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Chapter 15

Proofs of Unsatisfiability
Marijn J.H. Heule

15.1. Introduction

Satisfiability (SAT) solvers have become powerful tools to solve a broad spectrum
of applications. Since the SAT problem is NP-complete, it is easy to validate
a satisfiability claim using a certificate in the form of a variable assignment.
However, if a solver reports that a formula has no solutions, the validation of
that claim requires a proof of unsatisfiability. The correctness of SAT solving
results is important for applications ranging from hardware verification to proving
mathematical theorems. Proof checking is significantly less complex compared to
the implementations of state-of-the-art SAT solvers, allowing efficient validation
even by formally verified checkers [CFHH+17, Lam20]. Proofs of unsatisfiability
are useful in several applications, including interpolation [VRN13], extraction of
minimal unsatisfiable sets (MUSes) [Nad10], and several areas that rely on SAT
solvers, such as theorem proving [AFG+11, Web06, WA09, WHH13]. This chapter
covers the practical aspects of proofs of unsatisfiability, while Chapter 7 on proof
complexity discusses the theoretical aspects in more detail.

Many proof formats have been proposed [ZM03, ES03, Bie08, Van08, WHH14,
CFHH+17, Lam20, HKB19], and even though they might seem very different, they
actually have a lot in common. Essentially all well-known proofs of unsatisfiability
are so-called clausal proofs: sequences of clauses that are claimed to be redundant
with respect to a given formula, where redundant means that the addition of a
clause preserves the satisfiability status of the formula. The valid addition of
the (trivially unsatisfiable) empty clause, usually in the final proof step, shows
that the formula is unsatisfiable. In addition, the validity of each step should
be efficiently checkable. The main difference between existing proof formats is
whether so-called hints are included. A hint is information that a checker can
use to validate the correctness of a clause-addition step more efficiently. Another
difference is whether or not the formula is included in a proof.

The generation of unsatisfiability proofs in practical SAT solving dates back
to 2003, when Zhang and Malik integrated logging of resolution steps with hints in
the SAT solver zChaff [ZM03], while Goldberg and Novikov enhanced the solver
Berkmin [GN03] with logging of proofs without hints. For clausal proofs based on
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the resolution proof system, the hints refer to the antecedents of the resolution
rule. Without the antecedents, a checker needs to search for clauses that can
be resolved together to justify a clause addition step. Although the antecedents
can be determined in polynomial time, this can be expensive in practice. On the
other hand, including hints in proofs can make them much larger and render the
proof production more complicated and expensive.

In recent years, clausal proofs have also been used to validate results of strong
proof systems that go beyond resolution. An example of such a proof system is
extended resolution [Tse83], which allows the addition of definitions to a formula.
Such definitions consist of multiple clauses. In a clausal proof, these clauses
are listed in an arbitrary order and validity is checked per clause. Some strong
proofs systems allow the addition of clauses for which checking the validity is NP-
complete [HKB19] if no hint—usually called witness in that context—is provided.
As a consequence, witnesses are mandatory whereas hints are not.

Whether or not to include hints in proofs typically depends on the usage of
the proofs. For various applications that require resolution proofs, such as inter-
polation [McM03] or MUS extraction [NRS13], it is common to produce proofs
with hints. Proofs without hints are more popular in the context of validating
SAT solving results. For example, to check the results of the SAT Competi-
tions or the proofs of mathematical theorems, such as the Erdős Discrepancy
Theorem [KL14], the Pythagorean Triples Problem [HKM16], and Keller’s Con-
jecture [BHMN20]. There are exceptions: proofs without hints have also been
studied for interpolation [GV14] and MUS extraction [BHMS14].

Support for proof logging started to become widespread in state-of-the-art
solvers such as Lingeling [Bie13], Glucose [AS13], and CryptoMiniSAT [Soo13],
in 2013, when the SAT Competition made unsatisfiability proofs mandatory
for solvers participating in the unsatisfiability tracks. Practically all sequential
solvers that participated in recent SAT Competitions, including the strongest
solvers around (such as the three solvers mentioned above) emit proofs without
hints, and only very few solvers support emitting proofs with hints.

The lack of support for proofs with hints is due to the overhead (both in CPU
and memory) and the difficulty to represent some techniques used in contempo-
rary SAT solvers in terms of resolution. One such technique is conflict clause
minimization [SB09], which requires additional bookkeeping to produce a resolu-
tion proof [Van09]. Computing the resolution steps increases the runtime on both
satisfiable and unsatisfiable formulas. In contrast, emitting a proof without hints
incurs only a negligible overhead and requires just modest modifications for most
solvers.1 Proof validation is only required if the solver claims unsatisfiability.

Support for proof logging has become mainstream in recent years and it is
now common practice to produce and validate a proof when using SAT technol-
ogy to solve hard problems, such as the mathematical problems we mentioned
earlier. The development of formally-verified proof checkers further increases the
confidence in the correctness of results. The high level of trust in the results is
important as SAT solvers are increasingly often used to check the correctness of
hardware and software, and such claims should not be based on bugs.

1A patch to add logging of proofs without hints to MiniSAT and Glucose is available at
https://github.com/marijnheule/drup-patch.
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15.2. Proof Systems

A proof of unsatisfiability is a sequence of clauses that are redundant with respect
to a given formula. The most general notion of redundancy is satisfiability preser-
vation, which requires that the addition of a clause to a formula does not affect
satisfiability. Under this notion of redundancy, every clause is trivially redundant
with respect to every unsatisfiable formula. However, unless P = NP, there exists
no polynomial-time algorithm that can check the validity of clause-addition steps
under this general notion of redundancy. Because of this, several proof systems
have been invented that rely on simpler syntactic criteria that guarantee redun-
dancy while still being efficiently checkable. In this section, we discuss several
such proof systems that allow the addition of clauses that are learned by practical
SAT solvers or generated by typical preprocessing and inprocessing techniques.

15.2.1. Preliminaries and Notation

We consider propositional formulas in conjunctive normal form (CNF), which
are defined as follows. A literal is either a variable x (a positive literal) or the
negation x of a variable x (a negative literal). The complement l of a literal l
is defined as l = x if l = x and l = x if l = x. For a literal l, we denote the
variable of l by var(l). A clause is a finite disjunction of the form (l1 ∨ · · · ∨ lk),
where l1, . . . , lk are literals. If not stated otherwise, we assume that clauses do
not contain complementary literals, i.e., a literal and its complement. A formula
is a finite conjunction C1 ∧ · · · ∧ Cn, where C1, . . . , Cn are clauses. Clauses can
be viewed as sets of literals and formulas as sets of clauses.

An assignment is a function from a set of variables to the truth values 1 (true)
and 0 (false). An assignment is total with respect to a formula if it assigns a truth
value to all variables occurring in the formula, otherwise it is partial. We often
denote assignments by the sequences of literals they satisfy. For instance, x y
denotes the assignment that makes x true and y false. We denote the domain
of an assignment α by var(α). A literal l is satisfied by an assignment α if l
is positive and α(var(l)) = 1 or if it is negative and α(var(l)) = 0. A literal is
falsified by an assignment if its complement is satisfied by the assignment. A
clause is satisfied by an assignment α if it contains a literal that is satisfied by α.
Finally, a formula is satisfied by an assignment α if all its clauses are satisfied
by α. A formula is satisfiable if there exists an assignment that satisfies it, and
unsatisfiable otherwise.

We denote the empty clause by ⊥ and the satisfied clause by ⊤. Given an
assignment α and a clause C, we define C |α = ⊤ if α satisfies C, otherwise C |α
denotes the result of removing from C all the literals falsified by α. Moreover,
for a formula F , we define F |α = {C |α | C ∈ F and C |α ̸= ⊤}. We say that a
clause C blocks an assignment α if C = {x | α(x) = 0} ∪ {x | α(x) = 1}.

A unit clause is a clause that contains only one literal. The result of applying
the unit-clause rule to a formula F is the formula F |α with α being an assignment
that satisfies a unit clause in F . The iterated application of the unit-clause rule
to a formula, until no unit clauses are left, is called unit propagation. If unit
propagation on a formula F yields the empty clause ⊥, we say that it derived a
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conflict on F . For example, unit propagation derives a conflict on F = (x ∨ y) ∧
(y) ∧ (x) since F |x = (y) ∧ (y) and F |xy = ⊥.

Two formulas are logically equivalent if they are satisfied by the same total
assignments. Two formulas F and F ′ are equisatisfiable if both F and F ′ are
satisfiable or if both F and F ′ are unsatisfiable. By F ⊨ F ′, we denote that
F implies F ′, i.e., every assignment that satisfies F and assigns all variables in
var(F ′) also satisfies F ′. Furthermore, by F ⊢1 F ′ we denote that for every clause
(l1 ∨ · · · ∨ lk) ∈ F ′, unit propagation derives a conflict on F ∧ (l1) ∧ · · · ∧ (lk). If
F ⊢1 F ′, we say that F implies F ′ via unit propagation. As an example, (x)∧(y) ⊢1
(x∨ z)∧ (y), since unit propagation derives a conflict on both (x)∧ (y)∧ (x)∧ (z)
and (x) ∧ (y) ∧ (y).

