
Towards Ultra Rapid Restarts!

Shai Haim1 and Marijn Heule2

1 University of New South Wales and NICTA, Sydney, Australia
2 Delft University of Technology, Delft, The Netherlands

Abstract. We observe a trend regarding restart strategies used in SAT solvers.
A few years ago, most state-of-the-art solvers restarted on average after a few
thousands of backtracks. Currently, restarting after a dozen backtracks results in
much better performance. The main reason for this trend is that heuristics and data
structures have become more restart-friendly. We expect further continuation of
this trend, so future SAT solvers will restart even more rapidly. Additionally, we
present experimental results to support our observations.

1 Introduction

Restarts have been proposed for satisfiability (SAT) solvers to counter heavy-tail behav-
ior [1]. Initially, branching heuristics were randomized to make sure that the search-tree
would be different after each restart. Also, restarts should not be applied too frequently
to guarantee that a solver can explore the entire search-tree between two restarts in
case a problem has no solutions. For modern conflict-driven clause learning (CDCL)
solvers [2] this is no longer required. Decision heuristics are dynamic and updated after
every conflict [3]. By recording conflict clauses, CDCL solvers can proof unsatisfiabil-
ity even in case of ultra rapid restarts.

Nowadays, restarts have become an essential feature of CDCL solvers. Many dif-
ferent strategies have been studied and used [4–11]. State-of-the-art SAT solvers tend
to restart more and more frequently. An explanation for this trend is that the heuristics
and data-structures have become restart-friendly. Therefore we decided to experiment
with strategies that restart radically faster than commonly used in the CDCL solvers.
The results show that these strategies are effective on the industrial benchmarks of the
SAT 2009 competition.

2 Restarts

Restart strategies have been used in SAT solvers for over a decade. First, we will provide
an overview of their use in state-of-the-art solvers. Second, we will discuss two aspects
of CDCL solvers, heuristics and data structures, that influenced these strategies. Recent
developments in these areas facilitate frequent restarts. Third, we argue that – due to
rapid restarts – CDCL solvers have become complete local search solvers.
! The second author is supported by the Dutch Organization for Scientific Research (NWO)
under grant 617.023.611



2.1 A history of restart strategies

Although currently all competitive CDCL solvers use restarts, this was not always the
case. The solver grasp [12], which first introduced clause learning in the context of
satisfiability testing, did not use restarts in its original version. Following the work of
Gomes et al. [1], which demonstrated the effectiveness of restart for addressing issues
arising from the heavy-tailed distribution, developers started equipping their solvers
with fixed-size restart strategies. The solvers zChaff [3], BerkMin [13] use rather
frequent fixed restarts with restart sizes of 700 and 550 respectively, while the solver
Siege [14] uses a larger fixed restart size of 16,000 conflicts.

MiniSAT 1.13 [15] was the first to demonstrate the effectiveness of the geometric
restart strategy suggested by Walsh [5]. Starting with a small first restart, the size of
consecutive restarts grows geometrically. A commonly used restart strategy in the re-
cent years is based on a sequence of restart sizes suggested by Luby et al. [4]. In their
work the authors show that the suggested sequence is log optimal when the runtime
distribution of the problems is unknown. In this strategy the length of restart i is u · t i

when u is a constant unit run and

ti =

{
2k−1, if i = 2k − 1
ti−2k−1+1, if 2k−1 ≤ i < 2k − 1.

Since unit runs are commonly short, solvers using the Luby restart strategy exhibit
frequent restarts. The solvers Rsat 2.0 [16] and TiniSat [17] use a unit run of 512
conflicts, while MiniSAT 2.1 [18] and precoSAT [8] use a shorter unit run of 100
conflicts. The solver picoSAT [7] introduced a frequent restart strategy in which the
restart length grows geometrically until it reaches a bound. At this point the restart
sequence starts again and the bound grows geometrically. Another approach, which
receives much attention lately, combines an underlying uniform restart strategy with a
dynamic element which can induce, or suppress, restarts. The dynamic decision can be
made according to variable agility [6–8], variety of decision levels in learnt clauses and
backtrack sizes [9, 10], or using local search techniques [11].

2.2 Direction heuristics

Direction heuristics select the value for decision variables. In theory, these heuristics
can be very powerful: Perfect direction heuristics would result in a solver that never
needs to backtrack to find a solution. If such a heuristic exists, which can be computed
in polynomial time, then P = NP . CDCL solvers use a variety of direction heursics.

For instance, zChaff maintains two counters for each variable, one for true and
one for false. These counters refer to the activity in recent conflicts. The sign of the
highest counter is preferred. The direction heuristics in MiniSAT are very minimal-
istic: It uses negative branching: i.e. the decision variable is always assigned to false.
Although it might seem a bit arbitrary, it is not. Two properties of this heuristic con-
tribute the fast performance. First, it consequently chooses the same sign. Therefore it
keeps searching in the same search space. Second, always branching on false is much
better than always branching on true. The latter is an artifact of the encoding of most



benchmark instances. A direction heuristics technique called phase-saving was intro-
duced in Rsat. Phase-saving assigns each decision variable to the value last forced by
Boolean constraint propagation (BCP). In essence, this technique was already used in
local search solvers. We will further discuss this in Section 2.4.

