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Abstract. The Divide and Distribute Fixed Weights algorithm (ddfw) is
a dynamic local search SAT-solving algorithm that transfers weight from
satisfied to falsified clauses in local minima. ddfw is remarkably effective
on several hard combinatorial instances. Yet, despite its success, it has
received little study since its debut in 2005. In this paper, we propose
three modifications to the base algorithm: a linear weight transfer method
that moves a dynamic amount of weight between clauses in local minima,
an adjustment to how satisfied clauses are chosen in local minima to give
weight, and a weighted-random method of selecting variables to flip. We
implemented our modifications to ddfw on top of the solver yalsat. Our
experiments show that our modifications boost the performance compared
to the original ddfw algorithm on multiple benchmarks, including those
from the past three years of SAT competitions. Moreover, our improved
solver exclusively solves hard combinatorial instances that refute a con-
jecture on the lower bound of two Van der Waerden numbers set forth
by Ahmed et al. (2014), and it performs well on a hard graph-coloring
instance that has been open for over three decades.

1 Introduction

Satisfiability (SAT) solvers are powerful tools, able to efficiently solve problems
from a broad range of applications such as verification [11], encryption [25], and
planning [9,17]. The most successful solving paradigm is conflict-driven clause
learning (CDCL) [19, 20]. However, stochastic local search (SLS) outperforms
CDCL on many classes of satisfiable formulas [6,18,23,24,27], and it can be used
to guide CDCL search [7].

SLS algorithms solve SAT instances by incrementally changing a truth assign-
ment until a solution is found or until timeout. At each step, the algorithm flips
the truth value of a single boolean variable, often according to some heuristic.
A common heuristic is flipping variables that reduce the number of falsified
clauses in the formula, but this is not the only one. The algorithm reaches a
local minimum when no variable can be flipped to improve its heuristic. At that
point, the algorithm either adjusts its truth assignment or internal state to escape
the local minimum, or it starts over. Refer to chapter 6 from the Handbook of
Satisfiability [4] for a more detailed discussion of SLS algorithms.
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Dynamic local search (DLS) algorithms are SLS algorithms that assign a
weight to each clause. They then flip variables to reduce the amount of weight
held by the falsified clauses. DLS algorithms escape local minima by adjusting
clause weights until they can once again flip variables to reduce the amount of
falsified weight.

Several DLS algorithms have been studied. For example, the Pure Additive
Weighting Scheme algorithm (paws) [26] and the Scaling and Probabilistic
Smoothing algorithm (saps) [14] both increase the weight of falsified clauses in
local minima. A drawback of this method of escaping local minima is that the
clause weights must periodically be re-scaled to prevent overflow.

The Divide and Distribute Fixed Weights algorithm (ddfw) [15] introduces
an alternative way of escaping local minima: increase the weight of falsified
clauses by taking weight from satisfied clauses. In local minima, ddfw moves a
fixed, constant amount of weight to each falsified clause from a satisfied clause
it shares at least one literal with. The transfer method keeps the total amount
of clause weight constant, eliminating the need for a re-scaling phase. Another
consequence of this transfer method is that as more local minima are encountered,
difficult-to-satisfy clauses gather more weight. Thus, ddfw dynamically identifies
and prioritizes satisfying hard clauses.

Recent work shows that ddfw is an effective algorithm. For example, ddfw
(as implemented in ubcsat [28]1) is remarkably effective on matrix multiplication
and graph-coloring problems [12,13]. Yet despite its success, ddfw has received
little research attention. In this paper, we revisit the ddfw algorithm to study
why it works well and to improve its performance.

Our contributions are as follows. We propose three modifications to the ddfw
algorithm. We first introduce a linear weight transfer rule to allow for a more
dynamic transfer of weight in local minima. We then adjust a performance-critical
parameter that randomizes which satisfied clause gives up weight in local minima.
Our adjustment is supported by an empirical analysis. Finally, we propose a
new randomized method for selecting which variable to flip. We implement each
of our modifications on top of the state-of-the-art SLS solver yalsat to create
a new implementation of ddfw that supports parallelization and restarts. We
then evaluate our solver against a set of challenging benchmarks collected from
combinatorial problem instances and the past three years of SAT competitions.
Our results show that our modifications boost the performance of ddfw: Our
best-performing version of ddfw solves 118 SAT Competition instances, a vast
improvement over a baseline of 83 solves from the original algorithm. Our solver
also exhibits a 16% improvement over the baseline on a set of combinatorial
instances. Moreover, in parallel mode, our solver solves instances that refute
a conjecture on the lower bound of two van der Waerden numbers [2], and it
matches performance with the winning SLS solver from the 2021 SAT competition
on a graph-coloring instance that has been open for the past three decades.