Throughout this chapter we will use the following formula E as an example
to explain various concepts:

E := (b ∨ c) ∧ (a ∨ c) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (b ∨ c)

15.2.2. Resolution

The resolution rule [Rob65] states that, given two clauses C1 = (x∨a1 ∨ . . .∨an)
and C2 = (x∨ b1 ∨ . . .∨ bm) with a complementary pair of literals (in this case x
and x), the clause C = (a1 ∨ . . .∨ an ∨ b1 ∨ . . .∨ bm) can be inferred by resolving
on variable x. We say C is the resolvent of C1 and C2 and write C = C1 ⋄ C2.
C1 and C2 are called the antecedents of C. C is logically implied by any formula
containing C1 and C2. The resolution proof system (RES) infers new clauses using
the resolution rule. Chapter 7 covers the resolution proof system in more detail.

A resolution chain is a sequence of resolution operations such that the re-
sult of each operation is an antecedent of the next operation. Resolution chains
are computed from left to right. Notice that the resolution operation is not as-
sociative. For example, we have

(
(a ∨ c) ⋄ (a ∨ b)

)
⋄ (a ∨ b) = (a ∨ c), while

(a ∨ c) ⋄
(
(a ∨ b) ⋄ (a ∨ b)

)
= (c).

Let C := (l1 ∨ l2 ∨ · · · ∨ lk) be a clause. We denote by C the conjunction
(l1)∧ (l2)∧ · · · ∧ (lk) of unit clauses. C is called a reverse unit propagation (RUP)
clause with respect to F , if F implies C via unit propagation [Van08]. Remember
that F implies C via unit propagation, denoted by F ⊢1 C, if unit propagation
derives a conflict on F ∧C. The prototypical RUP clauses are the learned clauses
in conflict-driven-clause-learning (CDCL) solvers, which are the most common
solvers (see Chapter 4 and Sect. 15.3). The conventional procedure for showing
that these learned clauses are implied by the formula applies unit propagations
in reverse of the order in which they were derived by the CDCL solver, which
explains the name reverse unit propagation.

Clearly, if C is a RUP clause with respect to a formula F , then F implies C.
This is an easy consequence of the fact that F implies C via unit propagation.
In fact, it can be shown that one can construct a resolution chain for C using
at most |var(F )| resolutions. For example, E ∧ (c) ⊢1 (b) ⊢1 (a) ⊢1 ⊥ uses the
clauses (b ∨ c), (a ∨ c), and (a ∨ b). We can convert this into a resolution chain
(c) := (a ∨ b) ⋄ (a ∨ c) ⋄ (b ∨ c).
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Figure 15.1. A resolution derivation (left) and a resolution graph (right) for the example CNF
formula E.

The notion of RUP clauses gives rise to the RUP proof system, which consists
of a single rule that allows the addition of RUP clauses. More specifically, a RUP
proof of a clause Cm from a formula F is a sequence C1, . . . , Cm of clauses such
that F ∧ C1 ∧ · · · ∧ Ci−1 ⊢1 Ci for each i ∈ 1, . . . ,m.

15.2.3. Extended resolution and its Generalizations

Extended resolution is a simple but powerful generalization of the ordinary resolu-
tion proof system, obtained by adding the so-called extension rule [Tse83]. Given
a CNF formula F , the extension rule allows one to iteratively add definitions of
the form x ↔ a∧ b by adding the definition clauses (x∨a)∧ (x∨ b)∧ (x∨a∨ b) to
F , where x is a fresh variable (i.e., a variable that does not occur in the formula or
in the previous part of the proof), and a and b are existing literals in the current
formula or proof. The proof system of extended resolution (ER) [Tse83] consists
of two rules: the resolution rule and the extension rule.

It can be easily seen that the extension rule is sound in the sense that it
preserves satisfiability: Every satisfying assignment of a formula before addition
of the definition clauses can be extended to a satisfying assignment of the formula
after the addition of the definition clauses by setting the truth value of the fresh
variable x to the truth value of a ∧ b.

Generalizations of extended resolution, which we discuss later, have a similar
property: A satisfying assignment of the formula before addition of a redundant
clause can be transformed into a satisfying assignment of the formula after addi-
tion of the clause. However, in these more general proof systems it is often not
enough to simply extend the existing assignment—sometimes, the truth values
of some literals need to be made true. This set of literals is often required as
a witness (as mentioned earlier) to allow the validation of proofs in polynomial
time.

The extended resolution proof system can polynomially simulate extended
Frege systems [CR79], which is considered to be one of the most powerful proof
systems. Extended resolution proofs can be exponentially smaller compared to
resolution proofs. For example, Cook constructed short (polynomial-length) ER
proofs for the pigeon hole formulas [Coo76], while Haken proved that resolution
proofs of the pigeonhole principle must at least be exponential in size of the
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formula [Hak85]. However, searching for ER proofs is challenging as it is difficult
to come up with effective applications of the extension rule.

This difficulty of finding useful applications of the extension rule is also a
reason why several generalizations of extended resolution have been proposed,
in part to make it easier to find short proofs without the need to introduce
new variables. The first of these generalizations is the blocked clause (BC) proof
system [Kul99]. The concept of blocked clauses can be generalized to conditional
autarky clauses [HKSB17], which give rise to two other proof systems.

15.2.3.1. Blocked Clauses

Given a CNF formula F , a clause C, and a literal l ∈ C, the literal l blocks C
with respect to F if (i) for each clause D ∈ F with l ∈ D, C ⋄lD is a tautology, or
(ii) l ∈ C, i.e., C is itself a tautology. Given a CNF formula F , a clause C is blocked
with respect to F if there is a literal that blocks C with respect to F . Addition
and removal of blocked clauses preserves satisfiability of formulas [Kul99].

Example 15.1. Recall the example formula E. Clause (b∨c) is blocked on c with
respect to E, because applying the resolution rule on the only clause containing
c results in a tautology, i.e., (b ∨ c) ⋄ (b ∨ c) = (b ∨ b). Since we know that E is
unsatisfiable, E \ {(b ∨ c)} must be unsatisfiable.

To see that blocked clause addition is a generalization of extended resolution,
consider a formula without variable x, but that contains variables a and b. The
three definition clauses from the extension rule, i.e, (x∨a), (x∨ b), and (x∨a∨ b)
are all blocked on x or x, regardless of the order in which they are added. This is
an easy consequence of the fact that x is fresh and that the only resolvents upon
x or x are obtained by resolving the definition clauses with each other. Hence,
blocked clause addition can add these three clauses while preserving satisfiability.

In contrast to extended resolution, blocked clause addition can extend the
formula with clauses that are not logically implied by the formula and that do
not contain a fresh variable. For example, consider the formula F := (a∨ b). The
clause (a ∨ b) is blocked on a (and b) with respect to F and can thus be added
using blocked clause addition.

15.2.3.2. Conditional Autarkies

An autarky is a partial assignment that satisfies all clauses it touches, i.e., all
clauses for which the assignment assigns a truth value to at least one literal.
Simple examples of autarkies are pure literals and satisfying assignments of a
whole formula. Chapter 14 discusses autarkies in detail. A conditional au-
tarky [HKSB17] is a partial assignment that consists of a so-called conditional
part and an autarky part, where the autarky part is an autarky for the formula
restricted under the conditional part.

Example 15.2. Consider the formula F = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z). The
assignment ω = y z is a conditional autarky with conditional part ωcon = y: By
applying ωcon to F , we obtain the formula F |y = (x) ∧ (x ∨ z). The only clause
of F |y that is touched by ω is the clause (x ∨ z), which is satisfied by ω. The
literal z is a conditional pure literal with respect to ωcon.
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Conditional autarkies give rise to redundant clauses [KHB19]: If the assign-
ment c1 . . . cm a1 . . . an is a conditional autarky (with conditional part c1 . . . cm)
for a formula F , then F and F ∪ {(c1 ∨ · · · ∨ cm ∨ ai) | 1 ≤ i ≤ n} are equisatis-
fiable. We refer to the redundant clauses that can be added using this reasoning
as conditional autarky clauses. It turns out that blocked clauses are conditional
autarky clauses [HKSB17] with the blocking literal being the autarky part, while
the other literals form the conditional part of the conditional autarky.

