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ematical genius, we claim that Euler would 
not have been able to prove a solution to 
the second problem. We will justify this 
claim later on in this article. Being far less 
mathematically talented than the Swiss 
master, our success in solving the second 
problem during 2023 could not have been 
without modern computational tools, tak-
ing advantage of both software and hard-
ware beyond the wildest dreams of Euler’s 
18th century. We hope that our exposition 
highlights both the power of automated 
reasoning techniques in mathematics and 
the blurry line that separates problems 
that admit elegant and short mathematical 
arguments from those inherently requiring 
long computational proofs.

He would go on to lose vision in his left 
eye due to a cataract in 1766. For a natu-
ral comparison, around 1822, Ludwig van 
Beethoven famously composed his Sym-
phony No. 9 while completely deaf, result-
ing in one of the most admirable episodes 
of music history. 

Incapable of rendering a fair homage to 
Euler, this brief article discusses only two 
mathematical problems, and worse still, it 
has the audacity to speculate about how 
Euler would have faced such problems 
even though he never had the opportunity 
to see them, as they originated more than 
200 years after his death. The two prob-
lems, detailed in next section, belong to 
the area of graph theory, kickstarted in 1735 
by Euler himself, and more specifically, to 
packing colorings over infinite graphs [3]. 
We argue in one of the following sections 
that Euler could have comfortably solved 
the first problem, leveraging his celebrat-
ed solution to the Basel problem (1734), 
and yet, despite his unquestionable math-

The life and work of Leonhard Euler (Basel, 
1707 – St. Petersburg, 1783), arguably one 
of the greatest mathematicians to ever 
live, is more than enough to fill up dozens 
of books. With a grand total of 866 arti-
cles, averaging 800 pages per year, and 
contributions to areas as diverse as dif-
ferential equations, number theory, and 
complex analysis, Euler is still the most 
prolific mathematician to date [6]. His per-
sonal life was no less eventful, marked by 
two marriages, thirteen children, of whom 
only five reached adulthood, and a series 
of medical difficulties leading up to com-
plete blindness [1]. The interplay between 
Euler’s poor health and his stoic nature 
coupled with unmatched work ethic is suc-
cinctly described by Eves [9]. In 1735, Euler 
spent three days and two nights working on 
a problem on celestial mechanics, and the 
strain of the effort lead to the permanent 
loss of vision in his right eye. “Now I will 
have less distraction”, commented Euler, 
and his productivity indeed increased. 
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Almost identical mathematical problems can result in wildly different solutions. In this 
piece of counterfactual history, Bernardo Subercaseaux and Marijn Heule discuss two 
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the proof for the first problem can be elegantly summarized into a paragraph, thanks to 
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Figure 1  Commemorative stamp issued by the Swiss Post 

in 2007 to celebrate the 300th anniversary of Euler’s birth 

[14]. The portrait in the stamp was made by Jakob Eman-

uel Handmann in 1753.
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Definition. Given a graph ( , )G V E= , a 
function : { , , }f V k1" f  is a (standard) 
coloring of G if every pair of vertices 

,u v V!  that get assigned the same color 
( ) ( )c f u f v= =  holds ( , )d u v 1> .

A minor tweak to this definition results 
in a fascinating family of combinatorial 
problems. If one changes the distance 
restriction ( , )d u v 1>  (of vertices shar-
ing color c) to ( , )d u v c> , then the dis-
tance restriction becomes dependent on 
the shared color, with larger colors being 
more restrictive. This alternative notion of 
coloring was originally motivated by the 
problem of assigning broadcast frequen-
cies to radio stations; two different sta-
tions sharing the same frequency would 
cause interference unless those stations 
were ‘far enough’ from each other, where 
the distance requirement could itself be 
a function of the assigned frequencies. 
Under that motivation, Goddard et al. in-
troduced broadcast colorings in 2002 [13], 
which were later rebranded as packing 
colorings [3].

Definition. Given a graph ( , )G V E= , a 
function : { , , }f V k1" f  is a packing col-
oring of G if every pair of vertices ,u v V!  
that get assigned the same color ( )c f u=  

( )f v=  holds ( , )d u v c> .

