
Dynamic Symmetry Breaking

by Simulating Zykov Contraction

Bas Schaafsma, Marijn Heule! and Hans van Maaren

Department of Software Technology, Delft University of Technology
schaafsma@ch.tudelft.nl, marijn@heule.nl, h.vanmaaren@tudelft.nl

Abstract. We present a new method to break symmetry in graph color-
ing problems. While most alternative techniques add symmetry breaking
predicates in a pre-processing step, we developed a learning scheme that
translates each encountered conflict into one conflict clause which covers
equivalent conflicts arising from any permutation of the colors.
Our technique introduces new Boolean variables during the search. For
many problems the size of the resolution refutation can be significantly
reduced by this technique. Although this is shown for various hand-made
refutations, it is rarely used in practice, because it is hard to determine
which variables to introduce defining useful predicates. In case of graph
coloring, the reason for each conflicting coloring can be expressed as
a node in the Zykov-tree, that stems from merging some vertices and
adding some edges. So, we focus on variables that represent the Boolean
expression that two vertices can be merged (if set to true), or that an
edge can be placed between them (if set to false). Further, our algorithm
reduces the number of introduced variables by reusing them.
We implemented our technique in the state-of-the-art solver minisat. It
is competitive with alternative SAT based techniques for graph coloring
problems. Moreover, our technique can be used on top of other symmetry
breaking techniques. In fact, combined with adding symmetry breaking
predicates, huge performance gains are realized.

1 Introduction

Satisfiability (SAT) solvers have become very powerful in recent years. Especially
conflict-driven clause learning SAT solvers can effective tackle certain huge prob-
lems. Crucial to strong performance is learning conflict clauses that ensure that
the same search space is not explored multiple times. However, in the presence
of symmetry the effectiveness of conflict clauses is highly reduced: search spaces
could be visited that are symmetric to already refuted areas.

This paper focusses on symmetry in graph coloring problems. In particulary,
we want to break the symmetry that arises by permuting the colors. This can be
broken statically, as a preprocessing step, or dynamically, during the search. A
frequently used static technique assigns a different color to all vertices in a large

! Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.611

2

clique [19]. Although effective and cheap (a large clique is easy to find), it only
breaks the symmetry partially [15]. A dynamic symmetry breaking technique [10]
adds, besides the conflict clause expressing the conflict, all symmetric conflict
clauses. Yet the number of symmetric conflict clauses grows exponentially with
the number of colors. Here, we present an alternative dynamic technique.

For each conflicting assignment of k colors in the DPLL-tree there exists k!
symmetric conflicting assignments that can be obtained by a permutation of the
colors. At the core of our algorithm is the observation that all these symmetric
conflicting assignments correspond to the same node in the Zykov-tree: a binary
search tree that selects in each node two nonadjacent vertices of the graph being
colored. One branch explores the search space by merging these vertices (the
same color), while the other branch examines the space created by placing an
edge between them (not the same color). We transform each conflicting DPLL-
node to the corresponding Zykov-node and translate the latter back to SAT.

Since the Zykov algorithm branches on merging two nonadjacent vertices or
placing an edge between, new variables are introduced – called merge variables:
these variables represent that two vertices must have the same color (a merge
step) if set to true, while they must be colored differently (adding an edge) if
set to false. The proposed technique converts the original variables in conflict
clauses to merge variables.

The outline of this paper is as follows: Section 2 deals with encoding graph
coloring problems into SAT. Transformation of conflict clauses is explained in
Section 3. Section 4 offers experimental results. Finally, in Section 5 we draw
some conclusions and provide suggestions for future research.

2 Preliminaries

2.1 The Satisfiability problem

The Satisfiability problem (in short SAT) asks whether there exists an assign-
ment for a given Boolean formula such that it evaluates to true. If such an
assignment does exist, we call the problem satisfiable else the problem is qual-
ified as unsatisfiable. In a more formal setting a formula F = {C1 ∧ . . . ∧ Cm}
consists of conjunction of clauses Ci, while each clause Ci = (li,1 ∨ . . . ∨ li,j)
consists of disjunction of literals. A literal l refers either to a Boolean variable
xi or to its negation ¬xi. A clause is satisfied when at least one of its literals
evaluates to true. Finally, a satisfying assignment satisfies all clauses.

