of leading to a goal node than others. The branch with the highest
preference will be called the left branch. Any other branch is called a discrepancy. In
the case of a binary search tree a discrepancy can also be referred to as the right branch.
1 see http://www.satcompetition.org for details

In theory, direction heuristics are very powerful. Perfect direction heuristics would
lead to the goal node immediately. If such a perfect direction heuristic would exist,
given that it is computable in polynomial time, it would prove that P = NP . At each
node direction heuristics have a probability of picking the correct branch as left branch.
This probability is called the heuristic probability. Another probability that we define
is the goal node probability. For each node it expresses the probability that the subtree
with this node as root contains a goal node. The heuristic probability P heur(v) and the
goal node probability Pgoal(v) are related as follows:

Pgoal(v) = P (goal-node(v))
Pheur(v) = P (goal-node(left-child(v)) | goal-node(v))

Pgoal(left-child(v)) = P (goal-node(left-child(v)))
= Pgoal(v) · Pheur(v)

In the case of the binary search tree we can also define:

Pgoal(right-child(v)) = P (goal-node(right-child(v)))
= Pgoal(v) · (1 − Pheur(v))

For a given datasetD and search strategy S, Pgoal(v) denotes the fraction of formu-
lae inD that contain solutions in the subtree rooted at v, while applying algorithm S.

It is observed [12], that heuristics tend to make more mistakes in the top of the
search tree. As we get closer to the leaf nodes in the tree, the underlying problem has
been simplified. Heuristics perform better on simplified problems. Therefore, it is ex-
pected that Pheur(v) increases while descending in the search tree. Consequently, di-
rection heuristics are most likely to make mistakes near the root of the search tree.

To illustrate goal node probabilities throughout a tree, we will consider a direction
heuristic with increasing Pheur(v) in a binary tree with a single solution, see Figure 3.
Notice that, if a problem has solutions, Pgoal(root) = 1.

Fig. 3. Binary search tree containing one goal node. Nodes are labelled with the goal node prob-
ability Pgoal(v). Edges show the heuristic probabilities Pheur(v) (left) and 1 − Pheur(v) (right).

Looking at the goal node probabilities in this example, it shows that, although for
each node individually the left child has a higher Pgoal(v) than the right child, when
comparing all nodes at a certain depth no clear pattern can be observed between the
Pgoal(v) values. While searching for the goal node, one wants to take the P goal(v) of
the leaf nodes into account. In this example, when a search strategy visits the nodes
with a high goal node probability first, it will on average visit less leaf nodes before
finding a goal node. We will now discuss several complete search strategies.

3.2 Depth first search

One of the best know search strategies is depth first search (DFS). DFS branches left
until it reaches a leaf node, after which it backtracks chronologically. The order in
which DFS visits leaf nodes, from left to right, is shown in Figure 4. DFS traverses the
minimum number of edges needed to explore the entire tree. When P heur(v) = 0.5 for
all nodes v in a binary tree, meaning that the direction heuristic might as well randomly
select branches, Pgoal(v) is equal for every node v at the same depth, then DFS is the
cheapest strategy to use. When direction heuristics are stronger than random selection,
as in Figure 3, alternative strategies traverse the tree more efficiently.

1 2 3 4

5 6 7 8

Fig. 4. The iterations of DFS on a search tree of depth 3.

3.3 Discrepancy search

Assume that direction heuristics perform significantly better than random branch selec-
tion. When some leaf node is not a goal node, the intuition is that the heuristic only took
a small number of wrong branches on the path to this leaf node. Intuitively, tree search
performs best when paths with a small number of discrepancies are explored first.

Limited Discrepancy Search (LDS) LDS [3] explores first those parts of the search
tree that have a small number of discrepancies. In each iteration of LDS the number of
allowed discrepancies is incremented. Figure 5 illustrates the iterations of LDS. LDS
has some redundancy since it only sets an upper bound on the allowed number of dis-
crepancies. Therefore, in iteration x, LDS examines the paths from previous iterations
again.

1 2 3 4

Fig. 5. The iterations of LDS on a search tree of depth 3.

Improved Limited Discrepancy Search (ILDS) ILDS improves LDS by eliminating
the redundancy. This is achieved by providing a maximum search depth d to the algo-
rithm. Given this depth, at any point during its execution, the algorithm keeps track of
the remaining number of depths to be searched. As a consequence, in each iteration x,
only the paths with exactly x discrepancies are explored (starting with x = 0). This
way ILDS ensures that subtrees rooted at depth d are explored only once. All subtrees
rooted at depth d are searched using DFS. The iterations of ILDS are shown in Figure
6.

