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Abstract. We consider three graphs, G7,3, G7,4, and G7,6, related to
Keller’s conjecture in dimension 7. The conjecture is false for this di-
mension if and only if at least one of the graphs contains a clique of
size 27 = 128. We present an automated method to solve this conjecture
by encoding the existence of such a clique as a propositional formula.
We apply satisfiability solving combined with symmetry-breaking tech-
niques to determine that no such clique exists. This result implies that
every unit cube tiling of R7 contains a facesharing pair of cubes. Since
a faceshare-free unit cube tiling of R8 exists (which we also verify), this
completely resolves Keller’s conjecture.

1 Introduction

In 1930, Keller conjectured that any tiling of n-dimensional space by translates
of the unit cube must contain a pair of cubes that share a complete (n − 1)-
dimensional face [13]. Figure 1 illustrates this for the plane and the 3-dimensional
space. The conjecture generalized a 1907 conjecture of Minkowski [24] in which
the centers of the cubes were assumed to form a lattice. Keller’s conjecture was
proven to be true for n ≤ 6 by Perron in 1940 [25, 26], and in 1942 Hajós [6]
showed Minkowski’s conjecture to be true in all dimensions.

Fig. 1. Left, a tiling of the plane (2-dimensional space) with unit cubes (squares). The
bold blue edges are fully face-sharing edges. Right, a partial tiling of the 3-dimensional
space with unit cubes. The only way to tile the entire space would result in a fully
face-sharing square at the position of the blue squares.
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In 1986 Szabó [28] reduced Keller’s conjecture to the study of periodic tilings.
Using this reduction Corrádi and Szabó [3] introduced the Keller graphs: the
graph Gn,s has vertices {0, 1, . . . , 2s − 1}n such that a pair are adjacent if and
only if they differ by exactly s in at least one coordinate and they differ in at
least two coordinates. The size of cliques in Gn,s is at most 2n [5] and the size
of the largest clique in Gn,s is at most the size of the largest clique in Gn,s+1.

A clique in Gn,s of size 2n demonstrates that Keller’s conjecture is false
for dimensions greater than or equal to n. Lagarias and Shor [19] showed that
Keller’s conjecture is false for n ≥ 10 in 1992 by exhibiting clique of size 210 in
G10,2. In 2002, Mackey [22] found a clique of size 28 in G8,2 to show that Keller’s
conjecture is false for n ≥ 8. In 2011, Debroni, Eblen, Langston, Myrvold, Shor,
and Weerapurage [5] showed that the largest clique in G7,2 has size 124.

In 2015, Kisielewicz and  Lysakowska [14, 16] made substantial progress on
reducing the conjecture in dimension 7. More recently, in 2017, Kisielewicz [15]
reduced the conjecture in dimension 7 as follows: Keller’s conjecture is true in
dimension 7 if and only if there does not exist a clique in G7,3 of size 27 [21].

The main result of this paper is the following theorem.

Theorem 1. Neither G7,3 nor G7,4 nor G7,6 contains a clique of size 27 = 128.

Although proving this property for G7,3 suffices to prove Keller’s conjecture
true in dimension 7, we also show this for G7,4 and G7,6 to demonstrate that our
methods need only depend on prior work of Kisielewicz and  Lysakowska [14,16].
In particular, the argument for G7,6 [14] predates and is much simpler than the
one for G7,4 [16] (although the publication dates indicate otherwise). It is not
explicitly stated in either that it suffices to prove that G7,4 or G7,6 lacks a clique
of size 128 to prove Keller’s conjecture. We show this in the Appendix of the
extended version, available at https://arxiv.org/abs/1910.03740.

We present an approach based on satisfiablity (SAT) solving to show the ab-
sence of a clique of size 128. SAT solving has become a powerful tool in computer-
aided mathematics in recent years. For example, it was used to prove the Erdős
discrepancy conjecture with discrepancy 2 [17], the Pythagorean triples prob-
lem [10], and Schur number five [7]. Modern SAT solvers can also emit proofs of
unsatisfiability. There exist formally verified checkers for such proofs as devel-
oped in the ACL2, Coq, and Isabelle theorem-proving systems [4, 20].

The outline of this paper is as follows. After describing some background con-
cepts in Section 2, we present a compact encoding whether Gn,s contains a clique
of size 2n as a propositional formula in Section 3. Without symmetry breaking,
these formulas with n > 5 are challenging for state-of-the-art tools. However,
the Keller graphs contain many symmetries. We perform some initial symmetry
breaking that is hard to express on the propositional level in Section 4. This al-
lows us to partially fix three vertices. On top of that we add symmetry-breaking
clauses in Section 5. The soundness of their addition has been mechanically ver-
ified. We prove in Section 6 the absence of a clique of size 128 in G7,3, G7,4 and
G7,6. We optimize the proofs of unsatisfiability obtained by the SAT solver and
certify them using a formally verified checker. Finally we draw some conclusions
in Section 7 and present directions for future research.

https://arxiv.org/abs/1910.03740
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Fig. 2. Illustration of G2,2. The coordinates of the vertices are compactly represented
by a sequence of the digits.