By allowing the autarky part to consist of multiple literals, the notion of
blocked clauses can be generalized to set-blocked clauses [KSTB16] and globally-
blocked clauses [KHB19]. Set-blocked clauses are conditional autarky clauses for
which all literals in the autarky part are included in the clause. Globally-blocked
clauses are conditional autarky clauses for which at least one literal in the autarky
part is present in the clause. An example of these clauses is described below.

Example 15.3. Consider again the formula F = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).
The clause (x ∨ y ∨ z) is a set-blocked clause with respect to F with witness
ω = x y z. The clause (x) is a globally-blocked clause with respect to F with
witness ω = x y z. Notice that ω is even an autarky for F .

Deciding if a clause is set-blocked or globally-blocked with respect to a formula
is an NP-complete problem [KSTB16]. To efficiently validate the set-blockedness
or globally-blockedness property, a witnessing assignment (or witness in short) is
required. The witness is the autarky part of corresponding conditional autarky.

The set-blocked clause (SBC) proof system combines the resolution rule with
the addition of set-blocked clauses, while the globally-blocked clause (GBC) proof
system combines the resolution rule with the addition of globally-blocked clauses.

15.2.4. Strong Proof Systems

In the last decade, several strong proof systems have been proposed that combine
the strengths of RUP (easy to emit and compact) with the generalizations of
ER (expressive). These proof systems allow for short proofs for hard problems
and can compactly express all techniques used in top-tier SAT solvers. The first
proof system in this direction is RAT [JHB12]. Two recent generalizations are
PR [HKB19] and SR [BT19].

15.2.4.1. Resolution Asymmetric Tautologies

resolution asymmetric tautologies (or RAT clauses) [JHB12] are a generalization
of both RUP clauses and blocked clauses. Remember that a blocked clause is a
clause that contains a literal such that all resolvents upon this literal are tautolo-
gies. If we do not require the resolvents to be tautologies, but instead allow them
to be RUP clauses (remember that every tautology is a RUP clause), we obtain
the notion of a RAT clause: A clause C is a RAT on a literal l (called the witness
or pivot literal) with respect to a formula F if for all D ∈ F with l ∈ D, it holds
that F ⊢1 C ⋄D.

It can be shown that the addition and removal of RAT clauses does not affect
the satisfiability (or unsatisfiability) of a formula [JHB12]. More specifically, given
a formula F and a clause C that is a RAT on l ∈ C with respect to F , let α be an
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assignment that satisfies F and falsifies C. The assignment ω, which is a copy of
α with the exception that ω(l) = 1, satisfies F ∧ C. While this is not supposed
to be obvious, the proof of this observation is quite simple. The observation can
be used to reconstruct a satisfying assignment for the original formula in case it
is satisfiable. Details about solution reconstruction are described in Section 9.5
in Chapter 9.

We have already discussed why RAT clauses are a generalization of blocked
clauses in the sense that every blocked clause is also a RAT clause. It can also be
shown that RAT clauses generalize RUP clauses, based on the observation that
whenever a clause C is a RUP clause with respect to a formula F , then C is a
RAT on each of its literals. Note that this assumes that the considered clause is
non-empty. As the empty clause does not contain any literals that could ensure
the RAT property, it is often still considered a RAT clause “by definition”.

The RAT proof system consists of a single clause addition rule: the addition
of RAT clauses. This proof system extends the RUP proof system by allowing
to compactly express techniques that go beyond resolution, including bounded
variable addition [MHB12] and symmetry breaking [HHJW15].

SAT-EQ

PR [HKB19]

GBC [KHB19]

SPR [HKB19] RAT [JHB12]

BC [Kul99]

ER [Tse83] RES [Rob65]

SBC [KSTB16]

RUP [GN03]

LOG-EQ

satisfiability
equivalence

logical
equivalence

Figure 15.2. Relations between proofs systems for propositional logic. An arrow pointing
from proof system A to proof system B means that A is a generalization of B. The black boxes
on the top are not actual proof systems, but refer to abstract systems that would allow any
clause-addition step that preserves satisfiability (SAT-EQ) or logical equivalence (LOG-EQ).

15.2.4.2. Propagation Redundancy

Another way to express the RAT property is as follows: Given a clause C and
a formula F , let α denote the smallest assignment that falsifies C. Now, C is a
RAT clause on literal l with respect to F if and only if F |α ⊢1 F |l [HKB19]. This
notion can be generalized by using a set of literals instead of the single literal l.

A clause C has the set-propagation redundancy (SPR) property with respect
to a formula F if and only if F |α ⊢1 F |L, with α denoting the smallest assignment
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that falsifies C, and L denoting a set of literals that all occur in C [HKB19]. The
set L is the witness of the SPR property of C. SPR clauses generalize both set-
blocked clauses and RUP clauses in a similar way that RAT clauses generalize
blocked clauses and RUP clauses. The SPR proof system uses a single rule: the
addition of SPR clauses. The SPR proof system is surprisingly powerful even
when it is restricted such that no new variables are allowed to be introduced,
known as SPR−. For example, there exist short SPR− proofs for many formulas
that are hard for resolution, including the pigeonhole principle, parity principle,
Tseitin tautologies, and clique-coloring tautologies [HKB19, BT19].

Finally, the propagation redundancy (PR) property generalizes the redundant
clauses discussed in this section. A clause C has the PR property with respect
to a formula F if and only if F |α ⊢1 F |ω, with α denoting the smallest assign-
ment that falsifies C, and ω being an arbitrary witness assignment that satisfies
C [HKB19]. The PR proof system allows the addition of PR clauses. Figure 15.2
shows a hierarchy of proof systems with PR being the most general one. There
exists a polynomial simulation between all proof systems that go beyond logical
equivalence, from ER to PR [KRPH18, HB18]. That does not mean that they are
similar in practice. A polynomial blowup from PR to ER could mean an enor-
mous increase in validation costs. Also, it is easier to search for proofs in the
more general systems as they admit short proofs without new variables for some
hard problems [HKB19].

15.2.5. Clause Deletion

All the proof systems considered so far in this section add clauses to a given
formula. SAT solvers, however, combine both the addition and the deletion of
clauses. Most of the discussed proof systems thus have corresponding systems
that extend them by allowing the deletion of clauses. The most popular one of
these proof systems is probably DRAT, which allows the addition of RAT clauses as
well as the deletion of arbitrary clauses. It is important to support the deletion
of clauses in proofs without hints for two reasons.

First, it is practically impossible to efficiently validate a proof without hints
if no clauses are removed: Due to the lack of hints, the checker needs to find
the antecedents, which becomes increasingly expensive as clauses are added to
the formula. Even with clause deletion it is generally more expensive to vali-
date the proof compared to its construction. This topic is further discussed in
Section 15.6.2.

Second, clause deletion allows for a compact simulation of advanced tech-
niques in solvers. For example, the reasonably compact transformation of a PR
proof into a DRAT proof [HB18] is facilitated by the clause deletion step in DRAT.
Several clause addition steps would be invalid if some clauses were not removed
first. It is possible to simulate the deletion of clauses with extended resolution
and thus its generalizations by making a copy of all the clauses apart from the
deleted ones using copies (renaming) of the variables [KRPH18]. However, the
number of copied clauses is linear in the size of the formula and thus typically
much more expensive compared to removal.

In the context of proofs of unsatisfiability, one only needs to check whether
clause addition steps are valid. Clause deletion steps can be performed without
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a check, because the validity of the unsatisfiability result only depends on clause
addition. However, when checking also the validity of clause deletion steps, i.e.,
whether clause deletion preserves unsatisfiability, one can construct proofs of
satisfiability by showing the equivalence of the input formula with the empty
formula. This is not really useful in propositional logic as a satisfying assignment
can be used as a certificate for satisfiability. Yet, this approach can be useful for
richer logics, such as Quantified Boolean Formulas [HSB14], see Chapter 31.

15.3. Proof Search

The leading paradigm to solve satisfiability problems is the conflict-driven clause
learning (CDCL) approach, described in Chapter 4. In short, CDCL adds lemmas,
typically referred to as conflict clauses, to a given input formula until either it
finds a satisfying assignment or it is able to learn (i.e., deduce) the empty clause
(prove unsatisfiability).

CDCL solvers typically use a range of preprocessing techniques, see Chap-
ter 9 for details. Examples of such techniques are bounded variable elimination
(also known as Davis-Putnam resolution) [DP60, EB05], blocked clause elimina-
tion [JBH12], subsumption, and hyper binary resolution [BW03]. Preprocess-
ing techniques are frequently crucial to solve large formulas efficiently. These
techniques can also be used during the solving phase, which is known as inpro-
cessing [JHB12]. Most preprocessing techniques can be expressed using a few
resolutions, such as bounded variable elimination and hyper binary resolution.
Other techniques can be ignored in the context of unsatisfiability proofs, because
they weaken the formula, such as blocked clause elimination and subsumption.