1 To the best of our knowledge, there is no official implementation or binary of original
ddfw [15] available.
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2 Preliminaries

SAT solvers operate on propositional logic formulas in conjunctive normal form
(CNF). A CNF formula F =

∧
i Ci is a conjunction of clauses, and each clause Ci =∨

j `j is a disjunction of boolean literals. We write v and v as the positive and
negative literals for the boolean variable v, respectively.

A truth assignment α maps boolean variables to either true or false. A literal v
(resp. v) is satisfied by α if α(v) is true (α(v) is false, respectively). A clause C
is satisfied by α if α satisfies at least one of its literals. A formula F is satisfied
by α exactly when all of its clauses are satisfied by α. Two clauses C and D are
neighbors if there is a literal ` with ` ∈ C and ` ∈ D. Let Neighbors(C) be the
set of neighbors of C in F , excluding itself.

Many SLS algorithms assign a weight to each clause. Let W : C → R≥0 be
the mapping that assigns weights to the clauses in C. One can think of W (C)
as the cost to leave C falsified. We call the total amount of weight held by the
falsified clauses, the falsified weight. A variable that, when flipped, reduces the
falsified weight is called a weight-reducing variable (wrv). A variable that doesn’t
affect the falsified weight when flipped is a sideways variable (sv).

3 The ddfw Algorithm

Algorithm 1 shows the pseudocode for the ddfw algorithm. ddfw attempts to
find a satisfying assignment for a given CNF formula F over MAXTRIES trials.
The weight of each clause is set to w0 at the start of the algorithm. Each trial
starts with a random assignment. By following a greedy heuristic method, ddfw
selects and then flips weight-reducing variables until none are left. At this point,
it either flips a sideways variable, if one exists and if a weighted coin flip succeeds,
or it enters the weight transfer phase, where each falsified clause receives a fixed
amount of weight from a maximum-weight satisfied neighbor. Occasionally, ddfw
transfers weight from a random satisfied clause instead, allowing weight to move
more fluidly between neighborhoods. The amount of weight transferred depends
on whether the selected clause has more than w0 weight.

There are five parameters in the original ddfw algorithm: the initial weight w0
given to each clause, the two weighted-coin thresholds spt and cspt for sideways
flips and transfers from random satisfied clauses, and the amount of weight to
transfer in local minima c> and c= . In the original ddfw paper, these five values
are fixed constants, with w0 = 8, spt = 0.15, cspt = 0.01, c> = 2, and c= = 1.

ddfw is unique in how it transfers weight in local minima. Similar SLS
algorithms increase the weight of falsified clauses (or decrease the weight of
satisfied clauses) globally; weight is added and removed based solely on whether
the clause is satisfied. ddfw instead moves weight among clause neighborhoods,
with falsified clauses receiving weight from satisfied neighbors.

One reason why this weight transfer method may be effective is that satisfying
a falsified clause C by flipping literal ` to ` (∈ C) increases the number of true
literals in satisfied clauses that neighbor C on `. Thus, C borrows weight from
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Algorithm 1: The ddfw algorithm
Input: CNF Formula F , w0, spt, cspt, c> , c=
Output: Satisfiability of F

1 W (C)← w0 for all C ∈ F
2 for t = 1 to MAXTRIES do
3 α← random truth assignment on the variables in F
4 for f = 1 to MAXFLIPS do
5 if α satisfies F then return “SAT”
6 else
7 if there is a wrv then
8 Flip a wrv that most reduces the falsified weight
9 else if there is a sv and rand ≤ spt then

10 Flip a sideways variable
11 else
12 foreach falsified clause C do
13 Cs ← maximum-weighted satisfied clause in Neighbors(C)
14 if W (Cs) < w0 or rand ≤ cspt then
15 Cs ← random satisfied clause with W ≥ w0
16 if W (Cs) > w0 then
17 Transfer c> weight from Cs to C
18 else
19 Transfer c= weight from Cs to C
20 return “No SAT”

satisfied clauses that tend to remain satisfied when C itself becomes satisfied. As
a result, ddfw satisfies falsified clauses while keeping satisfied neighbors satisfied.