2 Preliminaries

We present the most important background concepts related to this paper and
introduce some properties of Gn,s. First, for positive integers k, we define two
sets: [k] := {1, 2, . . . , k} and 〈k〉 := {0, 1, . . . , k − 1}.

Keller Graphs. The Keller graph Gn,s consists of the vertices 〈2s〉n. Two vertices
are adjacent if and only if they differ by exactly s in at least one coordinate and
they differ in at least two coordinates. Figure 2 shows a visualization of G2,2.

As noted in [5], {sw + 〈s〉n : w ∈ {0, 1}n} is a partition of the vertices of
Gn,s into 2n independent sets. Consequently, any clique in Gn,s has at most 2n

vertices. For example, V (G2,2) is partitioned as follows:

{{2(0, 0) + {0, 1}2, 2(0, 1) + {0, 1}2, 2(1, 0) + {0, 1}2, 2(1, 1) + {0, 1}2} =

{{(0, 0), (0, 1), (1, 0), (1, 1)}, {(0, 2), (0, 3), (1, 2), (1, 3)},
{(2, 0), (2, 1), (3, 0), (3, 1)}, {(2, 2), (2, 3), (3, 2), (3, 3)}}.

We use the above observation for encoding whether Gn,s has a clique of
size 2n. Instead of searching for such a clique on the graph representation of
Gn,s, which consists of (2s)n vertices, we search for 2n vertices, one from each
sw + 〈s〉n, such that every pair is adjacent.

For every i ∈ 〈2n〉, we let w(i) = (w1, w2, . . . , wn) ∈ {0, 1}n be defined by
i =

∑n
k=1 2k−1 ·wk. Given a clique of size 2n, we let ci be its unique element in

sw(i) + 〈s〉n and we let ci,j be the jth coordinate of ci.
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Useful Automorphisms of Keller Graphs. Let Sn be the set of permutations of
[n] and let Hs be the set of permutations of 〈2s〉 generated by the swaps (i i+s)
composed with any permutation of 〈s〉 which is identically applied to s + 〈s〉.
The maps

(x1, x2, . . . , xn) 7→ (τ1(xσ(1)), τ2(xσ(2)), . . . , τn(xσ(n))),

where σ ∈ Sn and τ1, τ2, . . . , τn ∈ Hs are automorphisms of Gn,s. Note that
applying an automorphism to every vertex of a clique yields another clique of
the same size.

Propositional Formulas. We consider formulas in conjunctive normal form (CNF),
which are defined as follows. A literal is either a variable x (a positive literal) or
the negation x of a variable x (a negative literal). The complement l of a literal
l is defined as l = x if l = x and l = x if l = x. For a literal l, var(l) denotes the
variable of l. A clause is a disjunction of literals and a formula is a conjunction
of clauses.

An assignment is a function from a set of variables to the truth values 1 (true)
and 0 (false). A literal l is satisfied by an assignment α if l is positive and
α(var(l)) = 1 or if it is negative and α(var(l)) = 0. A literal is falsified by an as-
signment if its complement is satisfied by the assignment. A clause is satisfied by
an assignment α if it contains a literal that is satisfied by α. A formula is satisfied
by an assignment α if all its clauses are satisfied by α. A formula is satisfiable if
there exists an assignment that satisfies it and unsatisfiable otherwise.

Clausal Proofs. Our proof that Keller’s conjecture is true for dimension 7 is
predominantly a clausal proof, including a large part of the symmetry breaking.
Informally, a clausal proof system allows us to show the unsatisfiability of a
CNF formula by continuously deriving more and more clauses until we obtain
the empty clause. Thereby, the addition of a derived clause to the formula and
all previously derived clauses must preserve satisfiability. As the empty clause
is trivially unsatisfiable, a clausal proof shows the unsatisfiability of the original
formula. Moreover, it must be checkable in polynomial time that each derivation
step does preserve satisfiability. This requirement ensures that the correctness
of proofs can be efficiently verified. In practice, this is achieved by allowing only
the derivation of specific clauses that fulfill some efficiently checkable criterion.

Formally, clausal proof systems are based on the notion of clause redundancy.
A clause C is redundant with respect to a formula F if adding C to F preserves
satisfiability. Given a formula F = C1 ∧ · · · ∧ Cm, a clausal proof of F is a
sequence (Cm+1, ωm+1), . . . , (Cn, ωn) of pairs where each Ci is a clause, each ωi
(called the witness) is a string, and Cn is the empty clause [9]. Such a sequence
gives rise to formulas Fm, Fm+1, . . . , Fn, where Fi = C1 ∧ · · · ∧ Ci. A clausal
proof is correct if every clause Ci (i > m) is redundant with respect to Fi−1,
and if this redundancy can be checked in polynomial time (with respect to the
size of the proof) using the witness ωi.
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An example for a clausal proof system is the resolution proof system, which
only allows the derivation of resolvents (with no or empty witnesses). How-
ever, the resolution proof system does not allow to compactly express symmetry
breaking. Instead we will construct a proof in the resolution asymmetric tautol-
ogy (RAT) proof system. This proof system is also used to validate the results
of the SAT competitions [11]. For the details of RAT, we refer to the original
paper [9]. Here, we just note that (1) for RAT clauses, it can be checked effi-
ciently that their addition preserves satisfiability, and (2) every resolvent is a
RAT clause but not vice versa.

