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Abstract. Recent work introduced an effective method for extraction
of reduced unsatisfiable cores of CNF formulas as a by-product of vali-
dation of clausal proofs emitted by conflict-driven clause learning SAT
solvers. In this paper, we demonstrate that this method for trimming
CNF formulas can also benefit state-of-the-art tools for the computation
of a Minimal Unsatisfiable Subformula (MUS). Furthermore, we pro-
pose a number of techniques that improve the quality of trimming, and
demonstrate a significant positive impact on the performance of MUS
extractors from the improved trimming.

1 Introduction

Recent years has seen a significant progress in efficient extraction of a Minimal
Unsatisfiable Subformula (MUS) from a CNF formula [1,2,3,4,5]. However, most
of the formulas that can be tackled relatively easily by SAT solvers are still
too hard for today’s MUS extraction tools. In the context of MUS extraction,
the term trimming refers to a preprocessing step, whereby the input formula is
replaced with a smaller unsatisfiable core. Trimming is typically performed by a
repeated invocation of a SAT solver starting from the input formula (e.g. [2,6,7]),
but the technique seldom pays off in practice. This is evidenced by the fact
that none the state-of-the-art MUS extractors MUSer2 [8], TarmoMUS [9], and
HaifaMUC [3], employ an explicit trimming step.

In this paper, we propose techniques to trim CNF formulas using clausal
proofs [10]. A clausal proof is a sequence of clauses that includes the empty
clause and that are entailed by the input formula. Clausal proofs can easily
be emitted by SAT solvers and afterwards be used to extract an unsatisfiable
core. Trimming based on clausal proofs can substantially reduce the size of CNF
formulas, and a recent tool DRUPtrim [11] made this approach very efficient.
Hence, as suggested in [11], it might be effective for the computation of MUSes.

We, first, confirm empirically the effectiveness of trimming using clausal
proofs for MUS extraction. In addition, we present three techniques to strengthen
MUS extraction tools via clausal proofs. These techniques are designed to both
reduce the size of the trimmed formula further, and to compute a useful resolu-
tion graph — a crucial component of resolution-based MUS extractors. The first
technique converts a clausal proof into a resolution graph. This conversion re-
quires significantly less memory compared to computing the graph within a SAT



solver. The second technique, called layered trimming, was developed to reduce
the size of cores and the resolution graphs. This is achieved by solving a formula
multiple times while increasing the bound of variable elimination [12,13]. Our
third technique adds interaction between the trimming procedure and an MUS
extractor. If the extractor gets stuck, it provides the current over-approximation
of an MUS to a trimmer to obtain a new resolution graph. The process is repeated
until a MUS is found. Experimental results with the MUS extractors MUSer2 and
HaifaMUC show that the proposed techniques can boost the performance of the
extractors, particularly on hard benchmarks.

2 Preliminaries

We assume familiarity with propositional logic, its clausal fragment, and com-
monly used terminology of the area of SAT (cf. [14]). We focus on formulas in
CNF (formulas, from hence on), which we treat as (finite) (multi-)sets of clauses.
Given a formula F we denote the set of variables that occur in F by V ar(F ).
An assignment τ for F is a map τ : V ar(F ) → {0, 1}. Assignments are ex-
tended to formulas according to the semantics of classical propositional logic. If
τ(F ) = 1, then τ is a model of F . If a formula F has (resp. does not have) a
model, then F is satisfiable (resp. unsatisfiable). A clause C is redundant in F if
F \ {C} ≡ F . Given two clauses C1 = (x ∨A) and C2 = (x̄ ∨B), the resolution
rule infers the clause C = (A ∨ B), called the resolvent of C1 and C2 on x. We
write C = C1 ⊗x C2, and refer to C1 and C2 as the antecedents of C.

Resolution Graph. A resolution graph is a directed acyclic graph in which the
leaf nodes (no incoming edges) represent the input clauses of a given formula.
The remaining nodes in the resolution graph are resolvents. The incoming edges
represent the antecedents of a resolvent. In case a node has more than two
antecedents, it can be constructed using a sequence of resolution steps. The size
of a resolution graph is the number of its edges.