The existence of two weight transfer parameters c> and c= deserves discussion.
Let heavy clauses be those clauses C withW (C) > w0. Lines 16-19 in Algorithm 1
allow for a different amount of weight to be taken from heavy clauses than from
clauses with the initial weight. Because lines 14-15 ensure that the selected clause
Cs will have at least w0 weight, c= is used when W (Cs) = w0 and c> is used
when W (Cs) > w0 (hence the notation). The original algorithm sets c> = 2 and
c= = 1, which has the effect of taking more weight from heavy clauses.

4 Solvers, Benchmarks, and Hardware

The authors of the original ddfw algorithm never released their source code or
any binaries. The closest thing we have to a reference implementation is the one
in the SLS SAT-solving framework ubcsat [27, 28]. We call this implementation
ubc-ddfw, and we use it as a baseline in our experiments.

Unfortunately, ubc-ddfw cannot be extended to implement our proposed
modifications due to its particular architecture. Instead, we implemented ddfw
on top of yalsat [5], which is currently one of the strongest local search SAT
solvers. For example, it is the only local search solver in Mallob-mono [22], the
clear winner of the cloud track in the SAT Competitions of 2020, 2021, and 2022.
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yalsat uses probsat [3] as its underlying algorithm, which flips variables in
falsified clauses drawn from an exponential probability distribution.

One benefit of implementing ddfw on top of yalsat is that is yalsat
supports parallelization, which can be helpful when solving challenging formulas.
In our experiments, we compare our implementation of ddfw to ubc-ddfw to
verify that the two implementations behave similarly.

Our implementation of ddfw on top of yalsat was not straightforward. First,
we switched the underlying SLS algorithm from probsat to ddfw. Then we added
additional data structures and optimizations to make our implementation efficient.
For example, one potential performance bottleneck for ddfw is calculating the
set of weight-reducing variables for each flip. Every flip and adjustment of
clause weight can change the set, so the set must be re-computed often. A naive
implementation that loops through all literals in all falsified clauses is too slow,
since any literal may appear in several falsified clauses, leading to redundant
computation. Instead, we maintain a list of variables uvars that appear in any
falsified clause. After each flip, this list is updated. To compute the set of weight-
reducing variables, we iterate over the variables in uvars, hitting each literal
once. In this way, we reduce redundant computation.

Adding our proposed modifications to our implementation was simpler. We
represent clause weights with floating-point numbers, and the linear weight
transfer rule replaced the original one. We also made the variable selection and
weight transfer methods modular, so our modifications slot in easily2.

We evaluated our implementations of ddfw against two benchmarks. The
Combinatorial (COMB) set consists of 65 hard instances from the following
eight benchmarks families collected by Heule:3 (i) 26x26 (4 grid positioning
instances), (ii) asias (2 almost square packing problems), (iii) MM (20 matrix
multiplication instances), (iv) mphf (12 cryptographic hash instances), (v) ptn (2
Pythagorean triple instances), (vi) Steiner (3 Steiner triples cover instances [21]),
(vii) wap (9 graph-coloring instances [16]), and (viii) vdw (13 van der Waerden
number instances). These benchmarks are challenging for modern SAT solvers,
including SLS solvers. The wap benchmark contains three instances that have
been open for three decades, and vdw contains two instances that, if solved, refute
conjectures on lower-bounds for two van der Waerden numbers [2].

The SAT Competition (SATComp) set consists of all 1,174 non-duplicate
main-track benchmark instances from the 2019 SAT Race and the 2020 and
2021 SAT Competitions. The competition suites contain medium-hard to very
challenging benchmarks, most of which are contributed by the competitors.

Unless otherwise specified, we used a timeout of 18,000 and 5,000 seconds for
the COMB and SATComp instances, respectively, in our experiments.

We used the StarExec cluster [1], where each node has an Intel CPU E5 CPU
with a 2.40 GHz clock speed and a 10240 KB cache. For experiments in this cluster,
we used at most 64 GB of RAM. To perform experiments on the 3 open wap and
2 vdw instances, we used a different cluster with the following specifications: we
2 Source code of our system is available at https://github.com/solimul/yal-lin
3 https://github.com/marijnheule/benchmarks

https://github.com/solimul/yal-lin
https://github.com/marijnheule/benchmarks


6 Chowdhury et al.

use the Bridges2 [?] cluster from the Pittsburgh Supercomputing Center with
the following specifications: two AMD EPYC 7742 CPUs, each with 64 cores,
256MB of L3 cache, and 512GB total RAM memory.