3 Clique Existence Encoding

Recall that Gn,s has a clique of size 2n if and only if there exist vertices ci ∈
sw(i)+〈s〉n for all i ∈ 〈2n〉 such that for all i 6= i′ there exists at least two j ∈ [n]
such that ci,j 6= ci′,j and there exists at least one j ∈ [n] such that ci,j = ci′,j±s.

Our CNF will encode the coordinates of the ci. For each i ∈ 〈2n〉, j ∈ [n],
k ∈ 〈s〉, we define Boolean variables xi,j,k which are true if and only if ci,j =
sw(i)j + k. We therefore need to encode that exactly one of xi,j,0, xi,j,1, . . .,
xi,j,s−1 is true. We use the following clauses

∀i ∈ 〈2n〉,∀j ∈ [n], (xi,j,0 ∨ xi,j,1 ∨ · · · ∨ xi,j,s−1) ∧
∧

k<k′∈〈s〉
(xi,j,k ∨ xi,j,k′).

(1)

Next we enforce that every pair of vertices ci and ci′ in the clique differ in at
least two coordinates. For most pairs of vertices, no clauses are required because
w(i) and w(i′) differ in at least two positions. Hence, a constraint is only required
for two vertices if w(i) and w(i′) differ in exactly one coordinate.

Let ⊕ be the binary XOR operator and ej be the indicator vector of the jth
coordinate. If w(i) ⊕ w(i′) = ej , then in order to ensure that ci and ci′ differ
in at least two coordinates we need to make sure that there is some coordinate
j′ 6= j for which ci,j′ 6= ci′,j′

∀i 6= i′ ∈ 〈2n〉 s.t. w(i)⊕ w(i′) = ej ,
∨

j′∈[n]\{j},k∈〈s〉
(xi,j′,k 6= xi′,j′,k). (2)

We use the Plaisted-Greenbaum [27] encoding to convert the above constraint
into CNF. We refer to the auxiliary variables introduced by the encoding as
yi,i′,j′,k, which if true imply xi,j′,k 6= xi′,j′,k, or written as an implication

yi,i′,j′,k → (xi,j′,k 6= xi′,j′,k)

The following two clauses express this implication

(yi,i′,j′,k ∨ xi,j′,k ∨ xi′,j′,k) ∧ (yi,i′,j′,k ∨ xi,j′,k ∨ xi′,j′,k) (3)
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Notice that the implication is only in one direction as Plaisted-Greenbaum
takes the polarity of constraints into account. The clauses that represent the
other direction, i.e., (yi,i′,j′,k ∨xi,j′,k ∨xi′,j′,k) and (yi,i′,j′,k ∨xi,j′,k ∨xi′,j′,k) are
redundant (and more specifically, they are blocked [18]).

Using the auxiliary variables, we can express the constraint (2) using clauses
of length s · (n− 1)

∀i 6= i′ ∈ 〈2n〉 s.t. w(i)⊕ w(i′) = ej ,
∨

j′∈[n]\{j},k∈〈s〉
yi,i′,j′,k. (4)

The last part of the encoding consists of clauses to ensure that each pair of
vertices in the clique have at least one coordinate in which they differ by exactly
s. Observe that ci,j = ci′,j ± s implies that ci,j 6= ci′,j and xi,j,k = xi′,j,k for all
k ∈ 〈s〉. We use auxiliary variables zi,i′,j , whose truth implies ci,j = ci′,j ± s, or
written as an implication

∀i 6= i′ ∈ 〈2n〉,∀j ∈ [n] s.t. ci,j 6= ci′,j ,

zi,i′,j →
(
(xi,j,0 = xi′,j,0) ∧ · · · ∧ (xi,j,s−1 = xi′,j,s−1)

)
.

Notice that the implication is again in one direction only. Below we enforce
that some zi,i′,j variables must be true, but there are no constraints that enforce
zi,i′,j variables to be false.

This can be written as a CNF using the following clauses:∧
k∈〈s〉

(
(zi,i′,j ∨ xi,j,k ∨ xi′,j,k) ∧ (zi,i′,j ∨ xi,j,k ∨ xi′,j,k)

)
(5)

Finally, to make sure that ci,j = ci′,j ± s for some j ∈ [n], we specify

∀i 6= i′ ∈ 〈2n〉,
∨

j:ci,j 6=ci′,j

zi,i′,j . (6)

The variables and clauses, including precise formulas for their counts, are
summarized in Table 1. The sizes of the CNF encodings (before the addition of
symmetry breaking clauses) of G7,3, G7,4, and G7,6 are listed in Table 2. Notice
that for fixed n, the dependence on s is quadratic, which is better than the
s2n dependence one would get in the naive encoding of Gn,s as a graph. This
compact encoding, when combined with symmetry breaking, is a core reason
that we were able to prove Theorem 1.