Clausal Proofs. For a CNF formula F , unit propagation simplifies F based on
unit clauses; that is, it repeats the following until fixpoint: if there is a unit clause
(l) ∈ F , remove all clauses containing l and remove l̄ from all clauses. We refer
as a lemma to a clause that is logically implied by a given formula. A clausal
proof [7] is a sequence of lemmas. To validate whether a lemma L in a clausal
proof is indeed logically implied, one can check if unit propagation of L̄, the
assignment that falsifies all literals in L, results in a conflict. This check is also
known as reverse unit propagation (RUP) [15]. Clausal proofs are significantly
smaller than resolution proofs, and only minor modifications of a SAT solver
are required to emit clausal proofs [11]. Clausal proofs can be converted into
resolution graphs by marking clauses involved in a conflict as the antecedents of
a lemma. Fig. 1 shows a CNF formula, a clausal proof and a resolution graph
that can be obtained from it.
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Fig. 1. An example CNF formula in DIMACS format and a clausal proof in DRUP
format next to it. The files use three variables a, b, and c that are represented by 1, 2,
and 3, respectively. Each line in the proof refers to a clause addition step (no prefix)
or a clause deletion step (d prefix). The -2 3 0 represents the clause (b̄ ∨ c). On the
right, a resolution graph that can be computed from the clausal proof. For all clauses
in the graph only the literals are shown: b̄c means (b̄ ∨ c).

Minimal Unsatisfiability. A CNF formula F is minimal unsatisfiable if (i) F
is unsatisfiable, and (ii) for any clause C ∈ F , the formula F \ {C} is satisfiable.
A CNF formula F ′ is a minimal unsatisfiable subformula (MUS) of a formula F
if F ′ ⊆ F and F ′ minimal unsatisfiable. While this paper focuses on MUS extrac-
tion on plain CNF formulas, the discussion can be extended to the computation
of group-MUSes [16,17] without difficultly.

Practical MUS extraction algorithms are based on detection of necessary
clauses. A clause C is necessary for F if F is unsatisfiable and F \ {C} is satis-
fiable [18]. A basic deletion-based algorithm for MUS [6] extraction operates in
the following manner. Starting from an unsatisfiable formula F , we repeat the
following until fixpoint. Pick an unexamined clause C ∈ F and solve F \ {C}.
If the result is unsatisfiable, C is permanently removed from F , otherwise it is
included in the computed MUS. The basic deletion algorithm with clause-set
refinement and model rotation [19] is among the top performing algorithms for
industrially relevant instances [20,2,3]. Additionally, reuse of lemmas and heuris-
tic values between invocations of the SAT solver is crucial for performance [20].
Currently, the two prevalent approaches to achieving lemma reuse in the context
of MUS extraction are the assumption-based and the resolution-based [17].

The assumption-based approach to MUS extraction relies on the incremental
SAT solving paradigm [21]. Each clause Ci of the input CNF formula F is aug-
mented with a fresh assumption literal ai, and the modified formula is loaded
once into an incremental SAT solver. To test a clause Ci for necessity the SAT
solver is invoked under assumptions ai and āj , for j 6= i. If the outcome is SAT,
Ci is necessary for the given formula, and, as an optimization, can be finalized
by adding a unit clause (āi) to the SAT solver. If the outcome is UNSAT, Ci is
“removed” by adding the a unit clause (ai) to the SAT solver.

The resolution-based approach to MUS extraction relies on a modified SAT
solver that constructs a resolution graph during search explicitly. The initial



graph that represents a refutation of the input formula F is constructed when the
formula is shown to be UNSAT. To test a clause C ∈ F for necessity a resolution-
based MUS extractor temporarily disables C and all of its descendant lemmas
in the resolution graph, and invokes the SAT solver’s search procedure on the
remaining clauses. If the outcome is SAT, the lemmas are put back. In the case of
the UNSAT outcome, the solver constructs a new resolution graph. A particularly
important, in our context, feature of resolution-based MUS extractors is that
the initial resolution graph can be provided as an input to the extractor, thus
eliminating the cost of the first UNSAT call.