5 Modifications to the ddfw Algorithm

We propose three modifications to ddfw. The first is a linear rule for transferring
a dynamic amount of weight in local minima. The second is an adjustment of
the cspt parameter. The third is the introduction of a weighted-random method
for selecting which variable to flip.

5.1 The Linear Weight Transfer Rule

The reference implementation of ddfw, ubc-ddfw, represents its clause weights
as integers and transfers fixed integer weights in local minima. While this design
decision allows ubc-ddfw to have a fast implementation, it unnecessarily restricts
the amount of weight transferred in local minima to be integer-valued. In addition,
the choice to transfer a fixed, constant amount of weight prevents ddfw from
adapting to situations where more weight must be transferred to escape a local
minimum, thus requiring multiple weight transfer rounds. To address these
concerns, we propose a dynamic linear weight transfer rule to operate on floating-
point-valued clause weights.

Let CS be the selected satisfied clause from which to take weight in a local
minimum, as in line 13 in Algorithm 1. Our new rule transfers

a ∗W (CS) + c

weight, where 0 ≤ a ≤ 1 is a multiplicative parameter and c ≥ 0 is an additive
parameter.

It is not clear that the addition of a multiplicative parameter is helpful, nor
what a good pair of (a, c) values would be. So, we performed a parameter search
with our solver for a ∈ [0, 0.2] in steps of 0.05 and c ∈ [0, 2] in steps of 0.25
for both of our instance sets with a 900 second timeout per run. (A parameter
search using all 1,174 instances in the SATComp set was not feasible. We instead
did the search on the 168 instances from SATComp set that were solved by
some setting in earlier experimentation. In Section 6, all instances are used.) The
PAR-2 scores4 for the SATComp and COMB benchmark sets for each pair of
(a, c) values are shown in Figure 1.

The plots in Figure 1 show that values of a and c close to 0 degrade perfor-
mance, likely due to the need for many weight-transfer rounds to escape local
minima. The beneficial effect of higher values of a and c is more pronounced in
the parameter search on the SATComp instances (the left plot). Since the best-
performing settings have nonzero a and c values, we infer that both parameters
are needed for improved performance.
4 The PAR-2 score is defined as the average solving time, while taking 2 * timeout as
the time for unsolved instances. A lower score is better.
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Fig. 1. Parameter searches for a ∈ [0, 0.2] in steps of 0.05 and c ∈ [0, 2] in steps of 0.25
on the SATComp (left plot) and COMB (right plot) instances. A lower PAR-2 score is
better. There is not a datum for (a, c) = (0, 0) since no weight would be transferred.

5.2 How Much Weight Should be Given Away Initially?

On lines 16-19 of Algorithm 1, ddfw takes c> weight away from the selected
clause Cs if Cs is heavy and c= weight otherwise. The linear rule introduced
above can similarly be extended to four parameters: a>, a=, c>, and c=.

In the original ddfw paper, c> (= 2) is greater than c= (= 1), meaning that
heavy clauses give away more weight than clauses with the initial weight in local
minima. The intuition behind this is simple: clauses with more weight should
give away more weight. For the extended linear rule, one could adopt a similar
strategy by setting a> greater than a= and c> greater than c=.

However, one effect of our proposed linear rule is that once clauses give or
receive weight, they almost never again have exactly w0 weight. As a result, the
parameters a= and c= control how much weight a clause gives away initially.
Since the maximum-weight neighbors of falsified clauses tend to be heavy as the
search proceeds, the effect of a= and c= diminishes over time, but they remain
important at the start of the search and for determining how much weight the
algorithm has available to assign to harder-to-satisfy clauses. The findings in a
workshop paper [8] by two co-authors of this paper indicate that ddfw achieves
a better performance when clauses initially give more weight. These findings
suggest setting c= greater than c> and a= greater than a>. In Section 6, we
evaluate ddfw on the extended linear rule and investigate whether clauses should
initially give away more or less weight.

5.3 The cspt Parameter

On lines 14-15 of Algorithm 1, ddfw sometimes discards the maximum-weight
satisfied neighboring clause Cs and instead selects a random satisfied clause. The
cspt parameter controls how often the weighted coin flip on line 14 succeeds.
Though these two lines may appear to be minor, a small-scale experiment revealed
that the cspt parameter is performance-critical. We ran our implementation of
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Fig. 2. The impact of cspt values on the performance of ddfw on the wap instances.

the original ddfw algorithm on the COMB set with an 18,000 second timeout.
When we set cspt to 0, meaning that falsified clauses received weight solely from
satisfied neighbors, it solved a single instance; when we set cspt to 0.01 (the
value in the original ddfw algorithm), it solved 21 instances.