Naturally, both in standard and packing 
colorings, one wishes to use the least num-
ber of colors for a given graph, which is 
said to be its (packing) chromatic number. 
For a given graph G, we use notation ( )G|  
for its chromatic number and ( )G|t  for its 
packing chromatic number. An example il-
lustrating the difference between standard 
graph colorings and packing colorings is 
presented in Figure 4, showing that if G is 
the 3 3#  grid graph, then ( )G 2| =  and 

( )G 4| =t .
We are now ready to present the two 

main problems considered in this article, 
which concern the packing chromatic num-
ber of two infinite graphs. First, the graph 
Z2 , often called the infinite square grid, or 
the infinite square lattice, has all pairs of in-
tegers as vertices and edges between pairs 
( , ), ( , )a b c d  when | | | |a c b d 1- + - = . Then, 
ZCh

2  is the infinite Chebyshev grid, whose 
vertex set is also Z2 , but has also edges 
between diagonally adjacent pairs of ver-
tices, i.e., when (| | , | |)max a c b d 1- - = . 
The two graphs are illustrated in Figure 5. 

Figure 2. A walk through a graph that pass-
es through every edge exactly once is now 
called an Eulerian circuit in his honor.

Another fundamental family of prob-
lems in graph theory, more central to 
this article, is that of coloring problems, 
which we introduce next. Due to his work 
in cartography, Euler would have im-
mediately grasped the idea of properly 
coloring a map; that is, assigning col-
ors to countries (or other geographical 
demarcations) on a map in such a way 
that neighboring countries are assigned 
different colors. Figure 3 illustrates 
how such a cartographical problem is 
also a graph problem, where colors are 
mathematically represented by positive 
integers.

Formally, we can state that two vertices 
u, v receiving the same color cannot be 
connected by an edge, and thus their dis-
tance (defined as the length of the shortest 
edge path connecting them) must be great-
er than 1.

Graph theory and two coloring problems
The beginning of graph theory is tradition-
ally identified with Euler’s solution to the 
problem of the Seven Bridges of Königs-
berg [6, 19]. In that problem, one is chal-
lenged to traverse the seven bridges of the 
city of Königsberg (see the left of Figure 2), 
passing exactly once per bridge. Euler 
proved in 1735 that no solution existed by 
analyzing the parity of the number of bridg-
es touching a landmass, and generalized 
his observation to arbitrary cities with any 
number of landmasses and bridges. The 
main insight of his generalized solution 
was simplifying the complex geometry of 
the city into an abstract model of the re-
lationship between physical landmasses 
and bridges.

Each landmass would correspond to a 
dimensionless object called vertex, and 
bridges connecting landmasses would, 
in turn, correspond to pairs of vertices 
called edges, usually depicted by circles 
and lines respectively, as on the right of 

Figure 2  Representation of the Königsberg bridges problem as a graph problem, with an intermediate step in which the 

topology of the city has been simplified [12, 21].

Figure 3   Graph representation of the map coloring problem depicting most of Europe. The fact that four colors are enough 

for this map is an application of the celebrated Four Color Theorem of Appel and Haken, a cornerstone of computer-aided 

mathematics [20].



Bernardo Subercaseaux, Marijn J. H. Heule	 A proof long enough to stump Leonhard Euler	 NAW 5/25  nr. 1  maart 2024	 13

Definition. For a finite graph G, a packing 
coloring f and a color c, we define

( , )
( )

{ ( ) ( ) }
.d f c

V G
v V G f v c

G |
! ;

=
=

Naturally, we can define the maximum pos-
sible density of a given color c as ( )d cG =  

( , )max d f cf G .

It is direct from the definition that 
G( , )d f c 1( )c frange

=
!

/  for any packing col-
oring f, and as a result we get the following 
simple lemma:

Lemma (folklore). For any graph G, if the 
densities of a set of colors add up to less 
than 1, as e.g., ( ( ))d c 1<c

k

G1=
/ , then 

such a set of colors is not enough for a 
packing coloring of G, i.e., ( )G k>|t .

ing coloring problems for infinite graphs 
[3], until being solved by the authors 
in 2023 [18]. 