3 Trimming Strategies

Proofs of unsatisfiability can be used to trim a CNF formula F , i.e., remove the
clauses from F that were not required to validate the proof. In this section we
propose three new strategies to combine a trimming utility for clausal proofs
with a MUS extraction tool. Spending a significant amount of time on trimming
can improve the overall performance, particularly on hard formulas.

Trimming via Clausal Proofs. Resolution graphs are a crucial component of
resolution-based MUS extraction tools. However, computing them while solving
a given formula can be very costly, especially in terms of memory. Alternatively,
one can compute a trimmed formula and a resolution graph by validating a
clausal proof [11]. This approach requires significantly less memory.

We refer to a trimmer as a tool that, given a formula F and a clausal proof
P , computes a trimmed formula Ftrim and a resolution graph Gres. An example
of such a tool is DRUPtrim [11]. Emitting clausal proofs is now supported by
many state-of-the-art CDCL solvers. Consequently, we can compute trimmed
formulas and resolution graphs efficiently using these solvers with a trimmer.
The trimmed formulas are useful for assumption-based MUS extractors, while
the resolution graphs are useful for resolution-based MUS extractors.

Fig. 2 shows the pseudo-code of the TrimExtract procedure that repeatedly
trims a given formula F using a clausal proof that is returned by a SAT solver
(the Solve procedure). The Trim procedure returns a trimmed formula and a
resolution graph, which can be given to an extractor tool. The main heuristic
in this loop deals with when to stop trimming and start extracting. Throughout
our experiments we observed that it is best to switch to extraction if a trimmed
formula is only a few percent smaller than the formula from the prior iteration.

TrimExtract (formula F )

TE1 forever do

TE2 〈Ftrim, Gres〉 := Trim (F , Solve (F )) // trim using a clausal proof

TE3 if |Ftrim| ≈ |F | then return Extract (Fcore, Gres) // switch to extractor

TE4 F := Ftrim // Fcore becomes F for the next iteration

Fig. 2. Pseudo-code of TrimExtract that combines a trimming and MUS extractor tool.



Trim (formula F , clausal proof)

return 〈trimmed F , resolution graph〉

Solve (formula F )

return clausal proof of solving F

Simplify (formula F )

return 〈simplified F , clausal proof〉

LayeredTrim (formula F , iterations k)

1 P := ∅ // start with empty proof

2 W := F // make a working copy

3 for i ∈ {1, ..., k} do
4 〈Wsimp, Psimp〉 := Simplify(W )

5 〈W,G〉 := Trim(Wsimp, Solve(Wsimp))

6 P := P ∪ Psimp

7 return Trim(F, P ∪ Solve(W ))

Fig. 3. The LayeredTrim procedure and the required subprocedures.

Layered Trimming. Most lemmas in resolution proofs have hundreds of an-
tecedents [11]. This has a number of disadvantages. First, storing the graph
requires a lot of memory. Second, in a resolution-based MUS extractor, high
connectivity causes large parts of the proof being disabled during each SAT call.
Third, high connectivity causes additional clauses to be brought into the core.

Our next strategy, called layered trimming, aims at reducing the size of the
resolutions graphs by adding lemmas with only two antecedents using variable
elimination (VE) [12,13]. VE replaces some clauses by redundant and irredun-
dant clauses. Trimming the VE preprocessed formula will remove some redun-
dant clauses, allowing more applications of VE. In general, the smaller the for-
mula, the faster the solver and hence the shorter the proof. After each iteration
of layered trimming, the number of vertices in the proof is similar. Yet more and
more vertices are produced by VE (two antecedents), while fewer vertices are
produced by CDCL solving (many antecedents). This reduces the connectivity.