Among the eight families in COMB, the wap family was the most sensitive to
the change of cspt value from 0 (solved 0) to 0.01 (solved 6 out of 9). We isolated
these nine instances and ran a parameter search on them for cspt ∈ [0.01, 1] in
steps of 0.01, for a total of 900 runs. We used an 18,000 second timeout per run.
The PAR-2 scores are reported in Figure 2.

In Figure 2, we observe that cspt values near 0 and above 0.2 cause an
increase in the PAR-2 score. These results indicate that ddfw is sensitive to
the cspt value and that the cspt value should be set higher than its original
value of 0.01, but not too high, which could potentially degrade the performance
of the solver. We use these observations to readjust the cspt parameter in our
empirical evaluation presented in Section 6.

5.4 A Weighted-random Variable Selection Method
On line 8 of Algorithm 1, ddfw flips a weight-reducing variable that most
reduces the amount of falsified weight. Such a greedy approach may prevent
ddfw from exploring other, potentially better areas of the search space. Inspired
by probsat, which makes greedy moves only some of the time, we introduce a
new randomized method that flips a weight-reducing variable according to the
following probability distribution:

P(Flipping wrv v) = ∆W (v)∑
v∈wrv ∆W (v) ,

where ∆W (v) is the reduction in falsified weight if v is flipped.

6 Empirical Evaluation

In this section, we present our empirical findings. Since we evaluated several
different solvers, we refer to the solvers by the following names: the ubcsat
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version of ddfw is ubc-ddfw, the version of yalsat that implements probsat
is yal-prob, and our implementation of ddfw on top of yalsat is yal-lin. In
all of our experiments, we use the default random seed5 present in each solver,
and we set the initial clause weight w0 = 8, as in the original ddfw paper.

In our experiments with yal-lin, we varied the configuration of the solver
according to our proposed modifications. We use the identifying string W-cC-P
to refer to a configuration for yal-lin, where W ∈ {fw, lw} is the weight transfer
method (fw stands for “fixed weight,” lw for “linear weight”), C ∈ {0.01, 0.1}
is the cspt value, and P ∈ {grdy, wrnd} is the variable selection method (grdy
stands for the original “greedy” method, and wrnd stands for our proposed
“weighted random” method). For example, the string fw-c.01-grdy describes
the original ddfw algorithm, with c> = 2 and c= = 1.

6.1 Evaluation Without Restarts
We evaluate how yal-lin performs without restarts, meaning that ddfw runs
until timeout without starting from a fresh random assignment. To disable
restarts, we set MAXTRIES to 1 and MAXFLIPS to an unlimited number of
flips. For the COMB and SATComp benchmark sets, we set a timeout of 18,000
and 5,000 seconds, respectively.

We first checked that our solver yal-lin (with configuration fw-c.01-grdy)
behaves similarly to the baseline implementation, ubc-ddfw. The solvers per-
formed almost identically on the two benchmark sets: ubc-ddfw solved 22 of the
COMB instances and 80 of the SATComp instances; yal-lin solved 21 and 83,
respectively. We attribute the slight difference in solve counts to random noise.
These results indicate that we implemented yal-lin correctly.

We next evaluate how yal-lin performs under changes in the cspt value
and variable selection method. We run yal-lin with the fixed weight transfer
method on both benchmarks with all four combinations of C ∈ {0.01, 0.1} and
P ∈ {grdy, wrnd}. The solve counts and PAR-2 scores are shown in Table 1.

Isolating just the change in variable selection method (scanning across rows
in Table 1), we see that the weighted-random method outperforms the greedy
method for each benchmark and cspt value. There is improvement both in the
solve count (ranging from an additional 1 to 5 solves) and in the PAR-2 score.
While the improvements may be random noise, the results indicate that injecting
some randomness into how variables are flipped may lead to better performance.