2.2 The k-coloring problem

The k-coloring problem deals with the question whether the vertices of a graph
can be colored with k colors such that two connected vertices have a different
color. Or more formal, let ϕcolor be a mapping of vertices v ∈ V onto an integer
in {1, . . . , k}. A graph G = (V, E) is k-colorable, when there exists a ϕcolor to
all vertices such that for every (v, w) ∈ E, ϕcolor(v) $= ϕcolor(w). The smallest k
for which G is still k-colorable is known as the chromatic number of G or X (G).

3

The k-coloring problem can be naturally translated to SAT. We focus on the
widely used direct encoding [14]. It uses Boolean variables xv,i ↔ ϕcolor(v) = i,
which we refer to as color variables. The property that all vertices must be
colored is encoded by the at-least-one clauses, which are of the form:

∧

v∈V

(xv,1 ∨ xv,2 ∨ · · · ∨ xv,k) (1)

Further, for each (v, w) ∈ E, k conflicting clauses encode ϕcolor(v) $= ϕcolor(w):

∧

1≤i≤k

∧

(v,w)∈E

(¬xv,i ∨ ¬xw,i) (2)

The above is known as the minimum encoding [9]. The extended encoding adds
redundant clauses which encode that vertices must have at-most-one color:

∧

1≤i<j≤k

∧

v∈V

(¬xv,i ∨ ¬xv,j) (3)

Although optional, most complete solvers perform better on instances where
these clauses have been added [14]. Yet for our technique they are not required.

2.3 Zykov Contraction algorithms

One of the main family of algorithms which determines X (G) for a graph G, or
approximates X (G) is known as Contraction. This family of algorithms is based
on a theorem due to Zykov [20], which states:

X (G) = min(X (G/(v, w)),X (G + (v, w))) (4)

In this theorem, G/(v, w) denotes the graph with vertex v and w contracted,
meaning that vertex w is deleted and all its edges are transferred to v. G+(v, w)
means that an edge is added between vertex v and w, as shown in Figure 1.

3

1

7

4 5 6

2

8G+v3, v5 G/v3, v5

3

1

7

4 5 6

2

8

1

7

4 /3,5 6

2

8

Fig. 1. A Zykov-tree example. The numbers in the vertices refer to their index vi.

4

Repeated steps of applying this theorem to a graph G result in a binary tree.
The leaves of this tree are fully connected graphs, which each have a chromatic
number equal to their number of vertices. The chromatic number of G is then
equal to the chromatic number of the graph with the least amount of vertices.

Zykov Contraction can be simulated in a SAT solver by adding redundant
variables and clauses to the CNF translation of a graph coloring problem. Adding
redundant variables and clauses was introduced by Tseitin and is known as
Extended Resolution (ER) [17]. ER is shown to be very powerful in theory [3].

Each step of the Contraction algorithm can be simulated by introducing a
Boolean variable ev,w, referred to as merge variables, which expresses:

ev,w ↔ ϕcolor(v) = ϕcolor(w) (5)

This relation can be translated to CNF using the following clauses:

∧

1≤i≤k

(ev,w∨¬xv,i∨¬xw,i) ∧ (¬ev,w∨xv,i∨¬xw,i) ∧ (¬ev,w∨¬xv,i∨xw,i) (6)

These clauses will propagate the fact that vertices v and w have equal or
unequal colors when ev,w is set. If set to true the clauses simulate merging two
vertices, while setting ev,w to false represents placing an edge between them.

Initially, we studied the use of adding merge variables and the corresponding
clauses to a given formula as a preprocessing step. This turned out to merely
decrease the performance. However, we observed that one could capitalize on the
expressive power of merge variables by strengthening conflict clauses. Therefore,
instead of ER, only the clauses are added which are required for the Tseitin
translation [17] of these learnt clauses.

3 Merge clauses

A powerful application of simulating Contraction lies in strengthening conflict
clauses in conflict-driven algorithms [11] for graph coloring instances. Simply put,
conflict-driven solvers continue to assign variables until a conflict is detected.
When a conflict is detected, the solver determines an assignment responsible
for this conflict and adds a conflict clause Cconflict to F , where Cconflict is the
negation of the assignments which led to the conflict.