Density arguments
Let us start with a finite example that we 
will then extend to infinite graphs. Consid-
er a finite graph ( , )G V E=  and a packing 
coloring f for G that uses colors { , , , }1 2 3 4 . 
Then, for each color { , , , }c 1 2 3 4!  we can 
definite its density (under f ) as the pro-
portion of the vertices of G that get color c. 
(The definition of density used in this sec-
tion was introduced by Fiala et al. [10].) 
For example, in the bottom of Figure 4, the 
density of color 1 is 9

4 , while for color 4 it is 
only 9

1 . More formally:

As suggested by Figure 5, the addition of 
diagonal edges makes the packing chro-
matic number of ZCh

2  larger than that of 
Z2 , but the exact difference is far from 
obvious: the packing chromatic number 
of Z2  is 15, and ZCh

2  does not admit any 
packing coloring using a finite number of 
colors. Finbow and Rall proved in 2010 that 

( )ZCh
2 3| =t  [11] through a cute density- 

based argument we mimic in the next 
section. (The result of Finbow and Rall 
[11, Theorem 6] is slightly stronger, as it 
concerns the infinite triangular lattice.) 
On the other hand, the packing chromat-
ic number of Z2  resisted twenty years 
of incremental work; and was deemed 
the most important among the pack-
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Figure 4  Illustration of standard and packing colorings for the 5 5#  grid graph. (a) A standard coloring of the 3 3#  grid graph. (b) A packing coloring of the 3 3#  grid graph using 

five colors. (c) An optimal packing coloring of the 3 3#  grid graph using four colors.
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we want to obtain the coefficient of x2  in P 
provided that the constant term in P (i.e., 
the coefficient of x0 ) is 1. Then we simply 
write P in terms of its roots and a constant 
factor a , as

( ) ( )( )( )

( ),

P x x x x

c x x x

2 1 3

2 5 63 2

$

$

a= + - -

= - + +

which implies 6
1a =  as the constant term 

of ( )P x  must be 1, and thus the coeffi-
cient of x2  is 6

2- . Euler used this same 
form of reasoning to ( )sin x , treating it as 
an infinite polynomial. Euler knew that 

( )sin k 0$ r =  for every integer k, and as-
sumed (correctly but without proof), that 
those were the only roots of the sin  func-
tion. Naturally, that would imply that the 
only roots of ( )sin

x
x  are { , }k k k 0Z$ !; !r .

Thus, Euler felt justified in writing

( )
( )( )( )( )

( )( ) .

sin
x

x
x x x x

x x

2 2

3 3

$

$ g

r r r r

r r

a= + - + -

+ -

Now, notice that ( ) ( )x n n 1 n
xr r+ = + r ,

and thus ( )sin
x

x  can be rewritten altering its 
constant factor as:

( )

.

'

'

sin
x

x

x x x x

x x x

1 1 1 2 1 2

1 1
4

1
92

2

2

2

2

2

$

$

g

g

r r r r

r r r

a

a

= + - + -

= - - -

a

e

a

e

a

e

ak

o

k

o

k

o

k

Because of the well-known limit 
lim 1( )sin

x x
x

0 =" , one immediately gets 
that ' 1a = . Thus, Euler arrived at an infini-
tary expression for ( )sin x  alternative to its 
Maclaurin series. In this alternative expres-
sion, if we were to multiply all the paren-
theses to get a polynomial, the only terms 
with x2  would be of the form 

k r
1 1x

2 2

2
$ $ g-  

(i.e., quadratic terms multiplied by all the 
other constant terms). Therefore, the co-
efficient of x2  in the whole expression for 

( )/sin x x  is given by

.

n

n

1
4

1
9

1
16

1 1

1 1

n

2 2 2 2 2 2

2 2
1

g
r r r r r

r

- + - + - + - + + -

= -
3

=
d n /

As this coefficient must be equal to the co-
efficient of x2  in the Maclaurin series, 6

1- , 
one gets

,
n

1 1
6
1

n
2 2

1r

- = -
3

=
d n /

from where Euler correctly concluded the 
answer to the Basel problem must be ex-
actly /62r .	 □

possible k such that ( )d c 1<c

k

1 ZCh
2

=
/ , 

and equivalently, 1<
( )cc

k

1
1

1 2+=
/ . The 

next section is devoted to answering this 
question.

The Basel problem
The infinite sum of the reciprocals of the 
integers, namely 1 nn2

1
3
1 1

1g+ + + =
3

=
/ , 

was already known to diverge in the four-
teenth century, by proof of Nicole Oresme. 
On the other hand, the sum of the recipro-
cals of the squares,

,
n

1 4
1

9
1

16
1 1

n
2

1
g+ + + + =

3

=
/

was explicitly posed as a problem for the 
first time by Pietro Mengoli in 1650. This 
infinite sum stumped prominent mathe-
maticians until it finally fell to the hand 
of Euler in 1734, bringing him immediate 
fame as a 28 year old prodigy. The value of 
this infinite sum, now known as the Basel 
problem, perhaps surprisingly, turns out to 
involve the circle constant r,

Theorem. The infinite sum of the recipro-
cals of the squares of the natural numbers, 

/n1n 1
23

=
/ , equals /62r .