The instances with n = 7 are too hard for state-of-the-art SAT solvers
if no symmetry breaking is applied. We experimented with general-purpose
symmetry-breaking techniques, similar to the symmetry-breaking predicates pro-
duced by shatter [1]. This allows solving the formula for G7,3, but the com-
putation takes a few CPU years. The formulas for G7,4 and G7,6 with these
symmetry-breaking predicates are significantly harder.

Instead we employ problem-specific symmetry breaking by making use of
the observations in Sections 4 and 5. This allows solving the clique of size 2n

existence problem for all three graphs in reasonable time.
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Table 1. Summary of variable and clause counts in the CNF encoding.

Clauses New Variable Count Clause Count

(1) 2n · n · s 2n · n · (1 +
(
s
2

)
)

(3) 2n−1 · n · s · (n− 1) 2n · n · s · (n− 1)
(4) 2n−1 · n
(5) 22n−2 · n 22n−1 · n · s
(6)

(
2n

2

)
Total 2n−1 · n · (s(n + 1) + 2n−1) 2n · n ·

(
3
2

+
(
s
2

)
+ n · s− s

)
+ 22n−1ns +

(
2n

2

)

4 Initial Symmetry Breaking

Our goal is to prove that there exists no clique of size 128 in G7,s for s ∈ {3, 4, 6}.
In this section, and the subsequent, we assume that such a clique exists and adapt
some of the arguments of Perron [25,26] to show that it may be assumed to have
a canonical form. We will use ?i to denote an element in 〈i〉.

Lemma 1. If there is a clique of size 128 in G7,s, then there is a clique of size
128 in G7,s containing the vertices (0, 0, 0, 0, 0, 0, 0) and (s, 1, 0, 0, 0, 0, 0).

Proof. Let K be a clique of size 128 in G7,s. Consider the following sets of
vertices in G6,s:

K<s := {(v2, . . . , v7) | ∃v1 ∈ 〈s〉 s.t. (v1, . . . , v7) ∈ K}

and
K≥s := {(v2, . . . , v7) | ∃v1 ∈ s+ 〈s〉 s.t. (v1, . . . , v7) ∈ K}.

Every pair of vertices in K<s differs by exactly s in at least one coordinate,
because the corresponding pair of vertices in K can’t differ by exactly s in the
first coordinate. Similarly, every pair of vertices in K≥s differs by exactly s in at
least one coordinate. Although K<s and K≥s are not necessarily cliques in G6,s,
they satisfy the first condition of the adjacency requirement. The partition of
section 2 can thus be applied to deduce that |K<s| ≤ 64 and |K≥s| ≤ 64. Since
|K<s|+ |K≥s| = 128, we conclude that |K<s| = 64 and |K≥s| = 64.

By the truth of Keller’s conjecture in dimension 6, K<s is not a clique in G6,s.
Thus, some pair of vertices in K<s are identical in five of the six coordinates.

Table 2. Summary of variable and clause counts of the CNF encoding for G7,3, G7,4,
and G7,6. These counts do not include the clauses introduced by the symmetry breaking.

Keller Graph Variable Count Clause Count

G7,3 39 424 200 320
G7,4 43 008 265 728
G7,6 50 176 399 232
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After application of an automorphism, we may without loss of generality assume
that this pair is (s, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0). Since the pair comes from K<s,
there exist v1 6= v′1 ∈ 〈s〉 such that (v1, s, 0, 0, 0, 0, 0) and (v′1, 0, 0, 0, 0, 0, 0) are
in the clique.

After application of an automorphism that moves v1 to 1 and v′1 to 0, we de-
duce that without loss of generality (1, s, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 0) are in
the clique. Application of the automorphism that interchanges the first two co-
ordinates yields a clique of size 128 containing the vertices c0 = (0, 0, 0, 0, 0, 0, 0)
and c1 = (s, 1, 0, 0, 0, 0, 0). �

Theorem 2. If there is a clique of size 128 in G7,s, then there is a clique of
size 128 in G7,s containing the vertices (0, 0, 0, 0, 0, 0, 0), (s, 1, 0, 0, 0, 0, 0), and
(s, s+ 1, ?2, ?2, 1, 1, 1).

Proof. Using the preceding lemma, we can choose from among all cliques of size
128 that contain c0 = (0, 0, 0, 0, 0, 0, 0) and c1 = (s, 1, 0, 0, 0, 0, 0), one in which
c3 has the fewest number of coordinates equal to 0. Let λ be this least number.

Observe that the first two coordinates of c3 must be (s, s+ 1) in order for it
to be adjacent with both c0 and c1. Thus, we have

c0 = (0 , 0 , 0 , 0 , 0 , 0 , 0 )
c1 = (s , 1 , 0 , 0 , 0 , 0 , 0 )
c3 = (s , s+ 1 , ?s , ?s , ?s , ?s , ?s)

In the above, we can apply automorphisms that fix 0 in the last five coor-
dinates to replace ?s by ?2. We can apply an automorphism that permutes the
last five coordinates to assume that the 0’s and 1’s in c3 are sorted in increasing
order. Notice that not all of the ?2 coordinates in c3 can be 0, because c1 and
c3 are adjacent and must therefore differ in at least two coordinates. Hence at
least the last coordinate of c3 is 1.