To illustrate the benefits of simulating Contraction, consider the example
conflict, in the 3-coloring instance presented in Figure 2. In the corresponding
SAT instance, a conflict clause for this conflict would be:

(¬x1,1 ∨ ¬x2,1 ∨ ¬x3,2 ∨ ¬x4,2 ∨ ¬x5,3) (7)

Yet, due to the inherent symmetries of a k-coloring instance, any permutation of
colors in a conflicting assignment is also a conflicting assignment. Thus for the
corresponding SAT instance, the following clause is also logically implied by F :

(¬x1,3 ∨ ¬x2,3 ∨ ¬x3,1 ∨ ¬x4,1 ∨ ¬x5,2) (8)

Unfortunately, with a maximum of k! possible permutations it is impractical to
add each implied clause, for almost any k larger than four [10].

5

1 2 3 4 5

6 7

8 9

remaining graph remaining graph

/1,2 /3,4 5

6 7

8 9

(v4,v5)

(v2,v5)

Fig. 2. A Zykov Contraction example. The numbers in the vertices refer to the index
vi. The added edges are shown as dashed lines. Vertex v9 is in conflict because it
cannot be colored. The example focusses on the assignment to v1, v2, v3, v4, and v5.

3.1 Transforming conflict clauses

Any conflict clause, which consists of negative color literals, such as the clauses
depicted in (7) and (8), encodes a conflicting coloring ϕcolor of a subset of vertices
in G. This encoded coloring corresponds to some node in a Zykov-tree with G as
root. Vertices in this subset that are equally colored in ϕcolor are contracted into
a single vertex and edges are added to induce a clique among these contracted
vertices. This relation exists, because once the vertices are contracted and the
clique is induced, any two vertices equally colored in ϕcolor, will be equally colored
in any coloring of our created clique, because they have been merged. Further-
more, any two vertices that were not equally colored in ϕcolor, will be unequally
colored in any coloring of our clique, because there exists an edge between them.
Thus any coloring of the created clique corresponds to a permutation of ϕcolor

and therefore will, just like ϕcolor, result in a conflict. Therefore, any conflict
clause consisting out of negative color literals can be converted in a correspond-
ing merge clause, denoted by Cmerge, which is a conflict clause consisting out of
merge variables.

Back to the example, consider the conflict depicted in Figure 2 as a node in a
Zykov-tree, in which v1 and v2 are merged, v3 and v4 are merged, and the edges
(v2, v5), (v4, v5) are added. This is represented using merge variables as:

(¬e1,2 ∨ ¬e3,4 ∨ e2,5 ∨ e4,5) (9)

In any merge clause Cmerge, negative literals correspond to contractions of
the equally colored vertices in ϕcolor. For each set of n equally colored vertices
in ϕcolor we will need n − 1 negative merge literals. The positive literals Cmerge

correspond to the edges added to induce a clique. Of course no edges need to be
added between contracted vertices v and w, if such an edge already exists in G.

Unfortunately, in most cases one could choose from many merge variables
to construct a merge conflict clause. In the example, instead of using e2,5 (or
e4,5), one could select e1,5 (or e3,5). The choice of the merge variables influences

6

the performance, therefore one would prefer to select the “optimal” candidates.
Heuristics for this selection are discussed in Section 3.2.

Besides Cmerge, one also needs to add the clauses M(Cmerge), which arise
from the Tseitin translation [17], to F . Theoretically, for each introduced merge
variable we could add the full set of clauses described in Section 2.3. Yet, in
practice it suffices to add only the clauses that contain the negation of the
literal of our introduced variable. Only adding these clauses is good practice as
it saves resources [13]. For any Cmerge, M(Cmerge) equals to:

∧

1≤i≤k

(

∧

ev,w∈Cmerge

(

(¬ev,w∨xv,i∨¬xw,i)∧(¬ev,w∨¬xv,i∨xw,i)
)

∧
∧

¬ev,w∈Cmerge

(ev,w∨¬xv,i∨¬xw,i)
)

(10)
Thus M(Cmerge) for our example is:

