Whose side are you on?

Finding solutions in a biased search-tree

Marijn J.H. Heule* and Hans van Maaren

Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Sciences
Delft University of Technology

marijn@heule.nl, h.vanmaaren@tudelft.nl

Abstract. We introduce a new jumping strategy for satisfiability (SAT)
solvers that aims to boost their performance on satisfiable formulas,
while maintaining their behavior on unsatisfiable instances. The direction
heuristics used in various state-of-the-art SAT solvers bias - for some fam-
ilies in an observable useful way - the location of solutions in the search-
tree. Based on the distribution of the solutions over the leaf nodes, we
estimated - using small instances - the likelihood for each subtree to con-
tain a solution. Larger formulas could then be solved by visiting these
subtrees in descending order of this likelihood.

This paper describes experiments with this new strategy - distribution
jumping - on hard random 3-SAT formulas using the march_dl solver.
The results show a significant speed-up on satisfiable instances, while
the performance on unsatisfiable formulas is not affected.

1 Introduction

Various state-of-the-art satisfiability (SAT) solvers use direction heuristics to
predict the sign of the decision variables: These heuristics choose, after the de-
cision of the branch variable, which Boolean value to examine first. On some
families these heuristics bias the location of solutions in the search-tree. Given a
large family with many satisfiable instances, this bias can be measured on small
instances.

The usefulness of this depends on what we call the bias-extrapolation property:
Given direction heuristics of a specified solver, the observed bias on smaller
instances extrapolates to larger ones. Notice that this notion depends on the
action of a particular solver on the family involved - e.g. a solver with random
direction heuristics could probably also satisfy the bias extrapolation property,
but not in a very useful way. The estimated bias then could be used to consider
a jumping strategy that adapts towards the distribution of the solutions. We
refer to this strategy as distribution jumping.

* Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306

Other jump strategies have been developed for SAT solvers. The most used
technique is the restart strategy [4]: If after some number of backtracks no so-
lution has been found, the solving procedure is restarted with different decision
varables. This process is generally repeated for an increasing number of back-
tracks. This technique could fix an ineffective decision sequence. A disadvantage
of restarts is its potential slowdown of performance on unsatisfiable instances.

Another jumping strategy is the random jump [8]. Instead of jumping all the
way to the root of the search-tree, this technique jumps after some backtracks
to a random level between the current one and the root. This technique could
fix a wrong chosen sign of some of the decision variables. By storing the subtrees
that have been visited the performance on unsatisfiable instances is only slightly
reduced.

Both these techniques are designed to jump out of a huge subtree in which
the solver gets ”trapped”. Our proposed technique does not only jump out of
such a subtree but also aims jumping towards a subtree with a high likelihood
of containing a solution. Like the random jump strategy, distribution jumping
only alters the signs of decision variables and has a comparable performance on
the unsatisfiable instances.

In this paper, we present the usefulness of distribution jumping on uniform
random 3-SAT formulas close to the phase transition density using the march_dl
solver - which direction heuristics are size independent. These formulas are well
studied, obvious candidates to satisfy the bias-extrapolation property, and one
can easily generate many hard instances for various sizes. Therefore, this fam-
ily seems interesting and suitable as a first experimental environment for our
approach.

2 Direction heuristics

All state-of-the-art complete SAT solvers are based on the DPLL architecture [2].
This recursive algorithm (see algorithm 1) first simplifies the formula by perform-
ing unit propagation (see algorithm 2) and checks whether it hits a leaf node.
Otherwise, it selects a decision variable z; and splits the formula into two sub-
formulas where x; is forced - one for positive (denoted by F(z; = 1)) and one
for negative (F(x; = 0)).