The proof of this theorem is a beauti-
ful example of Euler’s style, which we will 
illustrate next. Geniality, has been said, 
appears when reconciling two seemingly 
unrelated, or even contradictory ideas [17]; 
the genius of Isaac Newton (1643–1727), 
for example, was to notice that the apple 
that falls, and the moon that does not fall, 
in superficially opposite behaviors, are in 
fact both instances of the same underly-
ing phenomenon [1, 17]. In a similar fash-
ion, Euler’s solution to the Basel problem 
works by reconciling two different perspec-
tives on the ( )sin x  function.

Proof. On the one hand, the Maclaurin 
series, well known at the time, allows ex-
pressing ( )sin x  as an infinite polynomial:

( ) ! ! ! ,sin x x x x x
3 5 7

3 5 7
g= - + - +

and consequently,

( )
! ! ! ,

sin
x

x x x x1 3 5 7

2 4 6
g= - + - +

where now x2  appears, and with a coeffi-
cient of !3

1
6
1=- - . On the other hand, con-

sider for example that we have a polynomi-
al P of degree 3 with roots { , , }2 1 3- , and 

If we define ({ , })d 1 2G  as the maximum 
fraction of the graph that can get color 1 
or 2 over all the packing colorings of G, we 
obtain the more nuanced notion of joint 
density, where ({ , }) ( ) ( )d d d1 2 1 2G G G# + , 
and this generalizes to any set of colors. 
The following example shows how this 
lemma, and its strengthening with joint 
densities, can be used for proving lower 
bounds on ( )$|t .

Example. We can use a density argument 
to show that if G is the 3 3#  grid graph, 
then ( )G 4| =t . Indeed, Figure 4(c) 
shows that ( )G 4$|t . Observe that col-
or 1 can be used at most 5 times in G (as 
in Figure 4(b)), thus showing ( )d 1G 9

5= . 
Similarly, we have ( )d 2G 9

2=  (as in Figure 
4(c)). By the lemma we can already de-
duce that ( )G 2>|t , as 1 and 2 achieve 
a density of at most 9

7 . Interestingly, 
( )d 3G 9

2= , which suggests that colors 
{ , , }1 2 3  would be enough for G. This is 
not the case, and we will need to consid-
er the joint density of 1 and 3, ({ , })d 1 3G . 
We claim that ({ , })d 1 3G 9

6# . Assume for 
a contradiction that ({ , })d 1 3G 9

7$ , and 
then observe that by the pigeonhole prin-
ciple there must be a row of G in which the 
three vertices get a color in { , }1 3 . The only 
possibility is ( , , )1 3 1 , in left-to-right order, 
after which no other vertex can get color 3. 
As only a single vertex will get color 3, 
and ( , )d f 1G 9

5#  for any f, we conclude 
({ , })d 1 3G 9

6# . Putting this together with 
( )d 2G 9

2#  yields that ( )G 3>|t  by the nat-
ural generalization of the lemma to include 
joint densities.

The idea of density can be extended 
to infinite graphs by considering the lim-
iting density of increasingly larger finite 
subgraphs (e.g., balls of increasing radius 
around a vertex), and the lemma holds as 
well for infinite graphs. Let us see how this 
is useful for studying ( )ZCh

2|t . Consider 
a ( ) ( )k k1 1#+ +  subgraph of ZCh

2  (e.g., 
bottom of Figure 5 depicts a 4 4#  sub-
graph) and note that because of the diag-
onal edges at most one vertex in the sub-
graph can get color k (e.g., in the bottom of 
Figure 5 at most one vertex can get color 3). 
In general, this implies

( )
( )( ) ( )

.d c
c c c1 1

1
1

1
2ZCh

2 #
+ +

=
+

To derive a lower bound from this and the 
lemma, we will have to find the largest 
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The computational nature of ( )Z2|t
Interestingly, there does not seem to exist 
a simple argument for determining ( )Z2|t . 
If we attempt to repeat the same argument 
presented in the previous section, we get 
the significantly weaker bound

( ) ,d c
c
2
2Z2 # (1)

as every c can be used at most in two oppo-
site corners of a c c#  subgrid (cf. the top 
of Figure 5 where color 4 occurs twice and 
could not be used any further). This bound 
is vacuous for c 1= , where it is easy to see 
that ( )d 1 2