∧

1≤i≤k

((e1,2 ∨ ¬x1,i ∨ ¬x2,i) ∧ (¬e2,5 ∨ x2,i ∨ ¬x5,i) ∧ (¬e2,5 ∨ ¬x2,i ∨ x5,i) ∧
(e3,4 ∨ ¬x3,i ∨ ¬x4,i) ∧ (¬e4,5 ∨ x4,i ∨ ¬x5,i) ∧ (¬e4,5 ∨ ¬x4,i ∨ x5,i)

)

(11)

3.2 Implementation

We have applied the principal of merge conflict clauses in the conflict-driven
clause learning (CDCL) SAT-solver architecture which we refer to as the CD-

CLmerge algorithm. CDCLmerge is specialized for the k-coloring problem
and uses merge conflict clauses to store conflicts. Its most important feature
is the transformConflict procedure, which transforms the color literals in
a conflict clause to merge literals. In order to make the transformConflict

function properly, we also had to adapt the decide procedure. Algorithm 1 gives
a detailed overview of the CDCLmerge algorithm.

The decide procedure
The proposed transformation to merge clauses requires that all conflicts can be
expressed as a disjunctions of negative color literals and merge literals. This
cannot be guaranteed if the solver branches on negative literals. E.g. consider
the perfect graph of size three. Assigning x1,1 to false, x2,1 to false, and x3,2 to
true results in a conflict which can be expressed as (x1,1 ∨ x2,1 ∨ ¬x3,2). Notice
that this conflict clause cannot be translated to a merge clause is a meaningful
way. Therefore, decide is adapted such that it assigns each decision variable to
true. This heuristic is similar to the one used in minisat which assigns all decision
variables to false [7].

7

Algorithm 1 CDCLmerge(F)
1: while true do

2: propagate() /* propagate unit clauses */
3: if not conflict then

4: if all variables assigned then

5: return satisfiable

6: end if

7: decide() /*select decision variable. ADAPTED*/
8: else

9: Cconflict ← analyze() /*analyze the conflict*/
10: Cmerge ← transformConflict(Cconflict) /*ADDED*/
11: if top level conflict found then

12: return unsatisfiable
13: end if

14: backtrack(Cconflict) /*backtrack while Cconflict remains unit or falsified*/
15: end if

16: end while

The transformingConflict procedure

The input Cconflict is transformed into Cmerge using the following steps:

1. Positive color literals in Cconflict are replaced by merge and negative color
literals by expanding them into their reason literals. For instance, say the
example conflict clause would have been (x1,3 ∨ x2,2 ∨ x3,3 ∨ x4,2 ∨ ¬x5,3).
Assume that the same conflicting coloring was its reason. In that case ¬x1,2

will be the reason literal for x1,3. Therefore, we can replace the latter by the
former. This process is iterated while Cconflict contains positive literals.

2. Redundant literals (see Theorem 2 and 3) are removed from Cconflict.
3. Cconflict is split into Ccolor, which consist out of all negative color literals in

Cconflict and Cextra, which consists of all merge literals in Cconflict.
4. Transform Ccolor into a merge clause Czykov by computing the correspond-

ing node in the Zykov-tree. Preliminary tests showed that the performance
improved if the number of introduced variables were kept to a minimum
and introduced variables were reused whenever possible. Therefore, in case
of choice between possible merge literals to use in the transformation to
Czykov, the merge literal is selected which is most frequently used in conflict
clauses. Ties are broken pseudo randomly.

5. Return the union of Czykov and Cextra as the transformed clause Cmerge.

The backtrack procedure

Conflict-driven clause learning SAT solvers backtrack (also known as backjump)
to the lowest decision level where the latest conflict clause is still a unit clause.
In CDCLmerge this aspect of the solving algorithm is not changed. However,
if a conflict clause Cconflict is unit, a corresponding merge clause Cmerge may not
be unit.

