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Abstract—Conflict-driven clause learning (CDCL) satisfiability
solvers can emit more than a satisfiability result; they can
also emit clausal proofs, resolution proofs, unsatisfiable cores,
and Craig interpolants. Such additional results may require
substantial modifications to a solver, especially if preprocessing
and inprocessing techniques are used; however, CDCL solvers
can easily emit clausal proofs with very low overhead. We
present a new approach with an associated tool that efficiently
validates clausal proofs and can distill additional results from
clausal proofs. Our tool architecture makes it easy to obtain
such results from any CDCL solver. Experimental evaluation
shows that our tool can validate clausal proofs faster than existing
tools. Additionally, the quality of the additional results, such as
unsatisfiable cores, is higher when compared to modified SAT
solvers.

I. INTRODUCTION

Conflict-driven clause learning (CDCL) satisfiability solvers
compute the satisfiability of a given Boolean formula. When
a solver claims a formula is unsatisfiable, most solvers can
also emit a proof of unsatisfiability as a sequence of learned
clauses, and some solvers can produce an unsatisfiable core of
the clauses used to refute a formula. Such proofs can then be
checked to validate the unsatisfiability claim of a CDCL solver,
while the core can be used as a starting point for extracting
minimal unsatisfiable subsets (MUS) and interpolants.

Proofs of unsatisfiability can be expressed in clausal- or
resolution-style formats [1], [2], [3], [4], and such proofs
provide assurance that a solver is correct [5]. Any CDCL
solver can emit clausal proofs with low overhead, and clausal
proofs are much smaller than resolution-style proofs. However,
clausal proofs are relatively expensive to validate, and clausal
checkers can be complicated, making them harder to trust
or mechanically verify. Although resolution proofs are easy
to validate with a simple proof checker, they are hard to
obtain and can be huge in size. This paper provides additional
evidence that clausal proofs are more useful in practice.

SAT solvers that emit additional results [6], such as unsat-
isfiable cores, store an antecedent graph: a directed acyclic
graph that represents a dependency between learned and input
clauses. Storing an antecedent graph requires significant mod-
ifications to a SAT solver’s implementation. The size of the
antecedent graph can be two orders of magnitude larger than
the size of the clause database. This requires a lot of memory,
even with optimizations [7], and can slow down a solver
significantly. Also, it may be hard to compute the antecedents
of learned clauses for some reasoning techniques, such as
equivalence reasoning and hidden literal elimination [8]. Few
solvers support the storing of antecedent graphs, and no top-
tier SAT solver has the ability to store them.

This paper uses clausal proof checking to produce additional
results from SAT solvers. More specifically, we reconstruct an
antecedent graph from a clausal proof rather than producing
it while solving. Goldberg and Novikov [1] proposed an
algorithm, known as backward checking, to achieve this. As
far as we know, there is no available implementation of this
method. We noticed that this method can be very expensive
when used on clausal proofs from state-of-the-art CDCL
solvers. In this paper, we present two optimizations for this
algorithm [1] to reduce its computational costs substantially:
we add clause deletion information to clausal proofs and we
develop an alternative procedure to perform unit propagation.

We have implemented a proof-checking tool, called DRUP-

trim, that mitigates one of the main drawbacks of clausal proof
checking, namely speed. CDCL SAT solvers can easily emit
clausal proofs, and these proofs can now be used to produce
additional results from any SAT solver. Our DRUP-trim tool
also enables validation of lookahead SAT solvers [9]. These
solvers use several types of local learning that make it hard
to emit resolution proofs; however, clausal proofs are easy
to emit. Our work is most closely related to that of Van
Gelder [3] whose RUP2RES tool converts clausal proofs into
resolution proofs. In contrast to RUP2RES, our DRUP-trim

tool can emit additional results such as unsatisfiable cores
and reduced proofs. DRUP-trim does not store arcs in the
antecedent graph and therefore does not suffer from high
memory consumption. A slightly modified version of DRUP-

trim was used to validate the unsatisfiability results of SAT
Competition 2013.

Our contributions are in three areas: verification of unsat-
isfiability proofs, minimal unsatisfiable core extraction, and
computation of Craig interpolants. Our DRUP-trim tool fa-
cilitates fast validation of unsatisfiability results of CDCL
solvers and, in the process, generates additional results that
can be used as a starting point for tools that produce MUSes
or Craig interpolants. Most preprocessing techniques used in
state-of-the-art CDCL solvers [10] can be easily converted into
clausal proofs which can be used to obtain additional results
for problems that are too hard to solve without them.