The pseudo-code of LayeredTrim is shown in Fig. 3. We initialize a working
formula W with the input formula F . In each iteration, W first gets simplified
using the variable elimination procedure, resulting in the formula Wsimp. The
simplification steps are emitted as a, possibly partial, clausal proof Psimp, and we
start to build a proof P which accumulates all of the simplification steps. Next
we solve and trim Wsimp, and take this trimmed version as our new working
formula W . At each iteration proof P is extended by the new simplification
steps. After k iterations, we merge the layered simplification proof P with the
final proof returned by Solve. Finally, Trim will use this merged proof and the
original formula to compute a core and resolution graph.

Iterative Trimming. Our third strategy, called iterative trimming, adds in-
teraction between the trimming and the resolution-based MUS extraction tools.
Two observations inspired iterative trimming. First, despite the substantial trim-
ming, and despite the availability of the resolution graph at the beginning of
MUS extraction, the extractor can get stuck while solving hard instances. This
indicates that the current resolution graph might no longer be useful. Thus, we
terminate the extractor and pass the current over-approximation of an MUS
from the extractor to the trimming tool in order to obtain a new core and a new
resolution graph. The MUS extractor is then invoked again on the new graph,
and this iterative process continues until an MUS is computed. Second, while



layered trimming can be very effective on hard formulas, it is quite significantly
more expensive than (plain) trimming, and so for instances that are already easy
for MUS extraction after plain trimming, the effort does not pay off. If a good
overall performance of an MUS extractor is more important than scalability, we
can postpone layered trimming until the extractor indicates that the formula is
hard.

4 Empirical Study

To evaluate the impact of our trimming strategies, we implemented a Python-
based framework, called DMUSer, on top of the following tools: Glucose-3.0 [22]
solver to emit clausal proofs in DRUP format and for simplification; DRUPtrim [11]
to trim formulas and emit resolution graphs in TraceCheck format [23]; MUSer2 [8],
an assumption-based MUS extractor with Glucose-3.0; and HaifaMUC [3], a
resolution-based MUS extractor, modified to support TraceCheck input4.

The benchmark set consists of 295 instances from the MUS Competition 2011
and 60 instances from SAT Competition 20095 which Glucose-3.0 could refute
within 1 minute. We removed 31 instances from the MUS track — most of them
were extremely easy — as some of the tools used by DMUSer produced errors.

All experiments were performed on 2 x Intel E5-2620 (2GHz) cluster nodes,
with 1800 seconds CPU time and 4 GB memory limits per experiment. The
reported CPU runtimes for trimming-based configurations include the runtime
for both the trimming and the MUS extraction stages.

The results of our study are presented in plots in Table 1 and Fig. 4 and 5.
We use the following abbreviations. MUSer2 and HaifaMUC represent these MUS
extractors running directly on the input instance, while the other configurations
represent trimming followed (or interleaved) with MUS extraction: Tr- config-
urations use the original trimming of [11], LTr- configurations use the layered
trimming, and ITr- use the iterative trimming; the -M2 configurations perform
MUS extraction on the trimmed CNF formula using MUSer2, while the -HM con-
figurations compute MUSes using the TraceCheck version of HaifaMUC on the
resolution graph of the trimmed formula.

4 The source code of DMUSer and the benchmark set used for the evaluation are avail-
able from https://bitbucket.org/anton_belov/dmuser.

5 The benchmarks are available via http://satcompetition.org/.

Table 1. The number of solved, timed- and memmed- out instances (out of 324),
and the descriptive statistics of the CPU runtime (sec) of various configurations. The
average is taken over the solved instances only, while the median is over all instances.

MUSer2 HaifaMUC Tr-M2 Tr-HM LTr-M2 LTr-HM ITr-HM-A ITr-HM-B

Num. solved 250 258 257 266 273 277 280 276
Num.TO/MO 26/48 40/26 39/28 51/7 32/19 47/0 44/0 48/0
Med. CPU time 45.08 30.65 40.64 23.70 54.07 33.87 35.77 23.16
Avg. CPU time 97.58 110.09 102.95 102.03 162.62 108.52 117.07 112.12

https://bitbucket.org/anton_belov/dmuser
http://satcompetition.org/


Fig. 4. Comparison of various trimming and MUS extraction techniques.