8

Recall the example at the start of this section:

Cconflict ⇔ Cmerge

(¬x1,1 ∨ ¬x2,1 ∨ ¬x3,2 ∨ ¬x4,2 ∨ ¬x5,3) ⇔ (¬e1,2 ∨ ¬e3,4 ∨ e2,5 ∨ e4,5)

Say that variable xv,i is assigned at level v. The backtrack procedure will
jump to level 4. At this level Cconflict is reduced to (¬x5,3), while Cmerge is
reduced to (e2,5 ∨ e4,5). The reason is that two merge literals refer to vertex v5.
Currently, this problem is solved by changing the decide procedure in such a
way that if the latest merge clause consists of multiple unassigned literals one of
these literals is assigned to false. This is repeated until the merge clause becomes
unit.

Although Cconflict is satisfiability equivalent to Cmerge ∧ M(Cmerge) (see
Theorem 4), the transformation is not arc-consistent under unit propagation [8].
As soon as a merge clause contains multiple literals that refer to the same vertex,
the merge clause will not become unit when the original conflict clause would
be unit. In the example a similar problem would arise in case v2 (or v4) was the
last assigned vertex, because both ¬e1,2 and e2,5 (or both ¬e3,4 and e4,5) occur
in Cmerge.

The lack of arc-consistency is a serious weakness of the current implementa-
tion. We study various options to deal with this weakness. An interesting partial
solution is adding a second merge clause. Back to the example: besides Cmerge,
we could also add (¬e1,2∨¬e3,4∨e1,5∨e3,5). This solves arc-consistency for ver-
tex v2 and v4. However, the problem is still unsolved for vertex v5. In general, a
second merge clause can fix arc-consistency for all vertices that are colored the
same as another vertex in the conflict clause.

3.3 Optimizations

Variable selection heuristics

Although merge variables are useful to create merge conflict clauses, they seem
rather weak as decision variables. For instance, if a clique of size k + 1 arises
by assigning some merge variables (i.e. a conflicting assignment), one may not
detect this at the CNF level (no empty clause). Therefore, we only branch on
color (original) variables. This choice is also supported by some experiments.

Finally, we propose a specialized version of the VSIDS activity heuristic [12].
Since merge variables will not be selected as decision variables, it does not make
sense to maintain an activity for them. If a merge variable should have been
increased, we want to bump the activity of the corresponding color variables
instead. This idea have been implemented using an activity counter for vertices
too. Each time a merge variable contributes to a conflict, the activity heuristic
of both corresponding vertices is increased. The selection of decision variables
is narrowed by choosing a variable from the most active vertex. This variant of
VSIDS is inspired by [2].

9

Symmetry breaking in the presence of unit clauses

In the presence of symmetry, it is good practice to add symmetry breaking pred-
icates [15]. In case of graph coloring problems, one can search for a large clique
and force all vertices in that clique to a different color – by adding unit clauses
to the formula. Cliques in a graph can be cheaply detected using the algorithm
by M. Trick [21]. In the more general context of CNF formulae, shatter [1] can
be used to compute symmetry breaking predicates.

Apart from symmetry breaking predicates, many structured graph coloring
problems, such as quasi-group instances [9], contain unit clauses. In case the
symmetry is already partially broken by some unit clauses, it does not make
sense to introduce merge variables.

Regarding the implementation: if unit clause (xu,i) ∈ F and ¬xu,i ∈ Cconflict,
then none of the literals ¬xv,i ∈ Cconflict are replaced by merge literals. Further,
if unit clause (xu,i) ∈ F , then for all positive merge literals eu,w that would have
added, the positive color literal xw,i is added instead.

3.4 Proof of correctness of merge conflict clauses

Definition 1. Let π : (1, . . . , k) → (1, . . . , k) be a function that is one to one
and onto.

Definition 2. Let Pπ be a function for which holds (with lh,i as literals of Ch):

Pπ(Ch) = (Pπ(lh,1) ∨ . . . ∨ Pπ(lh,i))
Pπ(¬lh,i) = ¬Pπ(lh,i)
Pπ(xv,i) = xv,π(i)

Pπ(ev,w) = ev,w

Theorem 1. If Boolean function F represents a k-coloring problem and clause
Ch is logically implied by F , then for any π, Pπ(Ch) is logically implied by F .

Proof. Every satisfying assignment makes Ch true. Applying π to the satisfying
assignments yields a permutation of them. So, these assignments satisfy Pπ(Ch).