Our paper begins with an introduction to satisfiability,
resolution, Boolean constraint propagation, and clausal proofs
in Section II. In Section III, we review antecedent graphs and
their applications and optimizations. Next, we present a series
of improvements to clausal proof checking: backward reverse
unit propagation (Section IV), the addition of clause deletion
information (Section V), and a preference for clauses that are
already marked as part of the core (Section VI). In Section VII,
we evaluate our method and we conclude in Section VIII.
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II. PRELIMINARIES

We briefly review necessary background concepts: con-
junctive normal form (CNF), resolution, Boolean constraint
propagation, and clausal proofs.

A. Conjunctive Normal Form

For a Boolean variable x, there are two literals, the positive
literal, denoted by x, and the negative literal, denoted by x̄. A
clause is a finite disjunction of literals, and a CNF formula is
a finite conjunction of clauses. The set of literals occurring in
a CNF formula F is denoted by LIT(F ). A truth assignment
for a CNF formula F is a partial function ⌧ that maps literals
l 2 LIT(F ) to {t, f}. If ⌧(l) = v, then ⌧(l̄) = ¬v, where
¬t = f and ¬f = t. An assignment can also be thought of as
a conjunction of literals. Furthermore, given an assignment ⌧ :

• A clause C is satisfied by ⌧ if ⌧(l) = t for some l 2 C.
• A clause C is falsified by ⌧ if ⌧(l) = f for all l 2 C.
• A formula F is satisfied by ⌧ if ⌧(C) = t for all C 2 F .
• A formula F is falsified by ⌧ if ⌧(C) = f for some

C 2 F .
A CNF formula with no satisfying assignments is called

unsatisfiable. A clause C is logically implied by formula
F if adding C to F does not change the set of satisfying
assignments of F .

B. Resolution

The resolution rule states that, given two clauses C1 = (x_
a1 _ . . . _ an) and C2 = (x̄ _ b1 _ . . . _ bm), the clause
C = (a1 _ . . . _ an _ b1 _ . . . _ bm), can be inferred by
resolving on variable x. We say C is the resolvent of C1 and
C2, while C1 and C2 are the antecedents of C. We write
C = C1 ./ C2. The resolvent C is logically implied by any
formula containing C1 and C2.

C. Boolean Constraint Propagation

A clause C is unit under an assignment ⌧ if (1) there exists
exactly one literal l 2 C such that l 62 ⌧ and l̄ 62 ⌧ , and (2)
for all l0 2 C such that l0 6= l, l̄0 2 ⌧ . We say l is the unit
literal for unit clause C. Given a formula F and an assignment
⌧ , Boolean constraint propagation BCP(F, ⌧), also known as
unit propagation, repeatedly extends ⌧ with unit literals (for
a unit clause C 2 F under ⌧ ) until a fixed point is achieved.
If at some point during BCP ⌧ falsifies a clause, we say that
BCP derives a conflict.

Example 1. Given the formula F = (a_ b_ c)^ (a_ b̄) and
the assignment ⌧ = (ā), BCP extends ⌧ with unit literal b̄ and
then with unit literal c. As a result, BCP(F, ⌧) = (ā^ b̄^ c).

D. Clausal Proofs

Goldberg and Novikov [1] introduced clausal proofs as
an alternative to resolution-style proofs [2] of unsatisfiability.
They observed that each clause learned by CDCL conflict
analysis can be validated using BCP. Learned clauses are
disjunctions of literals, and the complement of a clause, written
C̄, can be interpreted as an assignment. If BCP(F, C̄) derives

a conflict, then C is logically implied by F . This process is
also known as reverse unit propagation (RUP) [3]. Learned
clauses in CDCL solvers can be checked using RUP by
performing the unit propagation steps in the reverse order of
the search procedure; hence the name. A clausal proof, then,
consists of a sequence of learned clauses that have the RUP
property; i.e., they can be validated using RUP. A (clausal)
refutation is a proof that contains the (unsatisfiable) empty
clause.

In order to distinguish learned clauses from input clauses,
we appeal to the notion that lemmas are used to construct a
proof of a theorem. Here, learned clauses are lemmas which
support a theorem stating that a formula is unsatisfiable. From
now on, we will use the term clauses to refer to input clauses,
while lemmas will refer to learned clauses.

