
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Generating Extended Resolution Proofs
with a BDD-Based SAT Solver

Randal E. Bryant (B) and Marijn J. H. Heule?

Computer Science Department
Carnegie Mellon University, Pittsburgh, PA, United States
{Randy.Bryant, mheule}@cs.cmu.edu

Abstract. In 2006, Biere, Jussila, and Sinz made the key observation that the
underlying logic behind algorithms for constructing Reduced, Ordered Binary
Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended
resolution logical framework. Through this, a BDD-based Boolean satisfiability
(SAT) solver can generate a checkable proof of unsatisfiability. Such proofs indi-
cate that the formula is truly unsatisfiable without requiring the user to trust the
BDD package or the SAT solver built on top of it.
We extend their work to enable arbitrary existential quantification of the for-
mula variables, a critical capability for BDD-based SAT solvers. We demonstrate
the utility of this approach by applying a prototype solver to obtain polynomi-
ally sized proofs on benchmarks for the mutilated chessboard and pigeonhole
problems—ones that are very challenging for search-based SAT solvers.

Keywords: extended resolution, binary decision diagrams, mutilated chessboard,
pigeonhole problem

1 Introduction

When a Boolean satisfiability (SAT) solver returns a purported solution to a Boolean
formula, its validity can easily be checked by making sure that the solution indeed satis-
fies the formula. When the formula is unsatisfiable, on the other hand, having the solver
simply declare this to be the case requires the user to have faith in the solver, a complex
piece of software that could well be flawed. Indeed, modern solvers employ a number
of sophisticated techniques to reduce the search space. If one of those techniques is
invalid or incorrectly implemented, the solver may overlook actual solutions and label
a formula as unsatisfiable, even when it is not.

With SAT solvers providing the foundation for a number of different real-world
tasks, this “false negative” outcome could have unacceptable consequences. For exam-
ple, when used as part of a formal verification system, the usual strategy is to encode
some undesired property of the system as a formula. The SAT solver is then used to
determine whether some operation of the system could lead to this undesirable prop-
erty. Having the solver declare the formula to be unsatisfiable is an indication that the
undesirable behavior cannot occur, but only if the formula is truly unsatisfiable.

? Supported by the National Science Foundation under grant CCF-2010951

2 R. E. Bryant and M. J. H. Heule

Rather than requiring users to place their trust in a complex software system, a
proof-generating solver constructs a proof that the formula is indeed unsatisfiable. The
proof has a form that can readily be checked by a simple proof checker. Initial work of
checking unsatisfiability results was based on resolution proofs, but modern checkers
are based on stronger proof systems [16,33]. The checker provides an independent val-
idation that the formula is indeed unsatisfiable. The checker can even be simple enough
to be formally verified [9,23,29]. Such a capability has become an essential feature for
modern SAT solvers.

In their 2006 papers [21,28], Jussila, Sinz and Biere made the key observation that
the underlying logic behind algorithms for constructing Reduced, Ordered Binary Deci-
sion Diagrams (BDDs) [4] can be encoded as steps in a proof in the extended resolution
logical framework [30]. Through this, a BDD-based Boolean satisfiability solver can
generate checkable proofs of unsatisfiability for a set of clauses. Such proofs indicate
that the formula is truly unsatisfiable without requiring the user to trust the BDD pack-
age or the SAT solver built on top of it.

In this paper, we refine these ideas to enable a full-featured, BDD-based SAT solver.
Chief among these is the ability to perform existential quantification on arbitrary vari-
ables. (Jussila, Sinz, and Biere [21] extended their original work [28] to allow exis-
tential quantification, but only for the root variable of a BDD.) In addition, we allow
greater flexibility in the choice of variable ordering and the order in which conjunction
and quantification operations are performed. This combination allows a wide range of
strategies for creating a sequence of BDD operations that, starting with a set of input
clauses, yield the BDD representation of the constant function 0, indicating that the for-
mula is unsatisfiable. Using the extended-resolution proof framework, these operations
can generate a proof showing that the original set of clauses logically implies the empty
clause, providing a checkable proof that the formula is unsatisfiable.

As the experimental results demonstrate, our refinements enable a proof-generating
BDD-based SAT solver to achieve polynomial performance on several classic “hard”
problems [1,15]. Since the performance of a proof-generating SAT solver affects not
only the runtime of the program, but also the length of the proofs generated, achieving
polynomial performance is an important step forward. Our results for these benchmarks
rely on a novel approach to ordering the conjunction and quantification operations,
inspired by symbolic model checking [7].