1 2 3 4

Fig. 6. The iterations of ILDS on a search tree of depth 3.

Depth-bounded Discrepancy Search (DDS) By incrementally increasing the max-
imum depth up to which discrepancies are allowed to occur, DDS [8] differs from
(I)LDS. More specific, DDS visits in each iteration i + 1, all branches at depth d < i,
only the discrepancies at depth d = i, and no discrepancies are allowed for d > i. Ex-
ploring the search tree this way also removes the requirement of specifying a maximum
depth. As can be seen in Figure 7, DDS explores paths with multiple right branches at
the top of the search tree relatively early. In specific cases where the direction heuristics
are bad (heuristic probabilities are close to 0.5 in case of a binary tree) near the root
of the tree, but suddenly get very good (close to 1) at a certain depth, it is useful to
introduce multiple discrepancies at the top of the search tree early.

1 2 3 4

Fig. 7. The iterations of DDS on a search tree of depth 3.

3.4 Advanced Limited Discrepancy Search

The papers describing LDS [3], ILDS [7] and DDS [8] are precise on which leaf nodes
are explored in each of the iteration stages. Yet, apart from the pseudocode, the order in
which leaf nodes are visited within a single iteration stage is not explicitly specified.We
will assume that the strategies are applied as described in the pseudocode. For ILDS,
DDS this means that, in each iteration, leaf nodes are explored from left to right.

By combining features from ILDS and DDS, a new search strategy can be created.
This search strategy uses the iterations of ILDS, while nodes within an iteration are
visited according to DDS. More specific, nodes with the same number of discrepancies
are visited from right to left.We call this strategyAdvanced Limited Discrepancy Search
(ALDS). The iterations of this strategy are shown in Figure 8. Like ILDS, ALDS is only
applied until a certain depth d, while subtrees rooted at d are explored using DFS.

1 2 3 4

5 6 7 8

Fig. 8. The iterations of ALDS on a search tree of depth 3.

This search strategy is inspired by an earlier experimental study on random 3-SAT
instances, where we observed [12] two patterns regarding the goal node probabilities:

1. Leaf nodes reached with less discrepancies have a higher goal node probability.
2. For leaf nodes reached with the same number of discrepancies, those reached with
discrepancies closer to the root have a higher goal node probability.

Notice that ALDS visits leaf nodes in the preferred order of these observations.

3.5 Performance

In order to compare the various search strategies, we propose a model to approximate
the performance. In this model, the top of the search tree, until depth d, is visited using
discrepancy search, while all subtrees rooted at depth d are visited by DFS. The depth d
at which DFS takes over from the discrepancy search is called the jump depth. So, using
a jump depth d would result in 2d subtrees. Discrepancy search ensures that promising
parts of the search tree are explored first, while DFS searches the remaining subtree
with minimal branching overhead. Subtrees explored by DFS are considered leaf nodes
in the discrepancy search.

If the size of subtrees rooted at depth d is substantial, the cost of traversing a subtree
is much higher than the overhead of jumping from one subtree to another. Assuming
that subtrees at the same depth do not differ much in size, the cost of finding a goal node
can be approximated by the number of subtrees one expects to explore. For search trees

with a single solution, the expected cost can be computed using the P goal(v) values of
the nodes at the jump depth:

Egoal(d) =
1
2d

·
2d∑

v=1

(
order(v) · Pgoal(v)

)
(4)

For a given depth d, subtrees are numbered chronologically from 1 to 2d and order(v)
denotes the index at which subtree v will be visited in the specific search strategy. For
example, the summation for ALDS using the goal node probabilities in Figure 3 is:

1
8
· (1 · .504 + 4 · .056 + 3 · .126 + 7 · .014 + 2 · .216 + 6 · .024 + 5 · .054 + 8 · .006)

The table below shows the Egoal(3) values based on the Figure 3 probablities:

DFS ILDS DDS ALDS
Egoal(3) 0.3375 0.31225 0.26375 0.26225

In case of multiple goal nodes, the ’expected’ cost can be computed for a set of in-
stances. Solve the instances using a search strategy and determine the average number
of subtrees visited at depth d. Divide the average number by 2d to obtain the average
cost. We will denote this alternative by E∗

goal(d).

4 Experiments

Two types of results are presented in this section: theoretical and experimental results.
The theoretical results are based on a probabilistic model of heuristic tree search. Ex-
periments have been performed with the look-ahead SAT solvermarch [12], the fastest
solver on random 3-SAT benchmarks.

We compare several discrepancy-based search strategies on the theoretical model
and on a dataset of random 3-SAT formulae. Additionally, two experiments were per-
formed to determine how much ALDS could be improved.