The elegance of clausal proofs is that they can be expressed
in conjunctive normal form; however, the order of lemmas in
the proof is important. Clausal proofs are significantly smaller
when compared to resolution proofs, and only minor modifi-
cations of a SAT solver are required to output clausal proofs.
However, clausal proof checking can be quite expensive. And,
checking algorithms for clausal proofs are also typically more
complex than those for resolution proofs, making it harder to
trust or prove correctness of the algorithm.

III. ANTECEDENT GRAPHS

An antecedent graph is a directed acyclic graph that rep-
resents the refutation of a formula. The root nodes of an
antecedent graph represent the clauses in the original formula,
and internal nodes represent lemmas. A directed arc from node
C1 to node C2 signifies the use of C1 in the construction of
C2. In other words, C1 is an antecedent for C2. One of the
leaf nodes in the antecedent graph is the empty clause.

Example 2. Consider the CNF formula:

(b̄ _ c) ^ (a _ c) ^ (ā _ b) ^ (ā _ b̄) ^ (a _ b̄) ^ (b _ c̄)

Fig. 1 shows an antecedent graph of this formula in which
clauses are shortened: b̄c for (b̄ _ c). The antecedent graph
consists of four lemmas including the empty clause. For each
lemma, the set of incoming arcs represents the antecedents.
So the antecedents of lemma (c) are clauses (b̄ _ c), (a _ c),
and (ā _ b).

b̄c

ac

āb

āb̄ ab̄

bc̄

c

b̄

ā

;

Fig. 1. Antecedent graph for an example formula. Apart from the lemma (ā),
all clauses and lemmas are in the cone of ;.
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The cone of a lemma L is the set of all clauses and lemmas
from which L is reachable. We refer to core clauses as the
clauses that are in the cone of the empty clause. Similarly, core
lemmas refer to the lemmas in the cone of the empty clause
and core arcs are all incoming arcs of core lemmas. If a solver
stores the antecedent graph, it is easy to compute the core
clauses, lemmas, or arcs by simply checking for reachability
to the empty clause.

The number of core arcs is typically 300 to 400 times larger
than the number of core lemmas. To illustrate this difference,
we computed the number of core arcs and core lemmas using
Picosat [6] while solving the application benchmarks of the
SAT 2009 suite, the results of which are shown as a scatter
plot in Fig. 2. See Section VII for the details of the machine
used in this experiment. Compared to the number of literals
in core lemmas, the number of core arcs is about 10 times
larger. That means that the memory consumption of a solver
that stores the antecedent graph is at least 10 times larger
as compared to a solver that does not store the full graph.
In practice, this number can be significantly larger because
the solver needs to keep some deleted lemmas — even with
optimizations [7]. We observed that emitting additional results
by Picosat (which requires an antecedent graph) increased the
memory requirement by a factor 100 for several benchmarks.
Consequently, storing the antecedent graph while solving can
reduce the performance of solvers significantly and result in
memory exhaustion.
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Fig. 2. A scatter plot of the number of core arcs (y-axis) versus the number
of core lemmas (green) and the number of literals in core lemmas (red).

In this paper, we propose to reconstruct the antecedent graph
after the search has ended by using clausal proofs. Hence, SAT
solvers that want to compute additional results will no longer
need to store arcs in the antecedent graph.

Applications

Verification of unsatisfiability proofs: The tool that we
present in this paper is a fast proof checker for clausal
unsatisfiability proofs. Our tool allows developers and users to
verify solver output. Additionally, our tool can emit a reduced
proof with optimal clause deletion information. A reduced
clausal proof might then be be validated by a mechanically-
verified proof checker.

Minimal unsatisfiable core extraction: Computing a min-
imal unsatisfiable subset (MUS) consists of two phases. In the
first phase, called trimming, the input formula is solved and
an antecedent graph is constructed. All original and learned
clauses that are not in the cone of the empty clause are
removed. This phase can substantially reduce the number of
original and learned clauses, and this phase can be repeated.
The second phase [11] repeats the following until a fixed point
is reached. Select an original clause that is not marked as a
clause in the minimal unsatisfiable core. Next, a new Boolean
formula is constructed that consists of the remaining original
clauses (without the selected clause) and all learned clauses
that do not have the selected clause in their dependency cone.
If this Boolean formula is satisfiable, the selected clause is
marked as part of the minimal unsatisfiable core; otherwise,
the selected clause and all learned clauses that have this clause
in their dependency cone are removed.