Some CDCL solvers, however, use preprocessing techniques that are hard to
represent using resolution proofs. Examples of such techniques are bounded vari-
able addition [MHB12], blocked clause addition [JHB12], Gaussian elimination,
cardinality resolution [CCT87], and symmetry breaking [ASM06]. These tech-
niques cannot be polynomially simulated using the resolution rule: For example,
certain formulas based on expander graphs are hard for resolution [Urq87], mean-
ing that they admit only resolution proofs of exponential size, while Gaussian
elimination can solve them efficiently. Similarly, formulas arising from the pigeon
hole principle are hard for resolution [Hak85], but they can be solved efficiently
using either cardinality resolution or symmetry breaking. Consequently, solvers
that can efficiently solve such problems cannot produce resolution proofs that are
linear in size of the solving time as all resolution proofs are at least exponential
in size.

Techniques such as Gaussian elimination, cardinality resolution, and symme-
try breaking, can be simulated polynomially using extended resolution and its
generalizations. However, it is not known how to simulate these techniques effi-
ciently or elegantly using extended resolution. One method to translate Gaussian
elimination into ER proofs is to convert the Gaussian elimination steps into BDDs
and afterwards translate the BDDs to a extended resolution proof [SB06].

An alternative approach to solve satisfiability problems is the look-ahead
approach, described in Chapter 5. Look-ahead solvers solve a problem via a
binary search-tree. In each node of the search-tree, the best splitting variable is
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selected using so-called look-ahead techniques. Although it is possible to extract
unsatisfiability proofs from look-ahead solvers, this hardly happens in practice.
However, look-ahead SAT solvers can also be used to partition a problem into
many subproblems, which is known as the cube-and-conquer approach [HKWB11].
The subproblems are solved using CDCL. The proofs produced by the CDCL
solvers can be merged into a proof of the original problem. This method was used
to produce proofs of the Erdős Discrepancy Theorem [KL14], the Pythagorean
Triples Problem [HKM16], and Keller’s Conjecture [BHMN20].

Searching for proofs in the stronger proof systems, such as PR, is more com-
plicated and costly as determining whether a clause is a PR clause with respect to
a formula is an NP-complete problem. One approach to computing PR proofs is
satisfaction-driven clause learning (SDCL) [HKSB17], which generalizes CDCL
by performing a more aggressive pruning of the search tree via the addition of PR
clauses.

15.4. Proof Formats

Proof formats define how the proofs of a given proof system should be represented
syntactically so that they can be validated by automated tools. Formats for
unsatisfiability proofs come in two flavors: with or without hints. A handful of
formats have been designed for resolution proofs [ZM03, ES03, Bie08]. All these
proof formats include hints in the form of details that describe how to validate
each proof step.

The hints in resolution proofs refer to the antecedents of an application of the
resolution rule. These formats differ in several details, such as whether the input
formula is stored in the proof, whether resolution chains are allowed, or whether
hints in the proofs must be ordered. We will first discuss the two most widely
used formats with hints: TraceCheck and LRAT. The stc [Bie08] tool can be
used to validate TraceCheck files. Various checkers exist for LRAT files, including
LRAT-check and the formally verified tool ACL2-check [HHKW17]. The LRAT

format also supports stronger proof systems, but we will first focus on how to use
it for resolution proofs.

For proofs without hints, there is essentially only one format, which lists
the redundant clauses using the same syntax as DIMACS. Such proofs can be
extended with clause deletion information [HHW13a], and with a generalization
of extended resolution [HHW13b]. The format that supports both extensions
is DRAT [WHH14], which corresponds to the DRAT proof system; it is backward
compatible with the RUP proof format, which corresponds to the RUP proof
system. The DRAT-trim [WHH14] tool can efficiently validate proofs without
hints in the various proof systems.

15.4.1. Formats with Hints

There exist two popular proof formats that include hints: TraceCheck and LRAT.
For resolution proofs, the syntax of both formats is the same. The TraceCheck

format is restricted to resolution, while the LRAT format also allows proofs in
stronger proof systems. An important difference between TraceCheck and LRAT
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is that only the former includes the input clauses as part of the proof. In contrast,
checkers for LRAT proofs also require the formula as input. The other difference
between these formats is that TraceCheck allows an arbitrary order of the lines
and the hints, while for LRAT the order of lines and hints is strict. These difference
can be explained by historical considerations: TraceCheck was proposed in 2006,
when it was not possible to efficiently validate proofs without hints and when it
was also difficult to compute the right order of hints for some techniques. The
LRAT format was proposed more than a decade later and was designed to make
the format strict to make it easy to develop formally-verified checkers.

The proof checker tracecheck can be used to check whether a trace repre-
sents a piecewise regular input resolution proof, which is also known as a trivial
proof [BKS04]. A proof is regular if variables are resolved at most once along
any path in the directed acyclic graph (DAG) formed by the proof. It is an in-
put resolution proof if each resolution step resolves at most one non-input clause.
Therefore it is also linear and has a degenerated graph structure of a binary tree,
where each internal node has at least one leaf as child. A trace is just a compact
representation of general resolution proofs. The TraceCheck format is more com-
pact than other resolution formats, because it uses resolution chains, and because
the resulting resolvent does not need to be stated explicitly. The parts of the
proof which are regular input resolution proofs are called chains in the following
discussion. The full trace consists of original clauses and the chains.

Note that input clauses in chains can still be arbitrary derived clauses with
respect to the overall proof and do not have to be original clauses. We distinguish
between original clauses of the CNF, which are usually just called input clauses,
and input clauses to the chains. Since a chain can be seen as new proof rule, we
call its input clauses antecedents and the final resolvent just resolvent.

The motivation for using this format is that learned clauses in a CDCL
solver can be derived by regular input resolution [BKS04]. A unique feature
of TraceCheck is that the chains do not have to be sorted, neither between chains
(globally) nor between their input clauses (locally). If possible the checker will
sort them automatically. This allows a simplified implementation of the trace
generation.

A chains is simply represented by the list of its antecedents and the resolvent.
Intermediate resolvents can be omitted, which saves quite some space if the proof
generator can easily extract chains.

Chains can be used in the context of searched-based CDCL to represent the
derivations of learned clauses. Computing the chains can become challenging
when more advanced learned clause optimizations are used. Shrinking or min-
imization of learned clauses [SB09] are examples of these optimizations. The
difficult part is to order the antecedents correctly. The solver can leave this task
to the trace checker instead of changing the minimization algorithm [Van09].

Moreover, both TraceCheck and LRAT facilitate a simple encoding of hyper
resolution proofs. A hyper resolution step can be simulated by a chain. General
resolution steps can also be encoded in this format easily by a trivial chain con-
sisting of the two antecedents of the general resolution step. Finally, extended
resolution proofs can directly be encoded, since variables introduced in extended
resolution can be treated in the same way as the original variables. Checkers
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for TraceCheck don’t validate the clauses introduced by the extension rule, while
LRAT checkers validate the definition clauses introduced via the extension rule by
treating them as blocked-clause-addition steps.

The syntax of a trace is as follows:

⟨trace⟩ = {⟨clause⟩}
⟨clause⟩ = ⟨pos⟩⟨literals⟩⟨antecedents⟩
⟨literals⟩ = “∗” | {⟨lit⟩}“0”
⟨hints⟩ = {⟨pos⟩}“0”

⟨lit⟩ = ⟨pos⟩ | ⟨neg⟩
⟨pos⟩ = “1” | “2” | · · · | ⟨maxidx⟩
⟨neg⟩ = “−”⟨pos⟩

where ‘|’ means choice, ‘{. . . }’ is equivalent to the Kleene star operation (that is,
a finite number of repetitions including 0) and ⟨maxidx⟩ = 228 − 1 (originally).

The interpretation is as follows. Original clauses have an empty list of an-
tecedents and derived clauses have at least one antecedent. A clause definition
starts with its index and a zero terminated list of its literals, which are repre-
sented by integers. This part is similar to the DIMACS format except that each
clause is preceded by a unique positive number, the index of the clause. Another
zero terminated list of positive indices of its antecedents is added, denoting the
chain that is used to derive this clause as resolvent from the antecedents. In
TraceCheck, the order of the clauses and the order of the literals and antecedents
of a chain is arbitrary. The list of antecedents of a clause should permit a regular
input resolution proof of the clause with exactly the antecedents as input clauses.
The LRAT format enforces a strict order which will be described below.

input formula (DIMACS)

p cnf 3 6
-2 3 0
1 3 0
-1 2 0
-1 -2 0
1 -2 0
2 -3 0

proof without hints (DRUP)

-2 0
3 0
0

proof with hints (TraceCheck)

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 7 6 8 0

Figure 15.3. An input formula (left) in the classical DIMACS format which is supported by most
SAT solvers. A proof without hints for the input formula in DRUP format (middle). In both the
DIMACS and DRUP formats, each line ending with a zero represents a clause, and each non-zero
element represents a literal. Positive numbers represent positive literals, while negative numbers
represent negative literals. For example, -2 3 0 represents the clause (b∨c). A TraceCheck file
(right) is a resolution graph that includes the formula and proof with hints. Each line begins
with a clause identifier (bold), then contains the literals of the original clause or lemma, and
ends with a list of clause identifiers (bold) as hints.
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Consider, for example, the trace shown in Fig. 15.3 (right), which consists
of the six clauses from our example CNF formula E, which we introduced on
page 4. The corresponding DIMACS file is shown in Fig. 15.3 (left). This proof
in TraceCheck can easily be converted into LRAT by simply removing the first
few lines, which represent the input formula. This is possible as the order of the
clauses in the DIMACS file is the same as the order of the original clauses in the
trace (which is not required).