The changes in direction heuristics can hardly be separated from the trend we ob-
served for restart strategies. Rapid restarts only make sense in case the solver will not
end up in a completely different search space again and again.With the direction heuris-
tics used in zChaff this could easily happen. If for a high ranked variable both coun-
ters are almost equal than that variable can be flipped frequently. While using negative
branching it will happen less often. Yet as soon as a decision variable is chosen which
BCP mostly assigns to true, the search space becomes different. However, phase-saving
is ideal for rapid restarts since this direction heuristic ensures one hardly moves after a
restart.

2.3 Boolean constraint propagation

Most of the computational cost of CDCL solvers is spent on BCP. Moskewicz et al. [3]
state that in most cases it is greater than 90% of the total cost. This observation has
consequences for rapid restart strategies: If a solver would restart very frequently, say
after every couple of conflicts, then it often has to go down the search-tree all the way
from the root. As a result, much more time will be spent on BCP slowing down the
solver.

An important breakthrough in speeding up BCP is the introduction of the watch lit-
eral data structure in zChaff [3]. This data structure is now used in all state-of-the-art
CDCL solvers. It has been implemented very efficiently in MiniSAT [15]. Recent im-
provements of this data structure were used in picoSAT [7]. Additionally, the relative
burden of BCP can be reduced by spending more time on reasoning techniques. For ex-
ample by making conflict analysis stronger. Two recent improvements in this direction
are conflict clause minimization [19] and conflict clause (self-) subsumption [20].

Both developments influence the optimal restart strategy. The cheaper the relative
cost of going down the search-tree, the cheaper it is to perform a restart. Therefore, it is
expected that future improvements in BCP speed and additional reasoning will ensure
that the optimal restart strategy will be more rapid.

2.4 Complete local search

Ten challenges for SAT solving have been posed by Selman et al. [21] in 1997.Although
several of these challenges have been faced, hardly any progress has been reported on
Challenge 5: Desiging a competitive complete local search solver. Appearently, it is
hard to add completeness to local search solvers effectively. On the other hand, CDCL
solvers have been slowly begun to mimic local search solvers. This could explain why
the performance of current CDCL solvers heavily depends on the seed, even for unsat-
isfiable benchmarks.

An important step towards local search is the introduction of phase-saving in CDCL
solvers in 2007 [16]. Essentially the same technique is used in the local search SAT
solver UnitWalk [22] since 2001. The UnitWalk algorithm starts by initializing a



random full assignment. In each iteration, this assignment is improved by the following
procedure: First, a random order of the variables is created. Second, the most important
(based on this randomorder) free variable is assigned to the value in the full assignment.
Third, BCP is applied. Each assignment due to BCP is copied to the full assignment.
After BCP is finished, the procedure returns to the second step until all variables are
assigned. In other words, both techniques copy the value from the full assignment for
decision variables and copy the value to the full assignment for implied variables.

Due to the combination of phase-saving and rapid restarts, one can argue that CDCL
solvers hardly perform search anymore. Theymerely improve the full assignment, while
recording clauses for every encountered conflict. Therefore, modern CDCL solvers
could be considered as complete local search solvers. This claim will become stronger
if the trend towards ultra rapid restarts will continue.

3 Results
Because we observed several signs in favor of ultra rapid restarts, we decided to exper-
iment with strategies that restart radically faster compared to those used in the current
CDCL solvers. The dataset we have used for this experiment includes all industrial in-
stances which were used in the SAT competition of 2009. All the experiments presented
in this paper were conducted on a cluster of 14 Dual Intel Xeon CPUs with EM64T (64-
bit) extensions, running at 3.2GHz with 4GB of RAM under Debian GNU/Linux 4.0.

The solver we used for the experiments is the award-winning MiniSAT 2.0 which
we equipped with a phase-saving direction heuristic. We experimentedwith 12 different
unit runs for the Luby sequence and used a timeout of 900 seconds. To provide more
stable numbers, we ran all experiments with three different seeds.

100

105

110

115

120

125

130

135

140

1 2 4 6 8 12 16 32 64 128 256 512

with 1 seed
with 2 seeds
with 3 seeds

Fig. 1. Histrogram showing the number of solved instances for different unit runs of the Luby
sequence. The baseline at 100 instances represents the original version of MiniSAT 2.0.



The original version of MiniSAT 2.0, which applies negative branching and uses
a geometrical restart strategy, solves 100 instances (44 SAT, 56 UNSAT) within the
timeout. Figure 1 shows the results for the adapted solver using phase-saving and Luby
sequences. Notice that using any of these Luby sequences solves manymore benchmark
instances compared to the original version. The optimal restart strategy for this test set
seems around a unit run of 6 or 8. Recall that this number is much smaller than what is
commonly used in CDCL solvers.