Two important heuristics emerge for this splitting: direction heuristics and
variable selection heuristics. Both heuristics are merged in procedure SELECT-
DECISIONLITERAL. Variable selection heuristics aim to select a decision variable
in each recursion step yielding a relatively small search-tree. Direction heuristics
aim to find an satisfying assignment as fast as possible by choosing which subfor-
mula - F(x; = 0) or F(z; =1) - to examine first. In theory, direction heuristics
could be very powerful: If one always predict the correct direction, all satisfiable
formulas will be solved in a linear number of steps.

Traditionally, SAT research tends to focus on variable selection heuristics.
Exemplary of the lack of interest in direction heuristics is the use in minisat [3]:
While this solver is the most powerful on a wide range of instances, it always

Algorithm 1 DPLL(F)

F := UNITPROPAGATION(F)
if ¥ = () then
return satisfiable
else if empty clause € F then
return unsatisfiable
end if
ldecision := SELECTDECISIONLITERAL(F)
if DPLL(F(ldecision = 1)) = satisfiable then
return satisfiable
10: else
11: return DPLL(F(ldecision = 0))
12: end if

©

Algorithm 2 UNITPROPAGATION(F)

1: while F does not contain an empty clause and unit clause y exists do
2 satisfy y and simplify F

3: end while

4: return F

branches negatively - computes F(z; = 0) first. An explanation for the effective-
ness of these heuristics is probably due to the general encoding of the most SAT
formulas.

The march_dl SAT solver uses direction heuristics based on the reduction
caused by the decision variable [5]. The reduction from F to F(z; = 0) and
from F to F(x; = 1) is measured by the number of clauses that are reduced in
size without being satisfied. In general, the higher this reduction the higher the
chance the subformula is unsatisfiable. Therefore, march_dl always branches first
on the subformula which has the smallest reduction.

Fig. 1. A search-tree with jump depth 3 and thus 8 subtrees T;

3 Distribution jumping
3.1 All subtrees distribution

We determined the biasedness of the location of solutions using the following
experiment: Consider all the subtrees T; which are at depth d. Assuming that
the search-tree is big enough there are 2¢ of these subtrees. Given a set of
satisfiable formulas, how are the solutions distributed amongst the subtrees?

Let the left branch in a node denote the subformula - either F(z; = 0) or
F(x; = 1) - which a solver decides to examine first. Consequently, we refer to
the right branch as to the latter examined subformula. Subtrees are numbered
from left to right (see figure 1 for an example with d = 3). We generated random
3-SAT formulas each with 350 variables and 1491 clauses (density = 4.26) and
selected the first 5000 satisfiable instances for the test set.

Given a solver, jump depth d and a set of satisfiable formulas, we can compute
for all 2% subtrees the number of formulas that have at least one solution in 7
using the given solver. The histogram of march_dl, jump depth 12, and the test
set is shown in figure 2. We refer to such a distribution as to the all subtrees
distribution. The horizontal axis denotes the subtree number, while the vertical
axis refers to the number of formulas which have at least one solution in Tj.
The colors visualize the number of right branches that are required to reach a
subtree: Ty =0, To =1, T35 =1, Ty = 2, T5 = 1 etc. The figure clearly shows
that the distribution is biased towards the left branches: Most solutions are found
in T1 (ZGI‘O I‘lght branches), followed by T2049 (T211+1), T1025 (T210+1), and T257
(Tas11) - all reachable by one right branch. Based on the all subtrees distribution
(figure 2) we can construct permutation m,; = (1,2049,1024, 257, ...).

00 | | |

600 — —
500 [—
400 | —

300 R —

100 “ —

Th Too T510 To11 To12

Fig. 2. All subtrees distribution with march_dl and jump depth 12 based on 5000
random 3-SAT formulas with 350 variables and 1491 clauses.

3.2 Implementation

Since we only computed 7,y for jump depth 12, a more generalized permuta-
tion is required for an implementation with a flexible jump depth. An accurate
approximation of 7, is obtained by visiting the subtrees in the following or-
der: First, visit 71, followed by all T;’s which can be reached in only one right
branch. Continue with all T;’s that can be reached in two right branches, etc.
All T}’s which can be reached in the same number of right branches are visited
in decreasing order of 7. We refer to this permutation as mge.. Table 1 shows the
order in which the first ten subtrees are visited with m,; and mgec using jump
depth 12.