Computing Craig interpolants: Another application from
the field of model checking relies on the availability of an
antecedent graph to compute Craig interpolants [12]. Given
two satisfiable Boolean formulas A and B such that A ^ B

is unsatisfiable, the interpolant I of A and B is a Boolean
formula that is logically implied by A, unsatisfiable when
conjoined with B, and contains only variables that are in A and
B. Algorithms that compute Craig interpolants, which include
recent improvements by Vizel [13], use the antecedent graph
of the formula A ^B.

Optimizations

Reconstruction may result in a different antecedent graph
than the one achieved during search. For example, assume that
the antecedent graph in Fig 1 was produced by a SAT solver.
During reconstruction, we might be able to produce a smaller
antecedent graph that has fewer core clauses, core lemmas,
and core arcs. An example of such an optimized antecedent
graph is shown in Fig. 3.

b̄c

ac

āb

āb̄ ab̄

bc̄

c

b̄

ā

;

Fig. 3. Optimized antecedent graph for the example formula.
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Aside from reconstruction of the antecedent graph, we
also propose strategies to minimize the number of core
clauses, core lemmas, or core arcs. We noticed that there
is a trade-off between optimizing these different aspects (see
Section VII-B).

Minimizing Core Clauses: The smaller the number of
core clauses, the closer the one gets to a MUS. Hence, trying
to minimize the set of core clauses during reconstruction could
reduce the cost to extract a MUS.

Minimizing Core Lemmas: By reducing the number of
lemmas in a clausal proof, checking costs are reduced, poten-
tially enabling the use a mechanically-verified proof checker.
Furthermore, a smaller number of lemmas can also lower the
cost of MUS extraction by reducing the number of internal
nodes in the antecedent graph.

Minimizing Core Arcs: The number of core arcs is related
to the size of a resolution refutation of the core clauses. By
minimizing the core arcs during the reconstruction, a smaller
resolution refutation is obtained which can improve the speed
of validating a resolution proof.

IV. BACKWARD REVERSE UNIT PROPAGATION

This section describes a method [1] to validate clausal
proofs. The backward checking variant (see Section IV-B) can
also be used to reconstruct an antecedent graph for a given
proof. As far as we know, there is no implementation of this
method available. We noticed that this method can be very
expensive when used on clausal proofs from state-of-the-art
CDCL solvers. Sections V-A and VI discuss two optimizations
that make this method much more efficient.

A. Forward Checking

Forward checking validates each lemma of a proof, in the
order that they were learned, by checking if they have the
RUP property. Forward checking is simple to implement [1],
[3], [14], relatively easy to parallelize, and can start as soon
as a lemma is learned. However, this approach may check
lemmas that are not required to validate a proof.

B. Backward Checking

Backward checking validates lemmas in the reverse order
that they were learned. The advantage of checking a proof
backward is that while validating a lemma, one can mark all
the clauses that are used to determine that the lemma has
the RUP property. When an unmarked lemma is encountered
during a backward loop, the lemma is skipped. This can signif-
icantly reduce the checking costs by skipping lemmas during
proof checking. Another advantage of backward checking is
that it produces an unsatisfiable core from the original input
clauses. This procedure can be used to trim formulas when
computing minimal unsatisfiable cores.

Backward checking is more complex, however, because the
checker needs to compute which clauses and lemmas were
used for each lemma in a proof. Because of this complexity,
it is harder to trust or verify a backward checking algorithm.
Furthermore, the computation of the core clauses makes the

procedure more costly. If only a few lemmas can be skipped,
backward checking can be more costly than forward checking.
Checking can only start when the solver has terminated, pre-
venting an implementation that solves and checks in parallel.
Finally, efficient backward checking is difficult to parallelize
because lemma dependency is unknown.

Fig. 4 shows the pseudo-code of the backward checking
algorithm. Its input is the original formula F and a stack of
learned lemmas S. The top of the stack is the last learned
clause. For a refutation, this is typically the empty clause ;.
Initially, all clauses and lemmas are unmarked (line 1). A stack
without the empty clause is not a refutation (line 2). The empty
clause is marked (line 3). We pop lemmas from the stack until
we find a marked lemma (lines 4-6), the first of which will
be the empty clause. For marked lemmas, we validate that
this lemma has the RUP property with respect to the original
formula and all remaining lemmas in the stack (line 7). If the
check succeeds, then the clauses and lemmas that were used
during BCP are marked. The algorithm succeeds if it was able
to validate all lemmas in S (line 9).

backwardRUP (CNF formula F , stack S of lemmas)

1
forall C 2 F [ S do core [C] = 0

2
if ; 62 S return “invalid refutation”

3
core [;] = 1

4
while S is not empty do

5
L := S.pop()

6
if core [L] then

7
if BCP (F [ S, L̄) = “failed” then

8
return “failed”

9
return “refutation validated”

Fig. 4. Pseudo-code of the backward reverse unit propagation procedure.