Theorem 2. Let Cconflict be a conflict clause consisting of merge literals and
negative color literals. Let C = {i : ¬xv,i ∈ Cconflict} denote the set of colors used
in Cconflict. A literal ¬xu,i ∈ Cconflict is redundant, if Cconflict does not contain a
literal ¬xv,i (u $= v) and for each j ∈ C(j $= i) Cconflict contains a literal ¬xw,j

(u $= w) such that (u, w) ∈ E (the edge set).

Proof. Cconflict with and without ¬xu,i correspond to the same node in the
Zykov-tree, because ¬xu,i is the only literal assigned to i assures that no merge
steps are required, while no edges have to be added, because for each j ∈ C(j $= i),
u is already connected to a vertex w with ϕcolor(w) = j.

10

Theorem 3. Let Cconflict be a conflict clause consisting of merge literals and
negative color literals. A literal ¬eu,v ∈ Cconflict is redundant, if (¬xu,i∨¬xv,i) ∈
Cconflict, while a literal eu,w ∈ Cconflict is redundant, if (¬xu,i∨¬xw,j) ∈ Cconflict.

Proof. Any solution to a graph coloring problem assigns a Boolean value to all
color variables. So, each solution will be a full assignment. Each full assignment
which satisfies ¬eu,v also satisfies (¬xu,i ∨ ¬xv,i), while each full assignment
which satisfies eu,w also falsifies (¬xu,i ∨ ¬xw,j).

Notice that based on this theorem, we can conclude that a formula is unsat-
isfiable if a conflict clause only consists of a negative color literal. We refer to a
reduced clause if all redundant literals (based on Theorem 2 and 3) are removed.

Theorem 4. Let Boolean function F represent a k-coloring problem and let Ch

be a reduced clause logically implied by F . If Ch consists of merge literals and
negative color literals and Cmerge is a corresponging merge clause of Ch, then

∧

π1..πk!

Pπi
(Ch) is satisfiability equivalent to Cmerge ∧ M(Cmerge) (12)

Proof. Recall that any solution must be a full assignment. (UNSAT ⇒ UNSAT)
If a full assignment falsifies

∧

Pπi
(Ch), then there exists a πi for which Pπi

(Ch) is
falsified. Since Pπi

(Cmerge) = Cmerge also representsPπi
(Ch), Cmerge∧M(Cmerge)

is falsified as well. (SAT ⇒ SAT) If a full assignment satisfies
∧

Pπi
(Ch) by merge

literals in Ch, then Cmerge is also satisfied because it contains all merge literals in
Ch. Notice that because Ch is a reduced clause, it either contains zero negative
color literals (in case the former case is applicable) or at least two negative color
literals. A full assignment can only satisfy

∧

Pπi
(Ch) if two vertices are assigned

a different color while the corresponding color literals in Ch have the same color
index, or two vertices are assigned the same color while the corresponding color
literals in Ch have the different color index. In both cases Cmerge ∧M(Cmerge) is
satisfied as well.

Thus once we have learnt Cconflict, we could add all clauses Pπi
(Cconflict) to F

(Theorem 1). Yet, based on Theorem 4, we add Cmerge ∧ M(Cmerge) instead.
Furthermore, Theorem 4 implies that using merge conflict clauses requires that
every conflict can be expressed into merge literals and negative color literals. In
order to ensure this, the variables selection heuristics of the solver have to be
adapted. This adaptation is described in Section 3.2.

4 Results

All experiments were performed on a 2.0 GHz Intel Core 2 Duo with 1 GB of
DDR2 Memory. Instances were encoded using the extended direct encoding and
we used the method of finding and forcing cliques as symmetry breaking method.

11

4.1 Medium sized random graphs

This experiment was performed to compare our CDCLmerge implementation,
referred to as MiniColor to the standard distribution of MiniSat2, branching on
positive variables. In this experiment we generated 45 random graphs of 70
vertices, with varying edge probabilities (denoted by Pedge). Per graph, one SAT
instance (G, X (G)) and one UNSAT instance (G, X (G) -1) were created. Table
1 shows the average solving times and the number of solved instances.