Case 1) λ = 4. In this case c3 = (s, s + 1, 0, 0, 0, 0, 1). In order for c67 to be
adjacent with c0, c1, and c3, it must start with (s, s+ 1) and end with s+ 1:

c0 = (0 , 0 , 0 , 0 , 0 , 0 , 0 )
c1 = (s , 1 , 0 , 0 , 0 , 0 , 0 )
c3 = (s , s+ 1 , 0 , 0 , 0 , 0 , 1 )
c67 = (s , s+ 1 , ?s , ?s , ?s , ?s , s+ 1)

Not all ?s elements in c67 can be 0, because c3 and c67 differ in at least two
coordinates. However, if one of the ?s elements in c67 is nonzero, then we can
swap 1 and s+ 1 in the last coordinate to obtain a clique in which c3 has three
or fewer coordinates equal to 0, contradicting λ = 4. Thus, λ ≤ 3.

Case 2) λ = 3, in which case c3 = (s, s+ 1, 0, 0, 0, 1, 1):

c0 = (0 , 0 , 0 , 0 , 0 , 0 , 0 )
c1 = (s , 1 , 0 , 0 , 0 , 0 , 0 )
c3 = (s , s+ 1 , 0 , 0 , 0 , 1 , 1 )
c35 = (s , s+ 1 , ?s , ?s , ?s , s+ 1 , ?s )
c67 = (s , s+ 1 , ?s , ?s , ?s , ?s , s+ 1)
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Since c67 is adjacent with c0, c1, and c3, it must start with (s, s + 1) and
end with s+ 1. Similarly, since c35 is adjacent with c0, c1, and c3, it must start
with (s, s + 1) and have s + 1 as its penultimate coordinate. Since c35 and c67
are adjacent, either the last coordinate of c35 must be 1, or the penultimate
coordinate of c67 must be 1. Without loss of generality we can assume that the
penultimate coordinate of c67 is 1 as we can permute the last two coordinates
which would swap c35 and c67 without involving the other cubes. The remaining
three ?s elements in c67 cannot all be 0, since c3 and c67 differ in at least two
coordinates. However, if one of the ?s elements is non-zero, then we can swap
1 and s + 1 in the last coordinate to obtain a clique in which c3 has two or
fewer coordinates equal to 0, contradicting λ = 3. Thus, we have λ ≤ 2 and
c3 = (s, s+ 1, ?2, ?2, 1, 1, 1), as desired. �

Notice that most of the symmetry breaking discussed in this section is chal-
lenging, if not impossible, to break on the propositional level: The proof of
Lemma 1 uses the argument that Keller’s conjecture holds for dimension 6,
while the proof of Theorem 2 uses the interchangeability of 1 and s + 1, which
is not a symmetry on the propositional level. We will break these symmetries
by adding some unit clauses to the encoding. All additional symmetry breaking
will be presented in the next section and will be checked mechanically.

5 Clausal Symmetry Breaking

Our symmetry-breaking approach starts with enforcing the initial symmetry
breaking: We assume that vertices c0 = (0, 0, 0, 0, 0, 0, 0), c1 = (s, 1, 0, 0, 0, 0, 0)
and c3 = (s, s + 1, ?s, ?s, 1, 1, 1) are in our clique K, which follows from Theo-
rem 2. We will not use the observation that ?s occurrences in c3 can be reduced
to ?2 and instead add and validate clauses that realize this reduction.

We fix the above initial vertices by adding unit clauses to the CNF encoding.
This is the only part of the symmetry breaking that is not checked mechanically.
Let Φ7,s be the formula obtained from our encoding in Section 3 together with
the unit clauses corresponding to the 19 coordinates fixed among c0, c1 and c3.
In this section we will identify several symmetries in Φ7,s that can be further
broken at the CNF level by adding symmetry breaking clauses. The formula
ultimately used in Section 6 for the experiments is the result of adding these
symmetry breaking clauses to Φ7,s. Symmetry breaking clauses are added in an
incremental fashion. For each addition, a clausal proof of its validity with respect
to Φ7,s and the clauses added so far is generated, as well. Each of these clausal
proofs has been validated using the drat-trim proof checker.

Our approach can be described in general terms as identifying groups of co-
ordinates whose assignments exhibit interesting symmetries and calculating the
equivalence classes of these assignments. Given a class of symmetric assignments,
it holds that one of these assignments can be extended to a clique of size 128
if and only if every assignment in that class can be extended as well. It is then
enough to pick a canonical representative for each class, add clauses forbidding
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every assignment that is not canonical, and finally determine the satisfiability
of the formula under the canonical representative of every class of assignments:
if no canonical assignment can be extended to a satisfying assignment for the
formula, then the formula is unsatisfiable. In order to forbid assignments that
are not canonical, we use an approach similar to the one described in [8].

5.1 The Last Three Coordinates of c19, c35 and c67

The reasoning in the proof of Theorem 2 leads to the following forced settings,
once we assign c3 = (s, s+ 1, ?s, ?s, 1, 1, 1) and apply unit propagation:

(c19,1, c19,2, c19,5) = (s, s+ 1, s+ 1),
(c35,1, c35,2, c35,6) = (s, s+ 1, s+ 1),
(c67,1, c67,2, c67,7) = (s, s+ 1, s+ 1).