4.1 Theoretical results

Based on the increasing heuristic probability observation [12] we created a model with
just one goal node. In this model we assign the heuristic probability as follows (based
on the observed Pheur(v) values in [12]):

Pheur(v) = 0.56 + 0.015 · depth(v) (5)

Each leaf node v at depth 12 is assigned a goal node probability P goal(v) using the
equations described in Section 3.1. This means Pgoal is calculated by multiplying the
heuristic probabilities of the left and right children leading to that leaf node, starting at
the root with Pheur(root) = 1. So, similar to the tree in Figure 3, only using a much
larger tree.

In practice search trees contain multiple goal nodes, but no generality is lost by
putting just one goal node in the search tree of our model. This will only cause expected
cost to find a goal node and other numerical results to be a little larger, but this will not
favour any search strategy in particular. The difference in numerical results is acceptable
because this model is only used to compare the search strategies to each other.

0

0.2

0.4

0.6

0.8

1

0 512 1024 1536 2048 2560 3072 3584 4096

line Egoal(12)

DFS 0.410188
DDS 0.267444
ILDS 0.228320
ALDS 0.207261
Optimal 0.200357

Fig. 9. Theoretical fraction of instances unsolved versus number of leaf nodes explored on a
model search tree of depth 12 containing a total of 4096 leaf nodes.

Because the goal node probability of each subtree is defined by our own model, the
optimal order in which to search the subtrees is to go from high to low goal probability.
The expected fraction of the tree that has to be searched before a goal node is reached
is the area below each graph (see Figure 9). ALDS performs best on the model. In
addition, the difference between ALDS and the optimal search order is quite small.

4.2 Satisfiability results

For the experimental results we used the look-ahead SAT solver march [12] with the
recursive weight heuristic w×

3 as direction heuristic (see Section 2.3). The dataset for
the experiments consisted of 20146 satisfiable random 3-SAT instances with 350 vari-
ables and 1491 clauses. The clauses-to-variables ratio is 4.26, which is the ratio where
the probability of generating a satisfiable instance is about 50%, known as the phase
transition density.

For each instance, the complete search tree was explored to find out which of the
4096 subtrees at depth 12 contained solutions. A depth of 12was chosen to keep the data
compact enough for practical use, but still perform discrepancy search on a significant
part of the search tree. On average each instance contained 17.2 satisfiable subtrees.

Results from the experiments are shown in Figure 10. The vertical axis shows the
fraction of problems that has not been solved yet. The horizontal axis displays the num-
ber of subtrees that have been explored. Compared to the theoretical results, these lines
decrease faster. This can be explained by the fact that there is an average of 17.2 goal
nodes per instance in this experiment compared to a single goal node in the theoretical
model. The E∗

goal(12) values correspond to the area below the graphs.

0

0.2

0.4

0.6

0.8

1

0 512 1024 1536 2048 2560 3072 3584 4096

line E∗
goal(12)

DFS 0.148317
DDS 0.065840
ILDS 0.042362
ALDS 0.036114

Fig. 10. Fraction of instances unsolved versus explored search space, expressed by the number of
subtrees explored on depth 12, for the 3-SAT instances.

4.3 Analysis

Similar to Section 4.1, we want to demonstrate that ALDS performs close to optimal
on the dataset of random 3-SAT instances. Yet, due to multiple satisfying subtrees per
instance, it is hard to determine the performance of the optimal search strategy. To
approximate the optimal search strategy, we construct a Greedy search strategy. The
Greedy search strategy is introduced in [12], and is constructed as follows:

– Select the subtree in which most instances from the dataset have at least one solu-
tion. This subtree is next to be visited in this specific Greedy search strategy.

– Remove from consideration all the instances in which the selected subtree has at
least one solution.

– Repeat above steps until all instances are removed from consideration.
– The subtrees that have not been ordered yet, are placed at the end in ALDS order.

The construction of the Greedy search strategy requires a set of instances as input.
We let Greedy(S) denote the Greedy search strategy that has been constructed with
input set S. Any Greedy search strategy will perform very well for the given input set.

To determine whether or not Greedy could actually make a good generalized search
strategy, the dataset has been split into two parts, which we will call part A and part
B. WhenGreedy(A) is applied to part A, the E∗

goal(12) performance is very strong, as
expected. However, when Greedy(A) is applied to part B of the dataset, the result is
worse than using the ALDS search method. This can be observed in Figure 11.