As can be seen in Table 1 the performances on satisfiable instances are on par,
although MiniColor was able to solve one more instance. On the other hand, per-
formance on unsatisfiable instances has significantly improved. Besides solving
more instances, MiniColor was on average one order of magnitude faster.

Table 1. Average runtimes for medium sized graphs, with a 1200 (s) timeout.

SAT instances UNSAT instances
Minisat2 MiniColor Minisat2 MiniColor

|G| |V | Pedge X (G) time (s) # time (s) # time (s) # time (s) #
15 70 0.5 11-12 25.59 15 13.94 15 190.72 14 39.98 15
15 70 0.7 17-18 24.73 13 43.41 14 307.88 8 26.1 14
15 70 0.9 27-28 0.73 15 0.16 15 19.00 13 0.95 15

MiniColor

M
in

iS
a
t2

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

satisfiable
unsatisfiable

Fig. 3. Performance comparison between MiniColor and MiniSat2 on medium sized
random graphs, with a 1200 (s) timeout.

12

4.2 DIMACS benchmarks

This experiment was executed to compare MiniColor to published results on
graph coloring and to the unmodified MiniSat2 solver. As published benchmark
performances we used the results published in [19] by Van Gelder which, to our
knowledge, present the best broad overview of SAT based graph coloring results.
Of the 27 graphs used in this benchmark set most are relatively easy. However,
the five graphs presented in Table 2 were shown to be particularly difficult.

A comparison of MiniColor with best presented runtimes in [19], denoted by
VanGelder and the runtimes of MiniSat2 on these graphs can be found in Table 3
and 4. For comparative purposes, we scaled the times presented in [19] to what
they would have been if the instances were run on our platform1.

Table 2. Difficult DIMACS instances.

instance |V | |E| X found clique size
Myciel6 95 755 7 2
Myciel7 191 2360 8 2
abb313GPIA 1557 53356 9 6
DSJC125.5 125 3891 ? 10
DSJC125.9 125 6961 ? 33

Table 3. Runtimes on difficult satisfiable DIMACS in seconds.

SAT instances
instance k VanGelder MiniSat2 MiniColor

Myciel6 7 0 0 0.01
abb313GPIA 9 1256 3.63 1.89
DSJC125.5 19 4446 43.46 18.51
DSJC125.9 46 19119 140 16.73

Table 4. Runtimes on difficult unsatisfiable DIMACS in seconds.

UNSAT instances
instance k VanGelder MiniSat2 MiniColor

Myciel6 6 2113 3096 1726
abb313GPIA 8 5.63 0.73 0.72
DSJC125.5 12 488 5.85 4.08
DSJC125.9 37 4630 934 53.06

1 The dfmax benchmark takes 12s for r500.5.b on our platform compared to 16.96 in
[19]. For more information of the dfmax benchmark, please check [22].

13

As can be seen in Table 3 and 4, the runtimes of our implementation are
vast improvements over the runtimes of MiniSat2 and those presented in [19].
After these encouraging results, we tried how our implementation would handle
more difficult coloring of these graphs. As it turned out we could prove that
Myciel7 is not 6 colorable, DSJC125.5 is not 13 colorable and DSJC125.9 is not
38 colorable within reasonable time. The corresponding runtimes are shown in
Table 5.

Table 5. Runtimes of MiniColor and MiniSat2 on harder versions of the DIMACS
instances.

SAT instances UNSAT instances
instance k MiniSat2 MiniColor k MiniSat2 MiniColor

Myciel7 8 0 0.03 6 6497 1381
DSJC125.5 18 > 19000 > 19000 13 > 19000 2931
DSJC125.9 45 > 19000 1008 38 > 19000 4683

5 Conclusions and Future Research

We showed how a SAT conflict-driven solver can be optimized for graph coloring
problems by converting conflict clauses in such a way that they cover all per-
mutations of the colors. This technique can be used in combination with other
optimizations for graph coloring such as adding symmetry breaking predicates.
In fact, the best performances are achieved by this combination.

We introduce new Boolean variables during the search. Although very power-
ful in theory, it is hardly used in practice. Regarding its practical application, we
learnt two lessons. First, the introduced variables should be meaningful within
the context of the problem – in this case, the branches in the Zykov-tree. Second,
reusage of introduced (merge) variables is crucial. Recall that in each conversion
step one can choose from many merge variables. Yet, heuristics that try to min-
imize the number of introduced variables were required to make the technique
competitive.