Table 1. Permutations in which subtrees can be visited with jump depth 12.

1] 2 | 3 [4] 5 6 [7809 [10]
Tall T1 | To0a9 | Tro25 | D257 | T513 | Thoo | Tos | T3 | T33 | Ty
Tdec | 11 | T2040 | Tro25 | T513 | Tos7 | Ti29 | Toe5 | T33 | Ti7r | To

We implemented distribution jumping with 7wgec in march_dl and call the
new version march_dj. A fixed jump depth is not useful for a general purpose ap-
proach: For some formulas this depth will be too large so it will never be reached,
on others the depth will be too low, resulting in huge subtrees. Therefore, we
implemented some elementary heuristics realizing an instance dependend jump
depth: Let b be the depth at which the first backtrack occurs, then the jump
depth is set to d = b — 7. Although far from optimal, these heuristics seem to
work appropriate during our first experiments.

3.3 First results

Large random 3-SAT formulas with density 4.26 are still hard for our first im-
plementation. Therefore, we experimented on two smaller densities, although
we did not verify whether the all subtrees distributions of these densities are
comparable with the computed one.

Table 2. Number of solved instances within a timeout of 600 seconds

march_dI march_dj RT AdaptNovelty ™
size #SAT | #UNKNOWN | #SAT | #UNKNOWN | #SAT | #UNKNOWN
600 vars, 2400 cls 86 14 100 0 100 0
600 vars, 2460 cls 75 25 100 0 100 0
700 vars, 2800 cls 73 27 100 0 100 0
700 vars, 2870 cls 15 85 90 10 100 0

For our experiments we generated random 3-SAT formulas for four different
sizes - 600 and 700 variables both at density 4.0 and 4.1 - to test the improve-
ment realized by march_dj. We compared the performance of our solvers with
R*AdaptNovelty™ [1] - an incomplete solver which was the strongest on these
kind of formulas at the SAT 2005 competition [7].

Table 2 shows the results of this experiment. The progress from march_dl to
march_dj is clear. However, RT™AdaptNovelty™ is still better on these instances.

4 Theoretical progress

4.1 First subtree distribution

We also studied the theoretical progress that could be realized by distribution
jumping. Let march_dl(7;) be a theoretical SAT solver which is similar to march dI
but visits the subtrees using permutation ;. Let mo = (1,2, 3,4, ...), so march_d|
is equivalent to march_dl(mg). Consider the first subtree distribution of a set of
formulas: Count for all subtrees the number of formulas for which the (first)
solution is found in 7; using march_dl(r;). Figure 3 shows the first subtree dis-
tribution for the test set using march_dl.

600 [— —
400 —

200 g —
50 I I

40 —

30 ft- —

20

10

‘ .‘L‘H\Ln H\H { i AL

T T T510 Ton Thi2

o Wb bbbl i Bl

Fig. 3. The first subtree distribution using march_dl with jump depth 12 based
on 5000 random 3-SAT formulas with 350 variables and 1491 clauses.

Notice that while using march_dl(w;), the corresponding all subtrees distri-
bution is a permutation of figure 2 with m;. However, this does not hold for the
first subtree distribution: The subtree in which the (first) solution will be found
could be different for march_dl and march_dl(m;).

Figure 4 shows the first subtree distribution of march_dl(m,y;). Clearly, the
(first) solutions are found far more to the left of the search-tree. Therefore,
march_dl(7,) is expected to be much faster on this test set compared to march_dl.
However, the histogram is not strictly decreasing: Therefore, we can conclude
that there is a permutation which has an even better expected performance.