0

0.1

0.2

0.3

0.4

0 512 1024 1536

ALDS
Greedy(A)
Greedy(B)

0

0.1

0.2

0.3

0.4

0 512 1024 1536

ALDS
Greedy(A)
Greedy(B)

Dataset A Dataset B

Fig. 11. Analysis of Greedy strategies versus ALDS. Each of the pictures represents a distinct
half of the dataset. The Greedy order used to create the top line in one picture is the order used to
create the lower line in the other picture.

Furthermore, the Greedy(S) lines on dataset S in Figure 11 reach the horizontal
axis after about 1024 of the 4096 subtrees. This is due to the limited size of the exper-
iment. On a hypothetical collection of all possible random 3-SAT instances, this line
could not reach the horizontal axis this quickly. To summarize: the Greedy search strat-
egy benefits greatly from the limited size of the dataset. Yet, it seems unlikely that a
greedy search strategy can be converted into a generalized search strategy in such a
way that it will outperform ALDS.

In our second analysis of the performance of ALDS, we experimented with various
linear models for the Pheur(v) values, see (6). Our motivation to use this linear model is
that we observed that the model (5) is an accurate approximation of the P heur(v) values
usingmarch with the w∗

3 heuristic on random 3-SAT formulae.

Pheur(v) = y + x · depth(v) (6)

We used these linear models to construct search strategies:
– Compute for all 4096 subtrees at depth 12 the Pgoal(v) values
– Visit the subtrees based on the Pgoal(v) values from high to low
The objective is to determinewhich linear model results in the smallestE ∗

goal(12) value.
Because we only use the Pgoal(v) values to determine the order of the subtrees, param-
eter y can be fixed. We set it to y = 0.56 as in (5). The table below shows the results:

x 0.0050 0.0055 0.0060 0.0065 0.0070 0.0075 0.0080

E∗
goal(12) 0.035331 0.035325 0.035327 0.035340 0.035341 0.035372 0.035390

x 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150

E∗
goal(12) 0.035434 0.035447 0.035561 0.035735 0.035840 0.035974 0.036057

Two interesting things can be concluded from these experiments. First, the optimal
value for the x parameter (0.0055) is much smaller than the value that matches the ob-
served data (0.0150). Second, the optimal E ∗

goal(12) value (0.03525) is hardly smaller
than the cost of ALDS (0.036114). It will be difficult to construct a search strategy
based on a linear model that will outperform ALDS, because the overhead required to
implement a more complex strategy will probably be more costly than the small reduc-
tion in E∗

goal(12) can compensate.

5 Conclusion

We introduced the recursive weight heuristic, a branching heuristic for look-ahead SAT
solvers. The solvermarch equippedwith this heuristic performs stronger than any other
solver on unsatisfiable random 3-SAT formulae. It won the gold medal in this category
at the SAT 2009 competition.

To capitalize on the recursive weight heuristic on satisfiable instances as well, we
presented advanced limited discrepancy search (ALDS). Theoretical and practical re-
sults show that ADSL outperforms alternative complete search strategies on satisfiable
random 3-SAT formulae. We show that on these instances, ALDS in combination with
the recursive weight heuristic traverse the search tree in a near-optimal order.

References
1. Kullmann, O.: 7. [13] 205–244
2. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. J. Autom. Reason. 24(1-2) (2000) 67–100

3. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search, Proceedings of IJCAI’95, Mor-
gan Kaufmann (1995) 607–613

4. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. Pro-
ceedings of IJCAI’97, Morgan Kaufmann (1997) 366–371

5. Li, C.M.: A constraint-based approach to narrow search trees for satisfiability. Information
processing letters 71(2) (1999) 75–80

6. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT
formulae. In Nebel, B., ed.: Proceedings of IJCAI’01, Morgan Kaufmann (2001) 248–253

7. Korf, R.E.: Improved limited discrepancy search. Proceedings of AAAI-96, MIT Press
(1996) 286–291

8. Walsh, T.: Depth-bounded discrepancy search. Proceedings of IJCAI’97, Morgan Kaufmann
(1997) 1388–1393

9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5(7) (1962) 394–397

10. Heule, M.J.H., van Maaren, H.: 5. [13] 155–184
11. Kullmann, O.: Investigating the behaviour of a SAT solver on random formulas. Techni-

cal Report CSR 23-2002, University of Wales Swansea, Computer Science Report Series
(http://www-compsci.swan.ac.uk/reports/2002.html) (2002) 119 pages.

12. Heule, M.J.H., van Maaren, H.: Whose side are you on? finding solutions in a biased search-
tree. Technical report, Proceedings of Guangzhou Symposium on Satisfiability In Logic-
Based Modeling (2006)

13. Biere, A., Heule, M.J.H., van Maaren, H.,Walsh, T., eds.: Handbook of Satisfiability. Volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)