The first derived clause in the trace starts with index 7. This is the unary
clause which consists of the literal -2 (b). It is obtained by resolving the original
clause 4 against the original clause 5 on variable 1 (a).

A chain for the last derived clause, which is the empty clause ⊥, can be
obtained by resolving the antecedents 7, 6, and 8: first 7 is resolved with 6
to obtain the intermediate resolvent -3 (c), which in turn can be resolved with
clause 8 to obtain the empty clause ⊥.

The LRAT format enforces a strict ordering of the hints. Checking a proof step
starts with the assignment that falsifies all literals in the clause. For example,
for line 8 it starts with the assignment that makes variable 3 (c) false. The hints
are read from left to right and each hint is required to be a unit clause under the
current assignment. That assignment is extended by making the unit literal true.
The last hint is an exception: the current assignment needs to falsify it. So when
checking line 8, the first hint points to clause (b ∨ c), which is unit (b) and b is
added to the assignment. The second hint points to (a ∨ c), which again is unit
(a) and a is added to the assignment. The final hint points to (a ∨ b), which is
indeed falsified by the current assignment.

As discussed above, the order of the lines (clauses) in TraceCheck is irrelevant,
in contrast to LRAT. The checker will sort them automatically using the clause
identifiers. The same holds for the hints. So, the last two lines of the example
trace can be replaced by:

9 0 7 8 6 0
8 3 0 1 2 3 0

Note that the clauses 7 (b) and 8 (c) cannot be resolved with each other,
because they do not contain complementary literals. In this case, the checker has
to reorder the antecedents as in the original example.

The main motivation for having hints in the proof for each learned clause is
to speed up proof validation. While checking a learned clause, unit propagation
can focus on the list of specified antecedents. It can further ignore all other
clauses, particularly those that were already discarded at the point where the
solver learned the clause.

In the TraceCheck format, it might be convenient to skip the literal part for
derived clauses by specifying a * instead of the literal list. The literals are then
collected by the checker from the antecedents. Since resolution is not associative,
the checker assumes that the antecedents are correctly sorted when * is used.

8 * 1 2 3 0
9 * 7 6 8 0
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Furthermore, trivial clauses and clauses with multiple occurrences of the same
literal cannot be resolved. The list of antecedents is not allowed to contain the
same index twice. All antecedents have to be used in the proof for the resolvent.

Beside these local restrictions the proof checker generates a global linear order
on the derived clauses making sure that there are no cyclic resolution steps. The
roots of the resulting DAG are the target resolvents.

One feature in the LRAT format that is currently not supported in TraceCheck

is the deletion of clauses. Clause deletion lines in LRAT start with an identifier
(typically the same identifier as the previous line), followed by “d” and a list of
clause indices to be deleted, and they end with a “0”.

15.4.2. Formats Without Hints

Proof formats without hints are designed to make proof logging easy. Apart from
the lack of hints, they also don’t use clause indices. The absence of hints and
clause indices results in much smaller proofs, but these proofs are more expensive
to validate. To validate proofs without hints in reasonable time, it is common to
include deletion information. Adding this information is also easy.

We appeal to the notion that lemmas are used to construct a proof of a
theorem. Here, lemmas represent the learned clauses and the theorem is the
statement that the formula is unsatisfiable. From now on, we will use the term
clauses to refer to original clauses, while lemmas will refer to added clauses.

⟨proof⟩ = {⟨lemma⟩}
⟨lemma⟩ = ⟨delete⟩{⟨lit⟩}“0”
⟨delete⟩ = “” | “d”

⟨lit⟩ = ⟨pos⟩ | ⟨neg⟩
⟨pos⟩ = “1” | “2” | · · · | ⟨maxidx⟩
⟨neg⟩ = “− ”⟨pos⟩

There exist a few proof formats for proofs without hints; they have a very
similar syntax as DIMACS and can all be expressed using the above grammar.
The most basic format is DRUP, short for delete reverse unit propagation, which
combines RUP (reverse unit propagation) additions [Van08] and clause deletions.
A DRUP proof is a sequence of lemmas that are either added or deleted. Each
lemma is a list of positive and negative integers (to express positive and negative
literals, respectively) that terminates with a zero as in DIMACS. Clause deletion
steps are expressed using the prefix d. An example is shown in Figure 15.3.

Recall that a clausal proof P := {C1, . . . , Cm} is a valid RUP proof for a
formula F if Cm = ⊥ and for each Ci, it holds that

F ∧ C1 ∧ · · · ∧ Ci−1 ⊢1 Ci

This means that for each i ∈ 1, . . . ,m, unit propagation must derive a conflict
on the formula F∧C1∧· · ·∧Ci−1∧Ci. Consider again the example CNF formula E
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from page 4. A RUP proof is shown in Figure 15.3. This proof, PE := {(b), (c),⊥},
is a valid proof for E, because PE terminates with ⊥ and

E ⊢1 (b)

E ∧ (b) ⊢1 (c)

E ∧ (b) ∧ (c) ⊢1 ⊥

15.4.3. Formats with Witnesses

So far we only considered proof formats that validate techniques which can be
simulated using resolution. As mentioned earlier, however, some SAT solvers use
techniques—such as blocked clause addition or symmetry breaking—that can-
not be simulated using resolution. To validate these techniques, proof formats
need to support stronger proof systems such as extended resolution or one of its
generalizations.

In these formats, a witness is provided for each proof step in addition to the
clause and the optional hints. For most proof systems, the witness consists of
a single literal that needs to be part of the clause. To minimize overhead, the
convention is to place the witness as the first literal in the clause. For the clauses
added by the extension rule this means to put the literals referring to the new
variable first.

Resolution proofs, as the name suggests, can only be used to check techniques
that can be expressed using resolution steps. The TraceCheck format partially
supports extended resolution in the sense that one can add the clauses from
the extension rule using an empty list of antecedents. Hence these clauses are
considered to be input clauses without actually validating them.

The DRAT proof format [WHH14], which is syntactically the same as the
DRUP format, supports expressing techniques based on extended resolution and
its generalizations. The difference between the DRUP and DRAT format is in the
redundancy check that is computed in the checker for proofs in that format. A
checker for DRUP proofs validates whether each lemma is a RUP clause, while a
checker of DRAT proofs checks whether each lemma is a RAT clause [HHW13b].

Example 15.4. Consider the following CNF formula

G := (a∨b∨c) ∧ (a∨d) ∧ (a∨e) ∧ (b∨d) ∧ (b∨e) ∧ (c∨d) ∧ (c∨e) ∧ (d∨e)

On the left of Fig. 15.4, G is shown in the DIMACS format, using the conventional
mapping from the alphabet to numbers, where a is mapped to 1, a is mapped
to -1, b to 2, b to −2, and so on. In the middle of Fig. 15.4, a DRAT proof for
G is shown. The proof uses the earlier-mentioned technique of bounded variable
addition [MHB12], which cannot be expressed using resolution steps. Bounded
variable addition can replace the first six binary clauses by five new binary clauses
using a fresh variable f : (f ∨a), (f ∨b), (f ∨c), (f ∨d), and (f ∨e). These new
binary clauses are RAT clauses. Fig. 15.4 shows how to express bounded variable
addition in the DRAT format: First add the new binary clauses using the pivot
(witness) literal on the first position, followed by deleting the old ones. After the
replacement, the proof is short {(f),⊥}.
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Validating proofs based on extended resolution or one of its generalizations
requires reasoning about absence. For example, the addition of definition clauses
via the extension rule is only valid when the new variable is indeed new and does
not occur in the formula. We need to check all clauses that are reduced but not
satisfied by the witness. In most cases, the witness is a single literal, so we need
to check only the clauses in which the complement of the literal occurs.