The size of the unit run has a clear impact on the number of conflicts the solver
encounters while solving a problem. Table 1 shows the average numbers. The smaller
the unit run, the smaller the number of conflicts. Although the results using a unit run
of 1 and 512 show a comparable performance on the dataset, the former resolves sig-
nificantly fewer conflicts. Apparently, smaller unit runs require less search to solve
instances. The results using other unit runs hint in this direction as well. Therefore, we
expect that – assuming that the (relative) cost of performing a restart will further be
reduced – even smaller unit runs will appear optimal in the future.

Table 1. The average number of conflicts for several unit runs of the Luby sequence.

Strategy SAT UNSAT SOLVED UNSOLVED ALL
Luby-1 90465 171629 137513 309941 237799
Luby-2 79064 181351 138151 349777 260505
Luby-4 76743 188944 140772 380772 277324
Luby-6 83970 204974 153252 387720 285578
Luby-8 81043 210837 155211 401257 294354
Luby-12 91667 197671 151839 412065 299301
Luby-16 88195 205252 153884 428446 309785
Luby-32 95870 222315 167783 436521 321921
Luby-64 79550 212722 155225 452032 329556
Luby-128 93769 214950 160234 470681 341863
Luby-256 96148 222214 165134 477443 348211
Luby-512 95981 222871 164034 487855 354604

4 Conclusions

We showed that the award winning solver MiniSAT 2.0 can significantly be improved
by adding phase-saving and rapid restarts. The optimal strategy on the industrial bench-
marks of the SAT 2009 competition restarts far more frequently compared to strategies
used by the current state-of-the-art solvers. This result supports our observation that
SAT solvers tend towards ultra rapid restarts and become complete local search solvers.



References

1. Gomes, C., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomization.
In: AAAI/IAAI. (1998) 431–437

2. Marques-Silva, J.P., Lynce, I., Malik, S.: Chapter 4. Conflict-Driven Clause Learning SAT
Solvers. In Handbook of Satisfiability. IOS Press (2009) 131–153

3. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient
SAT solver. Proceedings of the 38th conference on Design automation (2001) 530–535

4. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf.
Process. Lett. 47(4) (1993) 173–180

5. Walsh, T.: Search in a small world. In Dean, T., ed.: IJCAI 99: Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, Morgan Kaufmann (1999) 1172–
1177

6. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. [23] 28–33
7. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation
4 (2008) 75–97

8. Biere, A.: P{re,i}coSAT@SC’09. [24] 41–44
9. Audemard, G., Simon, L.: GLUCOSE: A solver that predicts learnt clause quality. [24] 7–8
10. Pipatsrisawat, K., Darwiche, A.: Rsat description for SAT competition 2009. [24] 45–46
11. Ryvchin, V., Strichman, O.: Local restarts. [23] 271–276
12. Marques-Silva, J., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In:

ICCAD. (1996) 220–227
13. Goldberg, E., Novikov, Y.: BerkMin: a fast and robust sat-solver. (2002) 142–149
14. Ryan, L.: Efficient algorithms for clause learning SAT solvers. PhD thesis, Simon Fraser

University, School of Computing Science (2004)
15. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella, A., eds.:

Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003.
LNCS 2919, Springer (2003) 502–518

16. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability
solvers. In Marques-Silva, J., Sakallah, K.A., eds.: SAT 2007: Theory and Applications of
Satisfiability Testing, 10th International Conference. LNCS 4501, Springer (2007) 294–299

17. Huang, J.: A case for simple SAT solvers. In Bessiere, C., ed.: CP. LNCS 4741, Springer
(2007) 839–846

18. Sörensson, N., Eén, N.: Minisat 2.1 and minisat++ 1.0 sat race 2008 editions. Technical
report (2008)

19. Sörensson, N., Eén, N.: Minisat v1.13 a sat solver with conflict-clause minimization. Tech-
nical report (2005)

20. Han, H., Somenzi, F.: On-the-fly clause improvement. In: Theory and Applications of
Satisfiability Testing - SAT 2009. LNCS 5584, Springer (2009) 209–222

21. Selman, B., Kautz, H., McAllester, D.: Ten challenges in propositional reasoning and search.
In: IJCAI’97, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1997) 50–54

22. Hirsch, E., Kojevnikov, A.: Solving boolean satisfiability using local search guided by unit
clause elimination. Principles and Practice of Constraint Programming (2001) 605–609

23. Büning, H.K., Zhao, X., eds.: Theory and Applications of Satisfiability Testing - SAT 2008,
11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceed-
ings. In Büning, H.K., Zhao, X., eds.: SAT. LNCS 4996, Springer (2008)

24. SAT 2009 competitive events booklet: preliminmary version (2009)