Although the proposed technique is, as presented, only applicable to graph
coloring problems, we have reason to believe that it can be generalized. Many
multi-valued SAT problems seem fit for this purpose. In particular those con-
sisting of constraints in which variables should either have the same value or
a different one. Examples of such applications are computing Van der Waerden
numbers and Schur numbers. The usefulness of our ideas will depend on whether
they can be generalized successfully.

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments that
helped improving this paper.

14

References

1. Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov, Efficient Symmetry Break-
ing for Boolean Satisfiability. International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 271–282, 2003.

2. Carlos Ansótegui, Jose Larrubia, Chu Min Li, and Felip Manyà, Exploiting multi-
valued knowledge in variable selection heuristics for SAT solvers. Annals of Math-
ematics and Artificial Intelligence 49(1-4):191–205, 2007.

3. Stephen A. Cook, A short proof of the pigeonhole principle using extended resolu-
tion. SIGACT News. SIGACT News 8(4):28–32, 1976.

4. Stephen A. Cook, Feasibly constructive proofs and the propositional calculus. In
proceedings of STOC ’75. pp. 83–97, 1975.

5. Martin Davis, G. Logemann, and D. Loveland, A machine program for theorem
proving. Communications of the ACM, 5(7) pp. 394-397, July 1962.

6. Martin Davis and Hilary Putnam, A Computing Procedure for Quantification The-
ory. Journal of the ACM 7(3):201–215, 1960.

7. Niklas Eén and Niklas Sörensson, An Extensible SAT-solver. In proceedings of SAT
2003, LNCS 2919:502–518, 2003.

8. Ian P. Gent. Arc Consistency in SAT. In Proceedings of the Fifteenth European
Conference on Artificial Intelligence (ECAI 2002), 2002.

9. Carla P. Gomes and David B. Shmoys, Completing Quasigroups or Latin Squares:

A Structured Graph Coloring Problem. In proceedings of the Computational Sym-
posium on Graph Coloring and Generalizations, pp. 22-39, Ithaca, USA, 2002.

10. Alexander Keur, Coen Stevens, and Mark Voortman, Symmetry Breaking Op-
tions in Conflict Driven SAT Solving. TU-delft technical report. Availiable at
http://www.st.ewi.tudelft.nl/sat/reports.php

11. Joao P. Marques-Silva, Karem A. Sakallah, GRASP – a new search algorithm for

satisfiability. In International Conference on Computer-Aided Design. pp. 220–227,
1996.

12. Matthew W. Moskewicz and Conor F. Madigan, Chaff: engineering an efficient
SAT solve. In proceedings of DAC 2001. pp. 530–535, 2001.

13. David A. Plaisted and Steven Greenbaum A structure-preserving clause form trans-
lation. Journal of Symbolic Computation 2(3):293–304, 1986.

14. Steven Prestwich, Local Search on SAT-Encoded Colouring Problems. In proceed-
ings of SAT 2004. pp. 26–29, 2004.

15. Karem A. Sakallah, Symmetry and Satisfiability. Chapter 10 of Handbook of Sat-
isfiability, pp 289–338, 2009.

16. Carsten Sinz and Armin Biere, Extended Resolution Proofs for Conjoining BDDs.
In Proc. of CSR06, LNCS 3967:600-611, 2006.

17. G. Tseitin, On the complexity of derivation in propositional calculus. Studies in
Mathematics and Mathematical Logic, Part II. pp. 115-125, 1968.

18. Alasdair Urquhart, Hard examples for resolution. Journal of the ACM 34(1):209–
219, 1987.

19. Allen Van Gelder, Another look at graph coloring via propositional satisfiability.
Discrete Applied Mathematics 156(2):230–243, 2008.

20. A. A. Zykov, On some properties of linear complexes. Amer. Math. Soc.Translations
79 (1952), p. 81.

21. http://mat.gsia.cmu.edu/COLOR/solvers/trick.c
22. Computational Series: Graph Coloring and Its Generalizations.

http://mat.gsia.cmu.edu/COLOR04.