Consider the following example of a proof that again uses bounded variable
addition. Fig. 15.4 shows the example formula G in DIMACS as well as a DRAT

proof and an LRAT proof. The clauses (f ∨ a), (f ∨ b), and (f ∨ c) are trivially
redundant with respect to G using witness f , because G does not contain any
clause with literal f . Making f true would satisfy these three clauses. However,
(f ∨ d) and (f ∨ e) are not trivially redundant with respect to G using witness f
after the addition of (f ∨ a), (f ∨ b), and (f ∨ c). For example, the redundancy of
(f ∨ d) depends on the presence of (a ∨ d), (b ∨ d), and (c ∨ d) as the RAT check
would fail without these clauses.

Let’s recall the definition of RAT clauses from Section 15.2.4.1: A clause C
is a RAT on l with respect to a formula F if for all D ∈ F with l ∈ D, it holds
that F ⊢1 C ⋄D. In the proof, (f ∨ d) is claimed to be RAT on f . Let G′ denote
the formula when checking (f ∨ d): G′ := G ∧ (f ∨ a) ∧ (f ∨ b) ∧ (f ∨ c). We can
confirm the RAT claim by applying the following three checks:

G′ ⊢1 (a ∨ d) using D = (f ∨ a)

G′ ⊢1 (b ∨ d) using D = (f ∨ b)

G′ ⊢1 (c ∨ d) using D = (f ∨ c)

The first check succeeds because (a ∨ d) ∈ G′ is reduced to the empty clause,
whereas the second and third checks succeed, because (b∨d) ∈ G′ and (c∨d) ∈ G′

are reduced to the empty clause. In the LRAT proof format this is expressed as
follows: For each clause that is reduced but not satisfied by the witness (the D
clauses), in this case (f ∨ a), (f ∨ b), and (f ∨ c), the negated clause index is
listed: -9, -10, and -11, respectively. After the negated clause index, the clause
indices of the unit clauses are listed and finally the clause that is reduced to the
empty clause. For (f ∨ a), clause (a ∨ d) is reduced to the empty clause, which
has clause index 2.

15.4.4. Binary Formats and Proof Compression

It is common practice to store proofs on disk, and we discussed various formats
for this purpose. However, in many applications where proofs have to be further
processed and are used subsequently or even iteratively, disk I/O is considered
a substantial overhead. In this subsection, we discuss light-weight options to
compress proofs [HB16]. The variable-byte encoding discussed below is supported
by most SAT solvers.

15.4.4.1. Byte Encoding

The ASCII encoding of a proof line without hints in Figure 15.3 is easy to read,
but rather verbose. For example, consider the literal -123456789, which requires
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DIMACS formula

p cnf 5 8
-1 -2 -3 0

1 4 0
1 5 0
2 4 0
2 5 0
3 4 0
3 5 0
-4 -5 0

DRAT proof

6 1 0
6 2 0
6 3 0
-6 4 0
-6 5 0

d 1 4 0
d 2 4 0
d 3 4 0
d 1 5 0
d 2 5 0
d 3 5 0

6 0
0

LRAT proof

9 6 1 0 0
10 6 2 0 0
11 6 3 0 0
12 -6 4 0 -9 2 -10 4 -11 6 0
13 -6 5 0 -9 3 -10 5 -11 7 0
14 6 0 1 9 10 11 0
14 d 2 4 6 3 5 7 0
15 0 8 12 13 14 0

Figure 15.4. Example formula G in the classical DIMACS format (left). A proof without hints
for the input formula in DRAT format (middle). The corresponding proof with hints as a LRAT file
is shown on the right. Notice that the formula is not included. Each line begins with a clause
identifier (bold), then contains the literals of the lemma, and ends with a list of hints (bold).

11 bytes to express (one for each ASCII character and one for the separating
space). This literal can also be represented by a signed integer (4 bytes). If all
literals in a proof can be expressed using signed integers, only 4 bytes are required
to encode each literal. Such an encoding also facilitates omitting a byte to express
the separation of literals. Consequently, one can easily compress an ASCII proof
with a factor of roughly 2.5 by using a binary encoding of literals.

In case the length of literals in the ASCII representation differs a lot, it
may not be efficient to allocate a fixed number of bytes to express each literal.
Alternatively, the variable-byte encoding [WMB99] can be applied, which uses the
most significant bit of each byte to denote whether a byte is the last byte required
to express a given literal. The variable-byte encoding can express the literal 1234
(10011010010 in binary notation) using only two bytes: 11010010 00001001.
(in little-endian ordering, e.g., least-significant byte first).

15.4.4.2. Sorting Literals

The order of literals in a clausal proof has no influence on the validity or the
size of a proof. However, the order of literals can influence the cost of validating
a proof, as it influences unit propagation and in turn determines which clauses
will be marked in backwards checking (the default validation algorithm used in
checkers of proofs without hints), see Section 15.6.2 for details. The order of
literals in the proof produced by the SAT solver is typically not better or worse
than any permutation for validation purposes. However, experience shows that
this is often not the case for SAT solving: the given order of literals in an encoding
results in stronger solver performance compared to any permutation.

Sorting literals before compression has advantages in both light-weight and
heavy compression. In light-weight compression, one can use delta encoding: store
the difference between two successive literals. Clauses in a proof are typically
long (dozens of literals) [HHW13a], resulting in a small difference between two
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successive sorted literals. Delta encoding is particularly useful in combination
with variable-byte encoding.

In heavy compression, off-the-shelf zip tools could exploit the sorted order of
literals. Many clauses in proofs have multiple literals in common. SAT solvers
tend to emit literals in a random order. This makes it hard for compression
tools to detect overlapping literals between clauses. Sorting literals potentially
increases the observability of overlap which in turn could increase the quality of
the compression algorithm.

Table 15.1. Eight encodings of an example DRAT proof line. The first two encodings are shown
as ASCII text using decimal numbers, while the last six are shown as hexadecimals using the
MiniSAT encoding of literals. The prefix s denotes sorted, while the prefix ds denotes delta
encoding after sorted. 4byte denotes that 4 bytes are used to represent each literal, while vbyte
denotes that variable-byte encoding is used.

encoding example (prefix pivot lit1...litk−1 end) #bytes
ascii d 6278 -3425 -42311 9173 22754 0\n 33

sascii d 6278 -3425 9173 22754 -42311 0\n 33
4byte 64 0c 31 00 00 c3 1a 00 00 8f 4a 01 00 aa 47 00 00 c4 b1 00 00 00 00 00 00 25

s4byte 64 0c 31 00 00 c3 1a 00 00 aa 47 00 00 c4 b1 00 00 8f 4a 01 00 00 00 00 00 25
ds4byte 64 0c 31 00 00 c3 1a 00 00 e8 2c 00 00 1a 6a 00 00 cb 98 00 00 00 00 00 00 25

vbyte 64 8c 62 c3 35 8f 95 05 aa 8f 01 c4 e3 02 00 15
svbyte 64 8c 62 c3 35 aa 8f 01 c4 e3 02 8f 95 05 00 15

dsvbyte 64 8c 62 c3 35 e8 59 9a d4 01 cb b1 02 00 14

15.4.4.3. Literal Encoding

In most SAT solvers, literals are mapped to natural numbers. The default map-
ping function map(l), introduced in MiniSAT [ES03] and also used in the AIGER
format [Bie07], converts signed DIMACS literals into unsigned integer numbers as
follows:

map(l) =

{
2l + 1 if l > 0
−2l otherwise

Table 15.1 shows a proof line in the DRAT format and in several binary encodings.
For all non-ASCII encodings, we will use map(l) to represent literals. Notice that
the first literal in the example is not sorted, because the proof checker needs to
know the witness / pivot literal (which is the first literal in each clause). The
remaining literals are sorted based on their map(l) value.

15.5. Proof Production in Practical SAT Solving

Proof logging of unsatisfiability results from practical SAT solvers started in
2003, with both resolution proofs with hints [ZM03] and resolution proofs without
hints [GN03]. Proofs with hints are typically hard to produce and tend to require
lots of overhead in memory, which in turn slows down a SAT solver. Emitting
proofs without hints is easy and requires hardly any overhead in memory. We will
first describe how to produce proofs without hints, followed by how to produce
proofs without hints, and finally describe parallel proof production.
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15.5.1. Proofs Without Hints

For all proof formats without hints, SAT solvers simply emit proofs directly to
disk. Consequently, there is no memory overhead. In contrast to proofs with
hints, it is easy to emit proofs. For the most simple format of proofs without
hints, RUP, one only needs to extend the proof with all clauses learned by the
CDCL solver. This can be implemented by a handful lines of code. Below we
discuss how to produce proofs without hints that support deletion information
and techniques based on generalizations of extended resolution.

Proofs without hints need deletion information for efficient validation, see
Section 15.6.2 for details. Adding deletion information to a proof without hints
is straightforward. As soon as a clause is removed from the solver, the proof is
extended by the removed clause using a prefix expressing that it is a deletion
step. Recall that clauses in proofs without hints have no clause index. Hence
all literals in the deleted clause are listed. The checker needs to find the deleted
clause in the clause database. This can be done efficiently using a hash function.
If a solver removes a literal l from a clause C, then C \ {l} is added as a lemma
followed by deleting C.