Isolating the change in cspt value (scanning down columns in Table 1),
we see that the higher cspt value of 0.1 outperforms the cspt value of 0.01.
Improvements range from 1 additional solve to 16 additional solves. We note
that the improvements when increasing the cspt value are more pronounced
than when changing the variable selection method, which gives further evidence
that the cspt value is performance-critical. In Section 7, we present a possible
explanation for why the cspt parameter is so important.
5 Results for additional experiments with a different seed is available at:

https://github.com/solimul/additional-experiments-nfm23/blob/master/
additional_results_nfm2023.pdf

https://github.com/solimul/additional-experiments-nfm23/blob/master/additional_results_nfm2023.pdf
https://github.com/solimul/additional-experiments-nfm23/blob/master/additional_results_nfm2023.pdf
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Table 1. Solve counts and PAR-2 scores for different configurations of yal-lin. The
configurations vary the cspt value and the variable selection method, with the weight
transfer method being fw. The best configuration for each benchmark is bolded.

COMB SATComp
cspt grdy wrnd grdy wrnd
value #solved PAR-2 #solved PAR-2 #solved PAR-2 #solved PAR-2

0.01 21 25393 24 23871 83 9339 87 9312
0.1 24 23137 25 22538 98 9223 103 9188

The linear weight transfer rule. As we noted in Section 5.2, the linear weight
transfer rule can be extended to include four parameters: two multiplicative
and two additive. We tested yal-lin on three particular settings of these four
parameters, which we call lw-itl (linear weight initial transfer low), lw-ith
(linear weight initial transfer high), and lw-ite (linear weight initial transfer
equal).

– lw-itl takes a low initial transfer from clauses in local minima by setting
a= < a> and c= < c> .

– lw-ith takes a high initial transfer from clauses in local minima by setting
a= > a> and c= > c> .

– lw-ite does not distinguish clauses by weight, and sets the two pairs of
parameters equal.

In the left plot of Figure 1, a values for the top 10% of the settings (by PAR-2
scores) are in the range [0.05, 0.1]. Hence, we use 0.05 and 0.1 as the values for
a> and a= in lw-itl and lw-ith. We keep the values for c> and c= at 2 and 1,
following the original ddfw algorithm. For lw-ite, we take the average of the
two pairs of values, with a> = a= = 0.075 and c> = c= = 1.75. Table 2 shows
the parameter values for the three configurations that we tested.

Table 2. Parameter values for three versions of linearwt

linearwt versions a> a= c> c=

lw-itl 0.1 0.05 2 1
lw-ite 0.075 0.075 1.75 1.75
lw-ith 0.05 0.1 1 2

We compare our three new configurations against the original one across
the two variable selection methods. We set cspt = 0.1, as our prior experiment
showed it to be better than 0.01. Table 3 summarizes the results.

Scanning down the columns of Table 3, we see that all three linear weight
configurations perform at least as well as the fixed weight version, regardless
of variable selection method. The improvements on the COMB benchmark are
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Table 3. Solve counts and PAR-2 scores for different configurations of yal-lin. The
configurations vary the linear weight transfer method while keeping the cspt value
fixed at 0.1. The best configuration for each benchmark is bolded.

Weight
Transfer
Method

COMB SATComp
grdy wrnd grdy wrnd

#solved PAR-2 #solved PAR-2 #solved PAR-2 #solved PAR-2

fixedwt 24 23871 25 22538 98 9223 103 9188

lw-itl 26 22256 27 21769 98 9237 104 9189
lw-ite 28 21233 27 22228 111 9129 113 9114
lw-ith 26 22142 28 21338 115 9082 118 9055

modest, with at most 4 additional solved instances. The improvements on the
SATComp benchmark are more substantial, with a maximum of 17 additional
solved instances.

Overall, the best-performing linear weight configuration was lw-ith, which
transfers the more weight from clauses with the initial weight. These results
support prior findings that more weight should be freed up to the falsified clauses
in local minima. The best-performing variable selection method continues to be
the weighted random method wrnd.
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Fig. 3. Performance profiles of yal-lin (fw-c.01-grdy) and nine modifications for
COMB (left) and SATComp (right).

Analysis of solve count over runtime. In addition to solve counts and PAR-2
scores for the three linear weight configurations, we report solve counts as a
function of solving time. The data for ten experimental settings of yal-lin on
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the two benchmarks are shown in Figure 3. Note that the original ddfw setting
is represented by the setting fw-c.01-grdy, and is our baseline.

For the COMB benchmark (Figure 3, left plot), all nine other settings (our
modifications) outperform the baseline in terms of solving speed and number of
solved instances. The best settings are lw-ith-c.1-wrnd and lw-ite-c.1-grdy,
which perform on par with each other and solve 28 instances by timeout. For
the SATComp benchmark (Figure 3, right plot), the dominance of the setting
lw-ith-c.1-wrnd is more pronounced. For about the first 1,000 seconds, this
setting performs similar to lw-ith-c.1-grdy. After that, however, it begins to
perform the best of all the settings, and it ends up solving the most instances by
timeout, at 118. The baseline setting fw-c.01-grdy ends up solving 83 instances
at timeout, which is 35 less than lw-ith-c.1-wrnd.