Each lemma is validated by checking that a lemma L has
the property RUP; this is performed by the BCP procedure
(Fig. 5). BCP has two inputs: the set of clauses FS consisting
of the original formula F and the remaining lemmas in the
stack S, and the assignment ⌧ that falsifies a lemma L (denoted
by L̄). During the procedure, a set of clauses U is maintained
of all clauses that have become unit (line 1). The procedure
terminates when the current assignment ⌧ falsifies a clause in
FS, by calling the MarkCore procedure (lines 3-4). Otherwise,
it extends ⌧ and updates U for each discovered unit clause
(lines 5-7). If there are no more unit clauses and no clause
has been falsified, the algorithm returns “failed” (line 8).

The MarkCore procedure works as follows. The falsified
clause R is marked (line 1). Then, any unit clauses that were
found during BCP (in stack U ) are examined in reverse order.
If resolution is possible between the clause C on the top of
the stack and resolvent R (which was the originally falsified
clause), then C is marked and the resolvent R is updated by
applying the resolution step R := R ./ C. When the stack is
empty, the resulting R is falsified by the input assignment ⌧
of the BCP procedure that called MarkCore.
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BCP (set of clauses FS, assignment ⌧ )

1
U := ;

2
forever do

3
if 9 C 2 FS s.t. ⌧(C) = f then

4
return MarkCore (U , C)

5
if 9 C 2 FS s.t. unit(C, ⌧ ) then

6
U.push(C)

7
⌧ := ⌧ [ unit(C, ⌧)

8
else return “failed”

Fig. 5. Pseudo-code of the unit propagation (BCP) procedure.

MarkCore (unit stack U , clause R)

1
core [R] := 1

2
while U is not empty do

3
C := U.pop()

4
if C and R have exactly one clashing literal then

5
core [C] := 1

6
R := R ./ C

7
return “succeeded”

Fig. 6. The MarkCore procedure marks all clauses and lemmas that were
involved in validating a lemma.

The MarkCore procedure is similar to the analyzeFinal [15]
procedure that is used in CDCL solvers that support assump-
tions (decisions at level 0) also known as the last unique
implication point.

Notice that the core arcs are not stored in this approach. This
reduces the memory consumption significantly as compared to
storing the antecedent graph during search. We can calculate
how many core arcs would have been in the graph by summing
up how often lines 1 and 5 of MarkCore are executed. Also,
one can obtain the full antecedent graph by inserting edges
from R (line 1) or C (line 5) to the current lemma L (in the
backwardRUP procedure).

V. ADDING INFORMATION TO CLAUSAL PROOFS

The main disadvantage of clausal proof checking and trim-
ming is the computational cost. Two methods have been pro-
posed that add extra information in proofs to reduce the costs.
The first method adds deletion information [14] (Section V-A)
and the second method adds antecedents [6] (Section V-B).

A. Adding Deletion Information

The RUP checking algorithm presented in the prior section
is costly for large proofs. The costs of verifying large proofs
can be one-to-two orders of magnitude larger than the solving
time. SAT solvers aggressively delete learned clauses during
search whereas a RUP checking algorithm can only add
lemmas.

In order to combat this disadvantage, we proposed to extend
proof logging with clause deletion information [14]. In our

proposed proof format, called DRUP (for delete reverse unit
propagation), one can add lemmas to the formula (exactly in
the same way as in the RUP format) and delete lemmas from
the formula. Deleted lemmas have a d prefix. Fig. 7 shows
an example CNF formula and a refutation for that formula in
the DRUP format. The tool presented in this paper is the first
proof checker that supports the DRUP format.