Most techniques based on extended resolution or its generalizations can easily
be expressed in proofs without hints. Similar to techniques based on resolution,
one simply adds the lemmas to the proof for most techniques. The RAT and DRAT

formats only require that the witness / pivot literal is the first literal of the lemma
in the proof. However, as discussed in Section 15.3, there exist some techniques for
which it is not known whether they can be expressed elegantly in the DRAT format.
As mentioned already, especially Gaussian elimination, cardinality resolution, and
symmetry breaking are hard to express in the current formats. Finally, for proof
systems that require witnesses, the witness is printed directly after the clause and
before the zero that marks the end of the line.

15.5.2. Proofs With Hints

Early work on proofs with hints [ZM03] mostly showed that proofs can be gener-
ated in principle, but ignored dealing with practical aspects such as keeping proofs
compact and supporting all techniques. The first proof format that took these
aspects into account was TraceCheck, which we discussed already and which was
first supported by PicoSAT [Bie08]. The addition of proof logging was motivated
by making testing and debugging more efficient. In combination with file-based
delta-debugging [BLB10], proof trace generation allows to reduce discrepancies
much more than without proof tracing.

The original idea was to use resolution traces. However, for some time it
was unclear how to extract resolution proofs during a-posteriori clause minimiza-
tion [SB09]. This was the reason for using a trace format instead: clause min-
imization is obviously compatible with reverse unit propatation, since required
clause antecedents can easily be obtained. However, determining the right order
of the hints for a resolution proof is hard to generate directly and probably needs
a RUP style algorithm anyhow. It was shown how clause minimization can be
integrated in MiniSAT using a depth-first search for the first-unique-implication-
point clause [Van09], which at the same time can produce a resolution proof for
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the minimized learned clause. Currently it is unsolved how to further extend this
approach to work with on-the-fly subsumption [HS09] as well. The solution is
also not as easy to add to existing solvers as tracing added and deleted clauses.

As already discussed above, memory consumption of proofs stored in mem-
ory (or disk) can become a bottleneck. One way to reduce space requirements
is to delete garbage clauses that are not used anymore. This garbage collec-
tion was implemented with saturating reference counters in PicoSAT [Bie08].
It has been shown that full reference counting can result in substantial reduc-
tions [ANORC08]. In principle, it might also be possible to use a simple mark-
and-sweep garbage collector, which should be faster, since it does not need to
maintain and update reference counters.

15.5.3. Parallel Proof Production

A framework based on the cube-and-conquer paradigm has been used to deal with
hard combinatorial problems that require thousands of hours of computation to
solve [HKM16]. In short, the framework consists of five phases: encode, re-
encode, split, solve, and validate. The focus of the encode phase is to make sure
that encoding the problem into SAT is valid. The re-encode phase reformulates
the problem to reduce the computation costs of the later phases. The split phase
partitions the transformed formula into many (typically millions of) subproblems.
The subproblems are solved in the solve phase. The validation phase checks
whether the proofs emitted in the prior phases are a valid refutation for the
original formula. Figure 15.5 shows an illustration of the framework.

In recent years, three long-standing open problem in mathematics have been
solved using this framework: the Pythagorean Triples Problem (PTP) [HKM16],
Schur number five (S5) [Heu18], and Keller’s Conjecture [BHMN20]. The encod-
ing of PTP and S5 is natural and can be achieved with about a dozen lines of
code. The encoding of Keller is more involved and also included several symmetry-
breaking clauses that arise from symmetries of the problem, but these are not
symmetries in the encoding. The re-encoding phase of all three problems con-
sists of adding symmetry-breaking predicates. Additionally, about 30% of the
clauses of PTP are redundant and they have been removed using blocked clause
elimination.

All three problems used a two-layered splitting approach. For PTN and S5,
the re-encoded problem was split into a few million subproblems using the look-
ahead solver march cu. This can be done in less than an hour of a single CPU.
For Keller, the problem was manually split into many thousands of subproblems.
All these subproblems were split into even smaller problems using march cu. This
second layer of splitting was performed in parallel. It resulted in billions of sub-
problem for PTN and S5 and millions of subproblems for Keller. The subproblems
were solved using a CDCL solver. Most subproblems are very easy and almost
any CDCL solver could be used for this purpose.

The proofs of these problems consists of three parts: The re-encoding proof,
the implication proof, and the tautology proof. These proof part shows the satisfia-
bility equivalence of three formulas: 1) the encoded formula F , 2) the re-encoded
formula R, and 3) the negation of all of cubes that are part of the first layer
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1: encode 2: re-encode 3: split 4: solve

5: validate

cubes

encoder

original
formula

optimized
formula

re-encoding
proof

tautology
proof

cube
proofs

Figure 15.5. Illustration of the framework to solve hard combinatorial problems. The phases
are shown in the rectangle boxes, while the input and output files for these phases are shown
in oval boxes.

split T . The latter is called T as the cubes need to cover the entire search space,
which means that it needs to be a tautology. Together the proof parts show the
following relationship:

re-encoding proof︷ ︸︸ ︷
F ⊨ R︸ ︷︷ ︸

implication proof

⊨
tautology proof︷ ︸︸ ︷
T ⊨ ⊥ .

The re-encoding proof expresses the correctness of the re-encoding phase,
which consisted of symmetry breaking and the removal of redundant clauses.
The re-encoding cannot be compactly expressed using resolution, so a proof of
extended resolution or its generalizations is required. For PTP, S5, and Keller,
the re-encoding proof used DRAT.

By far the largest part of the proof (typically over 99%) is the implication
proof. It shows that R is unsatisfiable by proving that every clause C ∈ T is
logically implied by R. For each clause C ∈ T a separate proof piece is produced
and these pieces are glued together at the end, which can be done in any arbitrary
order. The lack of hints in DRAT proofs make the glueing easy: one can simply
concatenate the pieces.

The generation of the final part, the tautology proof, is easy as well as the
cubes from the first layer split form a binary tree of assignments by construction.
Let m be the number of cubes in our partition, then the tautology proof is a
resolution proof consisting of m−1 resolution steps.
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15.6. Proof Validation and Processing

Although proofs with hints are harder to produce than proofs without hints, they
are in principle easy to check and actually needed for some applications, like
generating interpolants [McM03]. However, the large size of resolution proofs
provides challenges, particularly with respect to memory usage. See [Van12] for
a discussion on checking large resolution proofs. The presence of hints makes it
easy to implement a checker, especially if the proof format does not allow any
ambiguity, such as the LRAT format. This allowed for the implementation of
certified (formally verified) checkers, such as ACL2-check [HHKW17].

Proofs without hints are smaller, but validating proofs without hints is more
complicated and more costly. Practically all top-tier solvers support the produc-
tion of proofs without hints, as this is easy to implement, while hardly any of them
supports the production of proofs with hints. To obtain the best of both worlds—
easy proof production and certified results—there exist tools that turn a proof
without hints into a proof with hints. One such tool is DRAT-trim [WHH14],
which can turn a DRAT proof into an LRAT proof. DRAT-trim also allows the
optimization of proofs, for instance, by removing redundant lemmas. The corre-
sponding tool chain for certifying proofs is shown in Figure 15.6: A SAT solver
produces a proof without hints, which is turned into an optimized proof with hints
that is finally validated by a certified checker.

1: SAT solver 2: proof optimizer 3: certified checker

formula

original proof optimized proof

Figure 15.6. Tool chain of certifying proofs.

15.6.1. Proofs With Hints

Resolution proofs can be checked in deterministic logspace [Van08], a very low
complexity class. The tool stc can efficiently check proofs in the TraceCheck

format. More details about the format and its use are discussed in Section 15.4.1.
Apart from validation, there exists a vast body of work on compression tech-

niques for resolution proofs [Amj07, BIFH+08, Cot10, FMP11, RBST14, Sin07]
that go beyond the compression techniques we discussed earlier. One such tech-
niques is RecycleUnits [BIFH+08]: unit clauses in the proof are used to replace
some clauses in the proof that are subsumed by the units. The replacement typ-
ically makes the proof invalid (i.e., some resolvents are no longer the result of
resolving the antecedents). However, the proof can be fixed with a few simple
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steps. Figure 15.7 illustrates the RecycleUnits procedure on a derivation of the
example CNF formula E from page 4. In the example, notice that replacing a
clause by a unit may strengthen the resolvent.