Let’s now focus on the 3× 3 matrix of the coordinates below and do a case
split on all of the s6 possible assignments of coordinates labeled with ?s.

5 6 7
c19 s+ 1 ?s ?s
c35 ?s s+ 1 ?s
c67 ?s ?s s+ 1

Notice, however, that since the only positions in which c19 and c35 can differ
by exactly s are positions 5 and 6, and since c19,5 and c35,6 are already set to
s+1, at least one of c19,6 and c35,5 has to be set to 1. Similarly, it is not possible
for both c35,7 and c67,6 to not be 1 and for both c67,5 and c19,7 to not be 1.
By the inclusion-exclusion principle, this reasoning alone discards 3(s− 1)2s4 −
3(s − 1)4s2 + (s − 1)6 cases. All of these cases can be blocked by adding the
binary clauses: (x19,6,1 ∨ x35,5,1) ∧ (x35,7,1 ∨ x67,6,1) ∧ (x67,5,1 ∨ x19,7,1). These
three clauses are RAT clauses [12] with respect to the formula Φ7,s.

Furthermore, among the remaining (2s− 1)3 cases, several assignment pairs
are symmetric. For example, the following two assignments are symmetric be-
cause one can be obtained from the other by swapping columns and rows:

5 6 7
c19 s+ 1 1 2
c35 2 s+ 1 2
c67 1 1 s+ 1

5 6 7
c19 s+ 1 1 1
c35 2 s+ 1 1
c67 2 2 s+ 1

As with many problems related to symmetries, we can encode each assign-
ment as a vertex-colored graph and use canonical labeling algorithms to de-
termine a canonical assignment representing all the symmetric assignments of
each equivalence class, and which assignments are symmetric to each canonical
form. Our approach is similar to the one by McKay and Piperno for isotopy of
matrices [23].

This additional symmetry breaking reduces the number of cases for the last
three coordinates of the vertices c19, c37, and c67 from the trivial s6 to 25 cases
for s = 3 and 28 cases for s ≥ 4. Figure 3 shows the 25 canonical cases for s = 3.
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(0, 0, 1, 0, 1, 1) (0, 0, 1, 1, 1, 1) (0, 0, 1, 1, 1, 2) (0, 1, 1, 0, 0, 1) (0, 1, 1, 0, 1, 1)
(0, 1, 1, 0, 2, 1) (0, 1, 1, 1, 0, 2) (0, 1, 1, 1, 1, 0) (0, 1, 1, 1, 1, 1) (0, 1, 1, 1, 1, 2)
(0, 1, 1, 1, 2, 0) (0, 1, 1, 1, 2, 1) (0, 1, 1, 1, 2, 2) (0, 1, 1, 2, 1, 1) (0, 1, 1, 2, 2, 1)
(0, 2, 1, 1, 1, 1) (0, 2, 1, 1, 1, 2) (0, 2, 1, 2, 1, 1) (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 2)
(1, 1, 1, 1, 2, 2) (1, 1, 1, 2, 2, 1) (1, 1, 2, 1, 2, 1) (1, 1, 2, 1, 2, 2) (1, 2, 2, 1, 1, 2)

Fig. 3. The 25 canonical cases for s = 3. Each vector corresponds to the values of the
coordinates (c19,6, c19,7, c35,5, c35,7, c67,5, c67,6).

5.2 Coordinates Three and Four of Vertices c3, c19, c35 and c67

The symmetry breaking in the previous subsection allows us to fix, without loss
of generality, the last coordinate of c19 to 1. It also constrains the third and
fourth coordinates of c3 to take values in 〈2〉 instead of 〈s〉.

We break the computation into further cases by enumerating over choices
for the third and fourth coordinates of vertices c3, c19, c37, and c67. Up to this
point, our description of the partial clique is invariant under the permutations
of 〈s− 1〉 in the third and fourth coordinates as well as swapping the third and
fourth coordinates. With respect to these automorphisms, for s = 3 there are
only 861 equivalence classes for how to fill in the ?s cases for these four vertices.
For s = 4 there are 1326 such equivalence classes, and for s = 6 there are 1378
such equivalence classes. This gives a total of 25 × 861 = 21 525 cases to check
for s = 3, 28 × 1326 = 37 128 cases to check for s = 4, and 28 × 1378 = 38 584
cases to check for s = 6.