CNF formula

p cnf 3 6
-2 3 0
1 3 0

-1 2 0
-1 -2 0
1 -2 0
2 -3 0

DRUP proof

-2 0
d -2 3 0

-1 0
d -1 2 0

3 0
0

Fig. 7. The CNF formula from Example 2 in the typical DIMACS format
(left) and a refutation for that formula in the DRUP format (right). The literals
a, ā, b, b̄, c, and c̄ are represented by 1, �1, 2, �2, 3, and �3, respectively.
Whitespaces can be of any length; spacing is used to improve readability. The
symbol 0 marks the end of clauses (DIMACS) and lemmas (DRUP).

backwardDRUP (CNF formula F , stack S of lemmas)

1
forall C 2 F [ SA do core [C] = 0

2
if ; 62 SA return “invalid refutation”

3
core [;] = 1

4
while S is not empty do

5 hL, flagi := S.pop()

6
if flag 6= “d” and core [L] then

7
if BCP ((F [ SA) \ SD, L̄) = “failed” then

8
return “failed”

9
return “refutation validated”

Fig. 8. Pseudo-code of the backward DRUP procedure.

We modify backwardRUP to account for deletion informa-
tion (Fig. 8). Given a stack of of labelled lemmas S, the set
SA denotes the lemmas in S with no label, while the set SD

denotes the lemmas in S with label d. The top level procedure
needs to be modified in three places. First, the ; should be in
SA (line 2). Second, we ignore other tests if the flag of a
lemma is d (line 6). Third, all clauses in F [ SA which are
also in SD are ignored during BCP (line 7).

B. Extending RUP with Antecedents

Another approach annotates RUP proofs with antecedent
information [6]; we refer to these proofs as extended RUP
proofs. Picosat [6] can emit extended RUP proofs. The reason
why clausal proofs are expensive to validate is that the number
of clauses that become unit during BCP (i.e., the set U )
contains many clauses that were not required to show that the
RUP property holds. In extended RUP proofs, each lemma in
the proof is extended with a set of clauses that is sufficient to
validate that lemma. Typically, this set contains the antecedents
of the lemma. By restricting BCP to the set of clauses provided
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with each lemma (instead of all clauses of F [ S), one can
significantly decrease the time to validate a proof.

In order to emit an extended RUP proof, a SAT solver
needs to store and maintain the antecedents of all lemmas;
this requires a lot of memory and can significantly reduce
the solving time. Furthermore, the number of antecedents can
be an order of magnitude larger than the number of literals
in a lemma. Hence, extended RUP proofs can be an order
of magnitude larger than RUP proofs. In contrast, DRUP
proofs are usually only twice as large as RUP proofs. Finally,
extended RUP proofs must contain a list of the clauses in
the input formula (since they will act as antecedents). This
means that a checker also needs to validate that clauses that
are claimed to be in the input formula are indeed present.

VI. PREFERRING CORE CLAUSES DURING BCP
We observed that, for many benchmarks, only a fraction of

the original clauses and lemmas will be in the unsatisfiable
core. To improve the speed of the checking algorithm, we
considered an alternative implementation for BCP that prefers
marked clauses and lemmas to unmarked clauses and lemmas.
The pseudo-code of this algorithm is shown in Fig. 9.

CoreFirstBCP (set of clauses FS, assignment ⌧ )

1
U := ;

2
forever do

3
if (9 C 2 FS s.t. ⌧(C) = f) and (core [C]) then

4
return MarkCore (U , C)

5
if (9 C 2 FS s.t. unit(C, ⌧ )) and (core [C]) then

6
U.push(C)

7
⌧ := ⌧ [ unit(C, ⌧)

8
else if 9 C 2 FS s.t. ⌧(C) = f then

9
return MarkCore (U , C)

10
else if 9 C 2 FS s.t. unit(C, ⌧ ) then

11
U.push(C)

12
⌧ := ⌧ [ unit(C, ⌧)

13
else return “failed”

Fig. 9. BCP preferring clauses and lemmas which are in the core.

Ryvchin [16] proposed postponing unit propagation on
interesting constraints, a subset of the clauses in the original
formula. We observed that the number of core clauses and core
lemmas becomes smaller when one postpones unit propagation
on all clauses and lemmas that are not yet in the core.

VII. EXPERIMENTAL EVALUATION

To demonstrate the usefulness of the DRUP-trim tool1, we
experimented with it on the application benchmarks from the
SAT 2009 competition. We ran our tests on a system with
a 4-core Intel Core i7 2.6GHz processor, 16GB of RAM,
and 1TB of disk space running MacOS X 10.8.3. Throughout
this section, we use two SAT solvers: Glucose 2.2 [17] and

1
DRUP-trim is available at http://cs.utexas.edu/⇠marijn/drup-trim/.

Picosat-953 [6]. Glucose is one of the fastest SAT solvers
available and won the SAT 2012 Challenge. Our approach
allows for Glucose preprocessing techniques [10] in the
proof format, and therefore avoids the reconstruction problems
presented by Belov [18]. Picosat is the fastest solver that can
emit additional results such as resolution proofs, RUP proofs,
and unsatisfiable cores.