These two plots clearly show that our modifications substantially improve
the original ddfw algorithm.
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Fig. 4. Solve time comparisons between base yal-prob, and 10 yal-lin settings for
COMB and SATComp, where restarts are enabled

6.2 Evaluation With Restarts

Many SLS algorithms restart their search with a random assignment after a
fixed number of flips. By default, yalsat also performs restarts. However, at
each restart, yalsat dynamically sets a new restart interval as r = 100, 000x for
some integer x ≥ 1, which is initialized to 1, and updated after each restart as
follows: if x is power of 2, then x is set to 1, otherwise to 2 ∗ x. The way yalsat
initializes its assignment at restart also differs from many SLS algorithms. On
some restarts, yalsat uses the best cached assignment. For all others, it restarts
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with a fresh random assignment. In this way, it attempts to balance exploitation
and exploration.

We also evaluated yal-lin with yalsat-style restarts. On a restart, the
adjusted clause weights are kept. The hope is that the adjusted weights help the
solver descend the search landscape faster.

We compare yal-prob against ten experimental settings of yal-lin with
restarts enabled. The best solver in this evaluation is yal-lin with the setting
lw-ith-c.1-grdy on the COMB benchmark and the setting lw-ith-c.1-wrnd
on the SATComp benchmark, which solve 11 and 49 more instances than
yal-prob, respectively. Figure 4 shows solve counts against solving time, and it
confirms that all the yal-lin settings solve instances substantially faster than
yal-prob.

6.3 Solving Hard Instances
Closing wap-07a-40. The wap family from the COMB benchmark contains
three open instances: wap-07a-40, wap-03a-40 and wap-4a-40. We attempted to
solve these three instances using the parallel version of yal-lin with the ten
yal-lin settings (without restarts) used in Section 6.1 in the cluster node with
128 cores and 18,000 seconds of timeout. All of our settings except fw-c.01-grdy
(the baseline) solve the wap-07a-40 instance. The best setting for this experiment
was lw-itl-c.1-wrnd, which solves wap-07a-40 in just 1168.64 seconds. However,
we note that lstech_maple (LMpl) [30], the winner of the SAT track of the SAT
Competition 2021, also solves wap-07a-40, in 2,103.12 seconds, almost twice
the time required by our best configuration lw-itl-c.1-wrnd for solving this
instance. Thus, for solving this open instance, our best setting compares well
with the state-of-the-art solver for solving satisfiable instances.

With restarts, the setting lw-itl-c.1-wrnd, the best setting for this experi-
ment, were not able to solve any of these three instances.
New lower bounds for van der Waerden/Green numbers. The van der
Waerden theorem [29] is a theorem about the existence of monochromatic arith-
metic progressions among a set of numbers. It states the following: there exists
a smallest number n = W (k; t1, . . . , ti, . . . , tk) such that any coloring of the
integers {1, 2, . . . , n} with k colors contains a progression of length ti of color i for
some i. In recent work, Ben Green showed that these numbers grow much faster
than conjectured and that their growth can be observed in experiments [10]. We
therefore call the CNF formulas to determine these numbers Green instances.

Ahmed et al. studied 20 van der Waerden numbers W (2; 3, t) for two colors,
with the first color having arithmetic progression of length 3 and the second of
length 19 ≤ t ≤ 39, and conjectured that their values for t ≤ 30 were optimal,
includingW (2; 3, 29) = 868 andW (2, 3, 30) = 903 [2]. By using yal-lin, we were
able to refute these two conjectures by solving the formulas Green-29-868-SAT
and Green-30-903-SAT in the COMB set. Solving these instances yields two new
bounds: W (2; 3, 29) ≥ 869 and W (2; 3, 30) ≥ 904.

To solve these two instances, we ran our various yal-lin configurations
(without restarts) using yalsat’s parallel mode, along with a number of other
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local search algorithms from ubcsat, in the same cluster we used to solve
wap-07a-40. Among these solvers, only our solver could solve the two instances.
lw-itl-c.1-wrnd solved both Green-29-868-SAT and Green-30-903-SAT, in
942.60 and 6534.56 seconds, respectively. The settings lw-ith-c.1-wrnd and
lw-ite-c.1-wrnd also solved Green-29-868-SAT in 1374.74 and 1260.16 seconds,
respectively, but neither could solve Green-30-903-SAT within a timeout of 18,000
seconds. The CDCL solver LMpl, which solves wap-07a-40, could not solve any
instances from the Green family within a timeout of 18,000 seconds.