Two other proof compression techniques are LowerUnits and RecyclePivots.
LowerUnits uses the observation that one needs to resolve over a unit clause only
a single time. In case a unit clause occurs multiple times in a proof, it is low-
ered to ensure that it occurs only once. RecyclePivots reduces the irregularity
in resolution proofs. A proof is irregular if it contains a path on which resolu-
tion is performed on the same pivot. Removing all irregularity in a proof may
result in an exponential blow-up of the proof [Goe90]. Hence, techniques such
as RecyclePivots need to be restricted in the context of proof compression. The
tool Skeptic [BFP14], which includes most of the compression techniques, can
be used to remove redundancy from resolution proofs.

b ∨ c
a ∨ c a ∨ b

b ∨ c
c

a ∨ b
a ∨ b a ∨ b

a

b b ∨ c
c

⊥

Unit clause a can be recycled by re-
placing the non-antecedent a ∨ b

b ∨ c
a ∨ c a
b ∨ c

c

a ∨ b
a ∨ b a ∨ b

a

b b ∨ c
c

⊥

The resolvent changes after replac-
ing a∨b by a. This is fixed by replac-
ing b∨ c with the actual resolvent c.

b ∨ c
a ∨ c a

c
c

a ∨ b
a ∨ b a ∨ b

a

b b ∨ c
c

⊥

After replacing b ∨ c by c, a similar
problem occurs. Now the antecedent
c and the “resolvent” are the same.

a ∨ c a
c

a ∨ b
a ∨ b a ∨ b

a

b b ∨ c
c

⊥

Removal of the redundant resolution
step results in a correct and more
compact derivation.

Figure 15.7. An example of the proof compression technique RecycleUnits.

15.6.2. Proofs Without Hints

Proofs without hints are checked using unit propagation. The actual check for
each step depends on the proof system. Recall that a RUP proof {C1, . . . , Cm} is
valid for formula F , if Cm = ⊥ and for i ∈ {1, . . . ,m}, it holds that

F ∧ C1 ∧ · · · ∧ Ci−1 ⊢1 Ci.

The check for stronger proof systems is more elaborate and thus more expen-
sive. See Section 15.2 for details. The most simple (but very costly) method to
validate proofs without hints checks for every i ∈ {1, . . . ,m} whether or not the
redundancy property of the corresponding proof system holds.

24



One can reduce the cost of validating proofs without hints by checking them
backwards [GN03], thereby marking clauses that are used for the derivation of
other clauses that occur later in the proof: Initially, only the final clause Cm = ⊥
is marked. Now we loop over the lemmas in backwards order, i.e., Cm, . . . , C1.
Before validating a lemma, we first check whether it is marked. If a lemma is
not marked, it can be skipped, which reduces the computational cost. If a lemma
is marked, we check whether the clause satisfies the above redundancy criterion.
If the check fails, the proof is invalid. Otherwise, we mark all clauses that were
required to make the check succeed (using conflict analysis). For most proofs,
this technique allows to skip over half of the lemmas during validation.

The main challenge regarding the validation of proofs without hints is effi-
ciency: Validating a proof without hints is typically much more expensive than
obtaining the proof using a SAT solver, even if the implementation uses back-
wards checking and the same data structures as state-of-the-art solvers. For most
other logics, including first order logic, checking a proof is typically cheaper than
finding the proof in the first place. There are two main reasons why checking
unsatisfiability proofs is more expensive than solving.

First, SAT solvers aggressively delete clauses during solving, which reduces
the cost of unit propagation. If the proof checker has no access to the clause
deletion information, then unit propagation is much more expensive in the checker
than in the solver. This was the main motivation why the proof formats DRUP and
DRAT have been developed. These formats support the inclusion of clause-deletion
information, thereby making the unit propagation costs between the solver and
checker similar.

Second, SAT solvers reuse propagations between conflicts whereas proof check-
ers do not reuse propagations. Consider two consecutive lemmas Ci and Ci+1,
produced by a SAT solver. In the most extreme (but not unusual) case, the
branch that resulted in Ci and Ci+1 differs only in a single decision (out of many
decisions). Hence most propagations are reused by the solver. At the same time,
the lemmas might have no overlapping literals, meaning that Ci ∩ Ci+1 = ∅.
Consequently, the checker would not be able to reuse any propagations. In case
Ci∩Ci+1 is non-empty, the checker could potentially reuse propagations, although
no checker implementation for proofs without hints exploits this.

While checking a proof without hints, one can easily produce an unsatisfiable
core and a proof with hints. The unsatisfiable core consists of the original clauses
that were marked during backwards checking. For most unsatisfiable formulas
that arise from applications, many clauses are unmarked and thus not part of the
unsatisfiable core. The proof with hints contains for each marked lemma all the
clauses that were required during its validation as hints.

The hints that are generated while checking a proof without hints might differ
significantly from the hints that would have been produced by the SAT solver.
For example, the resolution proof (with hints) for the example formula E might
be equal to the resolution graph shown in Fig. 15.1. On the other hand, the
resolution proof produced by checking the proofs without hints might be equal
to Fig. 15.8. Notice that the resolution graph of Fig. 15.8 (right) does not use all
original clauses. Clause (b ∨ c) is redundant and not part of the core of E.
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a ∨ c
a ∨ b a ∨ b

a
c

a ∨ b a ∨ b

b b ∨ c
c

⊥

b∨c a∨c a∨b a∨b a∨b b∨c

c

⊥

Figure 15.8. A resolution derivation (left) and a resolution graph (right) for the example
formula E produced by checking a proof without hints.

15.7. Proof Applications

Proofs of unsatisfiability have been used to validate the results of SAT competi-
tions.2 Initially, during the SAT competitions of 2007, 2009, and 2011, a special
track was organized for which the unsatisfiability results were checked. For the
SAT competitions of 2013 and 2014, proof logging became mandatory for tracks
with only unsatisfiable benchmarks. The supported formats for the SAT competi-
tion 2013 were TraceCheck and DRUP, but all solvers participating in these tracks
opted for the DRUP format. For the SAT competition 2014, the only supported
format was DRAT, which is backwards compatible with DRUP. Since 2016, the SAT
competition requires proof logging to participate in the main track.

As already mentioned, one motivation for using proofs is to make testing
and debugging of SAT solvers more effective. Checking learned clauses online
with RUP allows to localize unsound implementation defects as soon they lead to
clauses that are not implied by reverse unit propagation.

Testing with forward proof checking is particularly effective in combination
with fuzzing (generating easy formulas) and delta-debugging [BB09b] (shrinking
a formula that triggers a bug). Otherwise failures produced by unsound reasoning
can only be observed if they turn a satisfiable instance into an unsatisfiable one.
This situation is not only difficult to produce, but also tends to lead to much
larger input files after delta-debugging.

However, model-based testing [ABS13] of the incremental API of a SAT solver
is in our experience at least as effective as file-based fuzzing and delta-debugging.
The online proof checking capabilities to Lingeling [Bie14] allow the combination
of these two methods (model-based testing and proof checking).

Another important aspect of proof tracing is that it allows to generate a
clausal (or variable) core (i.e., an unsatisfiable subset). These cores can be used
in many applications, including MUS extraction [NRS13], MaxSAT [MHL+13], di-
agnosis [SKK03, NBE12], and abstraction refinement in model checking [EMA10]
or SMT [ALS06, BB09a]. Note that this list of references is subjective and by far
not complete. It should only be considered as a starting point for investigating
related work on using cores.

2see http://www.satcompetition.org for details.
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Finally, extraction of interpolants is an important usage of resolution proofs,
particularly in the context of interpolation-based model checking [McM03]. Since
resolution proofs are large and not easy to obtain, there have been several recent
attempts to avoid proofs and obtain interpolants directly, see for instance [VRN13].
Interpolation-based model checking became the state-of-the-art until the inven-
tion of IC3 [Bra11]. The IC3 algorithm is also based on SAT technology, and also
uses cores, but usually in a much more light-weight way. Typical implementa-
tions use assumption-based core techniques as introduced in MiniSAT [ES03] (see
also [LB13]) instead of proof-based techniques.

15.8. Conclusions

Unsatisfiability proofs are useful for several applications, such as computing in-
terpolants and MUS extraction. These proofs can also be used to validate results
of the SAT solvers that produced them and for tools that use SAT solvers, such
as theorem provers.

Proofs of unsatisfiability come in two types: with and without hints. Proofs
without hints are useful for various applications, but they are costly and compli-
cated to produce. Therefore few SAT solvers support proof logging with hints.
Proof logging without hints is easy and therefore most state-of-the-art solvers
support it. However, validating proofs without hints is costly, although recent
advances significantly improved performance of checkers.

There are several challenges regarding unsatisfiability proofs. How can one
store proofs with hints using much less space on disk and produce them using
much less memory overhead? Can the cost of validating proofs with hints be
be reduced further? Last but not least, research is required to study how some
techniques, such as Gaussian elimination, cardinality resolution, and symmetry
breaking, can be expressed elegantly in unsatisfiability proofs.
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