1
Z2 = . The bound in implies only 

that ( )d 2 2
1

Z2 # , which could even sug-
gest that colors 1 and 2 are enough for Z2 ! 
However, analyzing a 3 3#  subgrid of Z2  
shows that { , }d 1 2 9

6
Z2 #_ i  (cf. Figures 4(b) 

and 4(c)). As we get ( )d 3 9
2

Z2 #  by Equation 
(1), we can deduce that ({ , , })d 1 2 3 9

8# , 
and thus ( ) 4Z2 $|t . However 1>9

8

4

2
2+ , 

( )
( )

( )

.

lim

lim

d c
c

c c

c c

c c

n

1
1

1
1

1
1

1

1
1

1

1 1
1 1

<

c c

c

c

n c

n

n

1
2

1

1

1

1

ZCh
2

$

#
+

+

= - +

= - +

= - + =

"

"

3 3

3

3

3

3

= =

=

=

=

b

b

b

l

l

l

/ /

/

/

/

 Albeit much simpler, this argument pro-
vides a weaker bound than the one derived 
by following Euler’s work, as from the Ba-
sel problem we deduce that is not even 
possible to packing color %65  of ZCh

2 . As 
it will be shown in the next section, pack-
ing coloring density arguments can require 
significant precision, which makes the un-
derstanding of infinite density-based sums 
a key technique in the area.

The proof that Euler would have nailed
We believe that Euler could have easily de-
termined ( )ZCh

2|t  by combining the obser-
vations about the density arguments with 
his celebrated solution of the Basel prob-
lem presented above. Indeed, after arriv-
ing at 

( )c 1+
( )d c 1

ZCh
2

2#  as we did before, 
we believe the Swiss master would have 
immediately noticed that

( )
( )

. ,

d c
c

c

1
1

1 1

6 1 0 644 1<

c c

c

1
2

1

2
1

2

ZCh
2 #

.
r

+

= -

= -

3 3

3

= =

=
f p

/ /

/

implying that no finite amount of colors is 
enough for a packing chromatic of ZCh

2 , 
and thus ( )ZCh

2 3| =t .
Finbow and Rall [11] proved a theorem 

that implies ( )ZCh
2 3| =t  using a tele-

scopic argument resembling:

111
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Figure 6  A packing coloring of a 72 72#  subgraph of Z2
 using 15 colors. This same packing coloring can be extended to the infinite graph Z2

 by stitching it to copies of itself vertically 

and horizontally. This illustration represents each vertex as a square cell, and the edges between orthogonally adjacent cells are left implicit.
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cle, displayed in Figure 6. Nonetheless, we 
believe not even Euler could have proved 
that ( ) 15Z2 $|t  without a computer, and 
perhaps not even that ( ) 12Z2 $|t , as we 
argue next. The first proof of ( ) 12Z2 $|t , 
by Ekstein et al. [7], used a computer pro-
gram to explore all possible ways of color-
ing a finite subgraph of Z2  with 11 colors, 
and after 120 days of computation, having 
analyzed 43 112 312 093 324 configura-
tions (as some symmetries were broken), 
returned that none of them could work. 
With today’s methods, a modern comput-
er can prove the lower bound ( ) 12Z2 $|t  
in less than a second [18], and yet even 

that he could have reached ( ) 11Z2 $|t  
or even ( ) 12Z2 $|t . In terms of upper 
bounds, we believe it is within the realm of 
possibility that Euler could have arrived at 
the right answer, namely that ( ) 15Z2 #|t . 
We already know the example of Isaac 
Grosof, now a postdoc at Georgia Tech, 
who was able to deduce an upper bound 
of ( ) 23Z2 #|t  by pen and paper, and as 
“[Euler] was a fabulous mental calculator, 
able to perform intricate arithmetical com-
putations without the benefit of pencil and 
paper.” [6], we believe Euler could have 
done the same and even further. In fact, the 
proof of ( ) 15Z2 #|t  fits in this brief arti-

and once again it seems like a small num-
ber of colors could be enough for a pack-
ing coloring of Z2 . By performing more and 
more careful analyses of the joint densities 
of small colors, one can get slightly better 
lower bounds. For instance, in 2009 Fiala 
et al. [10] used a non-trivial and detailed 
argument to show that