With restarts lw-itl-c.1-wrnd, the best setting for this experiment only
solves Green-29-868-SAT in 2782.81 seconds within a timeout of 18,000 seconds.

7 Discussion and Future Work

In this paper, we proposed three modifications to the DLS SAT-solving algorithm
ddfw. We then implemented ddfw on top of the SLS solver yalsat to create
the solver yal-lin, and we tested this solver on a pair of challenging benchmark
sets. Our experimental results showed that our modifications led to substantial
improvement over the baseline ddfw algorithm. The results show that future
users of yal-lin should, by default, use the configuration lw-ith-c.1-wrnd.

While each modification led to improved performance, the improvements due
to each modification were not equal. The performance boost due to switching to
the weighted-random variable selection method was the weakest, as it resulted in
the fewest additional solves. However, our results indicate that making occasional
non-optimal flips may help ddfw explore its search space better.

The performance boost due to adjusting the cspt value was more substantial,
supporting our initial findings in Section 5.3. One metric that could explain
the importance of a higher cspt value is a clause’s degree of satisfaction (DS),
which is the fraction of its literals that are satisfied by the current assignment.
We noticed in experiments on the COMB benchmark with cspt = 0.01 that
clauses neighboring a falsified clause had an average DS value of 0.33, while
clauses without a neighboring falsified clause had an average DS value of 0.54.
If this trend holds for general yal-lin runs, then it may be advantageous to
take weight from the latter clauses more often, since flipping any literal in a
falsified clause will not falsify any of the latter clauses. A higher cspt value
accomplishes this. However, we did not investigate the relationship between DS
and cspt further, and we leave this to future work. Performance also improved
with the switch to a linear weight transfer method. The best method, lw-ith,
supports the findings from the workshop paper that ddfw should transfer more
weight from clauses with the initial weight. Future work can examine whether the
heavy-clause distinction is valuable; a weight transfer rule that doesn’t explicitly
check if a clause is heavy would simplify the ddfw algorithm.

When restarts are enabled, all ten settings in yal-lin perform better for
COMB than when restarts are disabled. This better performance with restarts
comes from solving several MM instances, for which these settings without restarts
solve none of them. However, for SATComp, yal-lin performs better when
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restarts are disabled. Since SATComp comprises of substantially larger number
of heterogeneous benchmarks than COMB, these results suggest that the new
system performs better when restarts are disabled.

Future work on weight transfer methods can take several other directions.
Different transfer functions can be tested, such as those that are a function of
the falsified clause’s weight or those based on rational or exponential functions.
Alternate definitions for neighboring clauses are also possible. For example, in
formulas with large neighborhoods, it may be advantageous to consider clauses
neighbors if they share k > 1 literals, rather than just 1.

Throughout this paper, we kept the spt parameter set to 0.15. Yet, when
clause weights are floating point numbers, it is rare for our solver to make
sideways moves. This evident in Figure 5, which compares count of sideways moves
per 10,000 flips between our baseline setting (fw-0.01-grdy), and best setting
(lw-ith-c.1-wrand) for a randomly chosen SATComp instance sted2_0x0_n219-
342 up to 5 millions flips. With fw-0.01-grdy, yal-lin makes some sideways
moves, albeit rarely. However, with floating weight transfer in lw-ith-c.1-wrand,
the solver makes almost no sideways moves as search progresses. We further
investigated the effect of sideways moves on solver performance. We tested the
setting lw-ith-c.1-wrnd against a version that did not perform sideways moves
on the SATComp benchmark. The version with sideways moves solved 118
instances, while the version without them solved 113. This suggests that sideways
moves may add a slight-but-beneficial amount of random noise to the algorithm.
Future work can more fully investigate the effect of sideways moves on ddfw.
One goal is to eliminate the parameter entirely in order to simplify the algorithm.
Alternatively, the algorithm could be modified to occasionally flip variables that
increase the falsified weight to help ddfw explore the search space.

Overall, we find that the ddfw algorithm continues to show promise and
deserves more research interest. Our solver closed several hard instances that
eluded other state-of-the-art solvers, and the space of potential algorithmic
improvements remains rich.
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