5.3 Identifying Hardest Cases

In initial experiments we observed for each s ∈ {3, 4, 6} that out of the many
thousands of subformulas (cases), one subformula was significantly harder to
solve compared to the other subformulas. Figure 5 shows the coordinates of the
key vertices of this subformula for s ∈ {3, 4, 6}. Notice that the third and fourth
coordinates are all 0 for all the key vertices. We therefore applied additional
symmetry breaking in case all of these coordinates are 0. Under this case, the
third and the fourth coordinates of vertex c2 can be restricted to (0, 0), (0, 1),

c0 = (0 , 0 , 0 , 0 , 0 , 0 , 0 )
c1 = (s , 1 , 0 , 0 , 0 , 0 , 0 )
c3 = (s , s+ 1 , ?2 , ?2 , 1 , 1 , 1 )
c19 = (s , s + 1 , ?3 , ?3 , s + 1 , ?3 , 1 )
c35 = (s , s + 1 , ?4 , ?4 , ?3 , s + 1 , ?3 )
c67 = (s , s + 1 , ?5 , ?5 , ?4 , ?4 , s + 1)

Fig. 4. Part of the symmetry breaking on the key vertices. The bold coordinates show
the (unverified) initial symmetry breaking. The bold s and s+ 1 coordinates in c1 and
c3 are also implied by unit propagation. The additional symmetry breaking is validated
by checking a DRAT proof expressing the symmetry breaking clauses.
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c0
c1
c3
c19
c35
c67

(0, 0, 0, 0, 0, 0, 0)
(3, 1, 0, 0, 0, 0, 0)
(3, 4, 0, 0, 1, 1, 1)
(3, 4, 0, 0, 4, 0, 1)
(3, 4, 0, 0, 1, 4, 0)
(3, 4, 0, 0, 0, 1, 4)

(0, 0, 0, 0, 0, 0, 0)
(4, 1, 0, 0, 0, 0, 0)
(4, 5, 0, 0, 1, 1, 1)
(4, 5, 0, 0, 5, 0, 1)
(4, 5, 0, 0, 1, 5, 0)
(4, 5, 0, 0, 0, 1, 5)

(0, 0, 0, 0, 0, 0, 0)
(6, 1, 0, 0, 0, 0, 0)
(6, 7, 0, 0, 1, 1, 1)
(6, 7, 0, 0, 7, 0, 1)
(6, 7, 0, 0, 1, 7, 0)
(6, 7, 0, 0, 0, 1, 7)

Fig. 5. The hardest instance for s = 3 (left), s = 4 (middle), and s = 6 (right).

and (1, 1), and the last three coordinates of c2 can only take values in 〈3〉. Fur-
thermore, any assignment (a, b, c) to the last three coordinates of c2 is symmetric
to the same assignment “shifted right”, i.e. (c, a, b), by swapping columns and
rows appropriately. These symmetries define equivalence classes of assignments
that can also be broken at the CNF level. Under the case shown in Figure 5,
there are only 33 non-isomorphic assignments remaining for vertex c2 for s ≥ 3.
We replace the hard case for each s ∈ {3, 4, 6} by the corresponding 33 cases,
thereby increasing the total number of cases mentioned above by 32.

5.4 SAT Solving

Each of the cases was solved using a SAT solver, which produced a proof of
unsatisfiability that was validated using a formally verified checker (details are
described in the following section). To ensure that the combined cases cover the
entire search space, we constructed for each s ∈ {3, 4, 6} a tautological formula
in disjunctive normal form (DNF). The building blocks of a DNF are conjuctions
of literals known as cube. We will use α as a symbol for cubes as they are can
also be considered variable assignments. For each cube α in the DNF, we prove
that the formula after symmetry breaking under α is unsatisfiable. Additionally,
we mechanically check that the three DNFs are indeed tautologies.

6 Experiments

We used the CaDiCaL4 SAT solver developed by Biere [2] and ran the simula-
tions on a cluster of Xeon E5-2690 processors with 24 cores per node. CaDiCaL
supports proof logging in the DRAT format. We used DRAT-trim [29] to opti-
mize the emitted proof of unsatisfiability. Afterwards we certified the optimized
proofs with ACL2check, a formally verified checker [4]. All of the code that
we used is publicly available on GitHub.5 We have also made the logs of the
computation publicly available on Zenodo.6

4Commit 92d72896c49b30ad2d50c8e1061ca0681cd23e60 of
https://github.com/arminbiere/cadical

5https://github.com/marijnheule/Keller-encode
6https://doi.org/10.5281/zenodo.3755116

https://github.com/arminbiere/cadical
https://github.com/marijnheule/Keller-encode
https://doi.org/10.5281/zenodo.3755116
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Fig. 6. Cactus plot of the runtime in seconds (logscale) to solve the 21 557 subformulas
of G7,3 as well as the times to optimize and certify the proofs of unsatisfiability.

6.1 Results for Dimension 7

Table 3 summarizes the running times are for experiment. The subformula-
solving runtimes for s = 3, 4 and 6 are summarized in cactus plots in Figures 6,
7 and 8. The combined size of all unsatisfiability proofs of the subformulas of
s = 6 is 224 gigabyte in the binary DRAT proof format. These proofs contained
together 6.18 · 109 proof steps (i.e., additions of redundant clauses). The DRAT-
trim proof checker only used 6.39 ·108 proof steps to validate the unsatisfiability
of all subformulas. In other words, almost 90% of the clauses generated by CaD-
iCaL are not required to show unsatisfiability. It is therefore likely that a single
DRAT proof for the formula after symmetry breaking can be constructed that
is about 20 gigabytes in size. That is significantly smaller compared to other
recently solved problems in mathematics that used SAT solvers [7, 10].