This section describes two experiments using Picosat,
Glucose, and our DRUP-trim tool. In the first experiment,
we evaluate the time to emit proofs and the time to extract
additional results. In the second, we evaluate the effectiveness
of trimming as it relates to unsatisfiable cores, reduced clausal
proofs, and reduced resolution proofs.

A. Comparing solving / checking / trimming times

For our first experiment, we determined how many unsat-
isfiable benchmarks of the SAT 2009 application suite could
be solved by Glucose and Picosat. We ran Picosat with the
option to emit extended RUP proofs. We modified Glucose to
emit DRUP proofs (the input format for our DRUP-trim tool).
This modification is about 40 lines of code, most of which are
added to support preprocessing techniques [14].

Within a timeout of 900 seconds, Glucose with DRUP
logging solved 123 instances, while Picosat with extended
RUP proof logging solved only 81 instances. The benchmarks
solved by Picosat were a subset of the benchmarks solved
by Glucose. With an even larger timeout of 9000 seconds,
Picosat was only able to solve 101 out of the 123 unsatisfiable
benchmarks that Glucose can solve in 900 seconds. On most
of the unsolved benchmarks, Picosat exhausted memory (limit
15 Gb). We noticed that turning on the proof logging in
Picosat increased the memory consumption on some bench-
marks by two orders of magnitude. In contrast, proof logging
in our modified version of Glucose does not require additional
memory because the proof is stored directly on disk. This
experiment shows the disadvantage of producing additional
results within a SAT solver: one is not able to produce a
proof or core due to lack of memory on several benchmarks.
We observed similar problems when using the state-of-the-art
MUS extraction tool Muser [19] on the same instances.

Fig. 10 shows the runtime of Glucose and Picosat with
proof logging enabled and the costs to validate the proofs
emitted by Glucose. In our cactus plot, the data points for
each line are sorted based the y-axis. The checking costs with
four different settings of our DRUP-tool are also shown. Two
settings use forward checking to validate all lemmas in the
proof and do not mark clauses. One setting ignores the deletion
information in the proofs (denoted by RUP-checking, similar
to the approach in [3]), while DRUP-trim forward uses this
information (similar to the approach in [14]). The other two
settings use backward checking and hence mark the clauses
and lemmas in the core. The fastest setting is the one that uses
the core-first BCP technique. The core-first BCP is usually
faster than conventional BCP. However, for some benchmarks
with hundreds of thousands of variables, conventional BCP
outperforms core-first BCP. This difference is caused by the
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structure of certain large benchmarks and is not related to size
of formulas.

For the first 80 instances, the solving times recorded by
Glucose and the corresponding checking times of DRUP-

trim are comparable. For the next 25 instances, checking takes
about twice as long as compared to solving. The checking time
is only slower for a handful of instances. Yet, DRUP-trim with
core-first BCP was able to check all proofs within a timeout
of 900 seconds. We believe it is now feasible to check all
unsatisfiability results.

B. Comparing the Quality of Trimming

We restrict the experiments to the 101 benchmarks of the
SAT 2009 application suite that Picosat with extended RUP
logging was able to solve within the timeout of 9000 seconds
and a memory limit of 15 Gb. Recall that Glucose could solve
all these instances in less than 900 seconds.

Fig. 11 shows the size of the unsatisfiable cores produced
by Picosat that stores the antecedent graph and by Glu-

cose using our DRUP-trim tool. We experimented with two
variants: one with conventional BCP and one with core-first
BCP. Core-first BCP not only reduces the validation cost for
formulas (Fig. 10) but is also more effective in trimming the
formula (Fig. 11). Furthermore, the cores produced by Picosat

are larger than the ones produced by DRUP-trim using the
Glucose proof. This suggests that it is not beneficial to store
the antecedent graph during search in order to trim a formula.