600 I I I I H

400 —

200 f— —
50 I I I

40 f- —

30 —

20 H —

0 Wbl o b b

Ty The T510 Thi THi2

Fig. 4. The first subtree distribution using march_dl(m,;) with jump depth 12
based on 5000 random 3-SAT formulas with 350 variables and 1491 clauses.

4.2 Expected speed-up

The speed-up realized by distribution jumping can be approximated if the fol-
lowing two restrictions are met:

Ry) the size of the subtrees is about equal;
Rs) the jump depth is much smaller than the size of subtrees.

Due to R; the expected computational cost of each subtree is equal and Ro
marginalizes the overhead costs - getting from one subtree to another - of the
distribution jumping technique. Using march_dl, the search-trees for hard random
3-SAT appear to be quite balanced (satisfying Rs). Given a relatively small jump
depth the speed-up could be computed. However, Ry and Ry are probably hard
to achieve for more structured formulas.

Given a large set of satisfiable benchmarks. Let F'T; 4(;) denote the set of
benchmarks which (first) solution is found in T} using march_dl(7;) with jump
depth d. Now, we can compute the speed-up of using distribution jumping with
jump depth d and permutation ;:

d

S22 i X |[FTya(mo))|
2d .

Zi:l 1 X |FTi,d(7Tj)|

On the test set Speedup,(man) = L9007 ~ 3.95.

Speedupy(m;) :=

5 Conclusions

We explained the concept of distribution jumping. By using this technique in
our solver march_dl, we are able to solve - within the experimented domain -
satisfiable instances much faster, while the performance on unsatisfiable formulas
remains practically equal.

Although we see significant progress on random 3-SAT instances, incomplete
solvers are still much more powerful on these kind of benchmarks. However,
on some structured families with many satisfiable instances, march_dl already
outperforms the incomplete solvers, so even better results are expected using
the new technique - if they would satisfy the bias-extrapolation property.

The usefulness of distribution jumping could be further increased by devel-
oping better direction heuristics: The more biased the distribution, the better
the expected speed-up. Also some additional progress may be realized by using
a permutation that has a higher expected speed-up than the implemented one.

Acknowledgments

This paper is a preliminary version of an extended paper of joint work with
Samuel Burri, Stephan van Keulen, and Oana Dragomyr.

References

1. Anbulagan and Nghia Duc Pham, The R+AdaptNovelty+ SAT solver.
http://nicta.com.au/director/research/programs/lc/people/a_anbulagan.cfm

2. M. Davis, G. Logemann, and D. Loveland, A machine program for theorem proving.
Communications of the ACM 5 (1962), 394-397.

3. N. Een and N. Sorensson, An extensible SAT-solver. In SAT 2003, LNCS 2919
(2003), 502-518.

4. C.P. Gomes, B. Selman, and C. Crato, Heavy-tailed Distributions in Combinatorial
Search. Principles and Practice of Constraint Programming, CP-97, LNCS 1330
(1997), 121-135.

5. M. Heule and H. van Maaren, March_dl: Adding Adaptive Heuristics and a New
Branching Strategy. Journal on Satisfiability, Boolean Modeling and Computation
2 (2006), 47-59.

6. H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, B. Selman, Dynamic Restart Policies.
Proceedings of AAAIO2 (2002), 674-682.

7. The SAT 2005 Competition.
http://www.satcompetition.org/2005

8. H. Zhang, A Complete Random Jump Strategy with Guiding Paths. Proceedings of
SAT 2006 (2006), 96-101.

http://nicta.com.au/director/research/programs/lc/people/a_anbulagan.cfm
http://www.satcompetition.org/2005

	 Whose side are you on?
	 Marijn J.H. Heule and Hans van Maaren
	Introduction
	Direction heuristics
	Distribution jumping
	All subtrees distribution
	Implementation
	First results

	Theoretical progress
	First subtree distribution
	Expected speed-up

	Conclusions