Table 3. Summary of solve times for s = 3, 4, 6. Times without a unit are in CPU
hours. “No. Hard” is the number of subformulas which required more than 900 seconds
to solve. “Hardest” is the solve time of the hardest subformula in CPU hours,

s Tot. Solve Avg. Solve Proof Opt. Proof Cert. No. Hard Hardest

3 43.27 7.23 s 22.46 4.98 28 form. ≈ 1.2
4 77.00 7.46 s 44.00 9.70 62 form. ≈ 2.7
6 81.85 7.63 s 34.84 14.53 63 form. ≈ 1.25
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Fig. 7. Cactus plot of the runtime in seconds (logscale) to solve the 37 160 subformulas
of G7,4 as well as the times to optimize and certify the proofs of unsatisfiability.

We ran all three experiments simultaneously on 20 nodes on the Lonestar
5 cluster and computing on 24 CPUs per node in parallel. All instances were
reported unsatisfiable and all proofs of unsatisfiability were certified by the for-
mally verified checker. This proves Theorem 1.

6.2 Refuting Keller’s Conjecture in Dimension 8

To check the accuracy of the CNF encoding, we verified that the generated
formulas for G8,2, G8,3, G8,4 and G8,6 are satisfiable — thereby confirming that
Keller’s conjecture is false for dimension 8. These instances, by themselves, have
too many degrees of freedom for the solver to finish. Instead, we added to the
CNF the unit clauses consistent with the original clique found in the paper of
Mackey [22] (as suitably embedded for the larger graphs). Specification of the
vertices was per the method in Section 3 and 4. These experiments were run on
Stanford’s Sherlock cluster and took less than a second to confirm satisfiability.

Figure 9 shows an illustration of the clique of size 256 in G8,2. This is the
smallest counterexample for Keller’s conjecture, both in the dimension (n = 8)
as in the number of coordinates (s = 2). The illustration uses a black, dark blue,
white, or light blue dot to represent a coordinate set to 0, 1, 2, or 3, respectively.
Notice that for each pair of vertices holds that they have a complementary (black
vs white or dark blue vs light blue) dot and at least one other different coordinate
(a different color).
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Fig. 8. Cactus plot of the runtime in seconds (logscale) to solve the 38 616 subformulas
of G7,6 as well as the times to optimize and certify the proofs of unsatisfiability.

7 Conclusions and Future Work

In this paper, we analyzed maximal cliques in the graphs G7,3, G7,4, and G7,6 by
combining symmetry-breaking and SAT-solving techniques. For the initial sym-
metry breaking we adapt some of the arguments of Perron. Additional symmetry
breaking is performed on the propositional level and this part is mechanically
verified. We partitioned the resulting formulas into thousands of subformulas
and used a SAT solver to check that each subformula cannot be extended to a
clique of size 128. Additionally, we optimized and certified the resulting proofs
of unsatisfiability. As a result, we proved Theorem 1, which resolves Keller’s
conjecture in dimension 7.

In the future, we hope to construct a formally verified argument for Keller’s
conjecture, starting with a formalization of Keller’s conjecture down to the re-
lation of the existence of cliques of size 2n in Keller graphs and finally the
correctness of the presented encoding. This effort would likely involve formally
verifying most of the theory discussed in the Appendix of the extended version
of the paper. On top of that, we would like to construct a single proof of un-
satisfiability that incorporates all the clausal symmetry breaking and the proof
of unsatisfiability of all the subformulas and validate this proof using a formally
verified checker.

Furthermore, we would like to extend the analysis to G7,s, including com-
puting the size of the largest cliques for various values of s. Another direction
to consider is to study the maximal cliques in G8,s in order to have some sort of
classification of all maximal cliques.
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Fig. 9. Illustration of a clique of 256 vertices in G8,2. Each “dice” with eight dots
represents a vertex, and each dot represents a coordinate. A black, dark blue, white,
and light blue dot represent a coordinate set to 0, 1, 2, and 3, respectively.

Acknowledgments

The authors acknowledge the Texas Advanced Computing Center (TACC) at
The University of Texas at Austin, RIT Research Computing, and the Stanford
Research Computing Center for providing HPC resources that have contributed
to the research results reported within this paper. Joshua is supported by an
NSF graduate research fellowship. Marijn and David are supported by NSF grant
CCF-1813993. We thank Andrzej Kisielewicz and Jasmin Blanchette for valuable
comments on an earlier version of the manuscript. We thank William Cooperman
for helpful discussions on a previous attempt at programming simulations to
study the half-integral case. We thank Alex Ozdemir for helpful feedback on both
the paper and the codebase. We thank Xinyu Wu for making this collaboration
possible.



The Resolution of Keller’s Conjecture 17

References

1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: Efficient symmetry-breaking
for boolean satisfiability. In: Proceedings of the 40th Annual Design Automation
Conference. pp. 836–839. DAC ’03, ACM, Anaheim, CA, USA (2003)

2. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering the
SAT Competition 2018. In: Proc. of SAT Competition 2018 – Solver and Bench-
mark Descriptions. Department of Computer Science Series of Publications B, vol.
B-2018-1, pp. 13–14. University of Helsinki (2018)
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