The differences between Picosat and Glucose also have
an impact on the comparison. For example, we observed
that preprocessing (used in Glucose, but not in Picosat)

influences the size of unsatisfiable cores produced by SAT
solvers. Whether the effect is positive or negative differs from
benchmark to benchmark. We compared Picosat and Glucose

because they are publicly-available, state-of-the-art solvers that
support resolution and clausal proofs, respectively. Picosat’s
poorer performance (with antecedent logging) compared to
Glucose (with DRUP logging) is caused by a combination of
older heuristics, lack of preprocessing, and heavier memory
use.
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Fig. 11. Cactus plot of comparing the size (in the number of clauses) of the
trimmed formulas. Notice that the y-axis (size) uses a logarithmic scale.

We modified Picosat so that it can emit DRUP proofs
without storing an antecedent graph (which affects only 10
lines of code). We then compared the original version of Pi-

cosat to the modified version. The alternative DRUP approach
produces smaller unsatisfiable cores (on average 11% smaller)
and smaller clausal proofs (on average 21% smaller). Recall
that the alternative approach does not store the core arcs and
uses 1% to 10% of the memory of the original approach.

The native core approach in Picosat produces fewer core
arcs compared to the approach using DRUP-trim with the
core-first BCP strategy. This is not surprising: by postponing
BCP on clauses and lemmas that are not in the core, several
arcs to core clauses and core lemmas are produced. The
number of core arcs can be substantially larger using the
alternative approach (a factor four on average, mostly because
of some outliers). A possible way to reduce the number of core
arcs is to run the DRUP-trim tool twice. First, using core-first
BCP on the original formula and proof; and second, using
conventional BCP on the core clauses and the core lemmas.

Our results use the DRUP-trim tool only once. We noticed
that in most cases, the core can be further reduced by applying
DRUP-trim multiple times. This can be done in two ways: use
the reduced clausal proof or compute a new proof for the core
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clauses using a SAT solver. The best approach depends on the
benchmark. For some benchmarks, a SAT solver produces a
larger proof for the core clauses. In those cases, one should
use the reduced proof. However, if a SAT solver is able to
produce a smaller refutation for the core clauses, then those
lemmas would be better for a new iteration.

VIII. CONCLUSION

We presented the tool DRUP-trim that can efficiently check
clausal proofs and can produce additional results including
unsatisfiable cores and reduced clausal proofs. DRUP-trim

is the fastest clausal proof checker available. This tool also
makes it more convenient to check clausal proofs and to obtain
additional results. A slightly modified version of DRUP-trim

was used to check the unsatisfiability results of the upcoming
SAT Competition 2013.

DRUP-trim was able to verify all unsatisfiability claims of
the state-of-the-art SAT solver Glucose 2.2 on the benchmarks
of the SAT 2009 application suite. Other work on checking
unsatisfiability results [1], [2], [3], [4], [11], [16] only shows
results for selected (small) sets of benchmarks. We compared
our DRUP approach with Picosat, the strongest solver that
can emit resolution proofs. In contrast to emitting a DRUP
proof, building a resolution proof during search can signifi-
cantly increase the memory requirements of the solver. As a
consequence Picosat resulted in memory outs on about 20
application benchmarks that Glucose 2.2 was able to solve
in 900 seconds. This suggests that resolution proofs are not
a viable method for checking the unsatisfiability results in a
general setting, such as the SAT Competition.

However, our clausal-based approach does not subsume
current resolution-based methods. We expect that resolution-
based methods will continue to be useful for applications that
require short (a few seconds) SAT solver runs. Our clausal-
based approach is useful for applications that require one or
more long (a few minutes) SAT runs. For a long SAT run, it is
beneficial to use the latest SAT-solver technology —which is
not presently available in solvers that emit resolution proofs—
and avoid storing very large antecedent graphs.

One of our optimizations, the core-first BCP technique,
facilitates the computation of smaller unsatisfiable cores and
smaller reduced clausal proofs when compared to resolution-
style methods. However, the number of core arcs increases
when this technique is used. Our future work will focus on
reducing the number of core arcs in DRUP-trim. This can be
useful to reduce the cost of MUS extraction and interpolant
tools.

The best tools for extracting minimal unsatisfiable cores,
such as Muser [19], and computing interpolants, such as CNF-

ITP [13], are based on resolution proofs. But there are two
important drawbacks. First, similar to proof checking, some
benchmarks cannot be solved when one builds a resolution
proof during search. Second, none of the top-tier solvers sup-
port the emission of a resolution refutation. Current approaches
[19], [11], [16], [13] rely on either Picosat or Minisat [20]
which are no longer the strongest solvers. We propose to use

DRUP proofs as input for tools that compute MUSes and
interpolants. This makes it easy to use any SAT solver for
those tools.
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