Fig. 5. Comparative performance of various trimming-based configurations against
MUS extractors on non-trimmed formulas in terms of CPU runtime. Timeout of 1800
seconds is represented by the dashed (green) lines.

Impact of trimming. DRUP-based trimming for MUS extraction was sug-
gested already in [11], but the impact has not been previously evaluated. Our
results demonstrate that trimming is indeed an effective preprocessing technique
for computing MUSes. The median reduction in the size of the input formula
due to trimming is over 6x, with the average (resp. median) size of the trimmed
formula being 1.5x (resp. 1.08x) of the size of the computed MUS. Comparing
MUSer2 vs. Tr-M2 and HaifaMUC vs. Tr-HM on the cactus plot in Fig. 4 and in
Table 1 we observe a notable performance improvement both with respect to
MUSer2 and to HaifaMUC (7 and 8 extra instances, respectively). Importantly,
the MUS extractors run out of memory on fewer instances when executed on the
trimmed formulas. Also, notice the decrease in median runtimes, indicating that
trimming has an overall positive impact even on the relatively easy instances.

Impact of layered trimming. Our experimental data confirms the intuition
that motivates the layered trimming technique: the lower connectivity in the
resolution graph results in improved trimming and a lower memory consumption.



We did not use a fixed k for the iterations, but repeated the loop until the
solving time no longer decreased. On average (resp. median) the size of the
cores produced by the layered trimming is 1.42x (resp. 1.06x) smaller than the
size of the cores produced by (plain) trimming, and constitutes a mere 1.04x
(resp. 1.01x) of the size of the computed MUS. Layered trimming resulted in
solving 16 (resp. 11) extra instances using MUSer2 (resp. HaifaMUC) which is
also clear from the cactus plot in Fig. 4. Notably, as seen in Table 1, LTr-HM
had not ran out of memory on any instance – thanks to the smaller resolution
graphs. The proposed technique, however, is not without drawbacks: observe the
increase in the median runtime due to layered trimming, shown in Table 1. The
scatter plot on the left of Fig. 5, that compares MUSer2 vs. LTr-M2, gives some
clues: layered trimming is a too heavy-weight technique for many of the easy
instances. This might be undesirable in some applications.

Impact of iterative trimming. We experimented with two configurations of
the iterative trimming algorithm. The configuration ITr-HM-A starts HaifaMUC

with the resolution graph obtained from running the layered trimming approach.
The algorithm aborts MUS extraction and returns to (plain) trimming when
any SAT call takes too much time — 10 seconds, increasing linearly with every
iteration. ITr-HM-A solves extra 3 instances, and performs notably better on the
difficult instances, but the performance slightly decreases on easier instances.

The second configuration of iterative trimming, ITr-HM-B, is designed to alle-
viate the weaker performance of the proposed algorithms on the easier instances.
This configuration starts the with resolution graph of plain trimming and aborts
after some time (100 seconds in ITr-HM-B) and switches to ITr-HM-A starting
with the resolution graph obtained by layered trimming. Although ITr-HM-B

solves one less instance than LTr-HM, Fig. 5 (right) demonstrates that on most
easier instances the configuration outperforms HaifaMUC, while still maintaining
the significantly improved performance on the difficult instances.

5 Conclusions

We presented three trimming strategies to improve the performance of MUS
extractors. Clausal proof based trimming is particularly useful when dealing
with hard instances, but it can be costly on easy instances. Our layered trimming
strategy reduces the memory consumption of resolution-based MUS extractors
and can be useful in other applications that prefer low connectivity in resolution
graphs. By applying the iterative trimming strategy, the performance of our
MUS extraction tool is improved on both the easy and the hard instances.
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