({ , , , }) ,d 1 2 9 3837600
3830381 1<Z2 f #

thus implying that ( ) 10Z2 $|t . We claim 
that Euler displayed enough mathemati-
cal talent throughout his life to allow us 
to infer not only that he would have also 
reached the bound of Fiala et al., but also 
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Figure 7  The smallest graph that admits a packing coloring with 14 color, but where no 14-packing coloring exists with a chessboard pattern of 1’s. Note in particular that the north-west 

outer border of the depicted graph deviates from the chessboard pattern in two vertices.
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with such techniques it required over 4 000 
hours of CPU time to prove ( ) 15Z2 $|t , 
with the resulting proof occupying over 30 
terabytes of data, after compression [18]. 
(For a comparison, the proof of the upper 
bound of 15, depicted in Figure 6, can be 
compressed into less than 1 kilobyte.) 
Moreover, it follows from [18, Section 5] 
that the smallest finite subgraph of Z2  
that needs to be considered to observe 
that ( ) 14>Z2|t  has at least 365 vertices. 
In other words, over every subgraph with 
at most 365 vertices, the joint densities of 
colors { , , }1 14f  achieve a sum of 1. It is 
only when considering a subgraph of 421 
vertices that it is revealed that 14 colors 
are not enough for Z2 . In the beautiful eu-
logy that Marquis de Condorcet wrote for 
Euler in 1783 [5], the year of the master’s 
death, he recounts how Euler once arbitrat-
ed a dispute between two of his students, 
whose calculations up to the 17th term of 
a complicated series disagreed by a single 
number. Euler gave his answer after doing 
the entire calculation in his head; and was 
later proved to be correct. Similar stories 
depict Euler as a human computer, able 
to perform intricate calculations almost 
instantaneously. We believe, nonetheless, 
that certain problems do not admit concise 
proofs (e.g., analyzing fewer than a million 
cases), and thus computation is a neces-
sary tool for their resolution. Interestingly, 
as the previous discussions have shown, 
it is hard to anticipate in advance which 

problems will require extensive computa-
tion, and which problems will fall to a short 
and beautiful proof, as the one Euler gifted 
us.

Conjectures and computer verification
Interestingly, Euler was not fully satis-
fied with his first proof of 1735, presented 
above, as it relied on assumptions he could 
not justify at the time [6]. Euler assumed 
what is now known as Weierstrass Factor-
ization Theorem, namely that factorization 
and manipulation of finite polynomials in 
terms of their roots, which were known 
since Newton, still held for infinite poly-
nomials [6]. In 1741, Euler was able to give 
a completely different proof of the same 
result, dissipating the lingering doubts. It 
took around 100 years for a rigorous proof 
of the product formula for ( )/sin x x  that 
validated the original 1735 proof. Conjec-
tures sometimes turn out to be false even 
if they appear intuitively true at first. This 
is even the case for mathematicians of 
the caliber of Euler, who incorrectly con-
jectured the non-existence of Greco-Latin 
squares of order ( )n4 2+  for n 1$  [14], or 
the sum of powers conjecture, disproved in 
1966 by a computer search [15]. We believe 
this is not a weakness of Euler, but rather 
a testament to a mode of collaboration 
between mathematicians and computers 
in which computers help verify or refute 
conjectures stemming from human intu-
ition that require analyzing large numbers 

of cases. As a concluding example, during 
our work in the packing chromatic number 
of Z2 , we conjectured that color 1 could 
be assumed without loss of generality to 
form a chessboard pattern, as displayed in 
Figures 4 to 6. This chessboard conjecture 
seemed very natural as it allowed using 
color 1 with its maximum possible density, 
2
1 , and matched all our experiments over 
small graphs. Remarkably, the chessboard 
conjecture turns out to be false, and we 
have found the smallest counterexample 
(see Figure 7). It is a graph of 365 vertices 
that does not admit a 14-color packing col-
oring if the chessboard pattern of 1s is as-
sumed, and yet it does have a 14-packing 
coloring when slightly deviating from the 
pattern.

“The properties of the numbers known 
today have been mostly discovered by 
observation, and discovered long be-
fore their truth has been confirmed by 
rigid demonstrations. There are many 
properties of the numbers with which 
we are well acquainted, but which we 
are not yet able to prove; only observa-
tions have led us to their knowledge. 
Hence we see that in the theory of num-
bers, which is still very imperfect, we 
can place our highest hopes in obser-
vations; they will lead us continually to 
new properties which we shall endeav-
or to prove afterward.”

Leonhard Euler, 1761 [8, 16]	 ←
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