This paper is structured as follows. First, it provides a brief introduction to the res-
olution and extended resolution logical frameworks and to BDDs. Then we show how
a BDD-based SAT solver can generate proofs by augmenting algorithms for comput-
ing the conjunction of two functions represented as BDDs, and for checking that one
function logically implies another. We then describe our prototype implementation and
evaluate its performance on several classic problems. We conclude with some general
observations and suggestions for further work.

2 Preliminaries

Given a Boolean formula over a set of variables {x1, x2, . . . , xn}, a SAT solver attempts
to find an assignment to these variables that will satisfy the formula, or it declares

Extended Resolution Proofs with BDDs 3

that the formula is unsatisfiable. As is standard practice, we use the term literal to
refer to either a variable or its complement. Most SAT solvers use Boolean formulas
expressed in conjunctive normal form, where the formula consists of a set of clauses,
each consisting of a set of literals. Each clause is a disjunction: if an assignment sets
any of its literals to true, the clause is considered to be satisfied. The overall formula is
a conjunction: a satisfying assignment must satisfy all of the clauses.

We write > to denote both tautology and logical truth, and ⊥ to represent both an
empty clause and logical falsehood. When writing clauses, we omit disjunction symbols
and use overlines to denote negation, writing u ∨ v ∨ w as u v w.

2.1 (Extended) Resolution Proofs

Robinson [26] observed that a single inference rule could form the basis for a refutation
theorem-proving technique for first-order logic. Here, we consider its specialization to
propositional logic. For clauses of the form C∨x, and x∨D, the resolution rule derives
the new clause C ∨ D. This inference is written with a notation showing the required
conditions above a horizontal line, and the resulting inference (the resolvent) below:

C ∨ x x ∨D
C ∨D

Resolution provides a mechanism for proving that a set of clauses is unsatisfiable. Sup-
pose the input consists of m clauses. A resolution proof is given as a trace consisting of
a series of steps S, where each step si consists of a clause Ci and a (possibly empty) list
of antecedents Ai, where each antecedent is the index of one of the previous steps. The
first set of steps, denoted Sm, consists of the input clauses without any antecedents.
Each successive step then consists of a clause and a set of antecedents, such that the
clause can be derived from the clauses in the antecedents by one or more resolution
steps. It follows by transitivity that for each step si, with i > m, clause Ci is logically
implied by the input clauses, written Sm ` Ci. If, through a series of steps, we can reach
a step st where Ct is the empty clause, then the trace provides a proof that Sm ` ⊥,
i.e., the set of input clauses is not satisfiable.

Tseitin [30] introduced the extended-resolution proof framework in 1966. It allows
the addition of new extension variables to a resolution proof in a manner that preserves
the integrity of the proof. In particular, in introducing variable e, there must be an ac-
companying set of clauses that encode e ↔ F , where F is a formula over variables
(both original and extension) that were introduced earlier. These are referred to as the
defining clauses for extension variable e. Variable e then provides a shorthand notation
by which F can be referenced multiple times. Doing so can reduce the size of a clausal
representation of a problem by an exponential factor.

An extension variable e is introduced into the proof by including its defining clauses
in the list of clauses being generated. The proof checker must ensure that these added
clauses do not artificially restrict the set of satisfying solutions. The checker can do this
by making sure that the defining clauses are blocked with respect to variable e [22]. That
is, for each defining clause C containing literal e and each defining clauseD containing
literal e, there must be some literal l in C such that its complement l is inD. As a result,
resolving clauses C and D will yield a tautology.

4 R. E. Bryant and M. J. H. Heule

Tseitin transformations are commonly used to encode a logic circuit or formula as a
set of clauses without requiring the formulas to be “flattened” into a conjunctive normal
form over the circuit inputs or formula variables. These introduced variables are called
Tseitin variables and are considered to be part of the input formula. An extended reso-
lution proof takes this concept further by introducing additional variables as part of the
proof. Some problems for which the minimum resolution proof must be of exponential
size can be expressed with polynomial-sized proofs in extended resolution [8].

To validate the proofs, we use a clausal proof system, known as Resolution Asym-
metric Tautology (RAT), that generalizes extended resolution [32]. RAT is used in in-
dustry and to validate the results of the SAT competitions [18]. There are various fast
and formally-verified RAT proof checkers [10,23,29].

Clausal proofs also allow the removal of clauses. In our use, we delete clauses when
the program can determine that they will not be referenced as antecedents for any suc-
ceeding clauses. As the experimental results of Section 4 demonstrate, deleting clauses
that are no longer needed can substantially reduce the number of clauses the checker
must track while processing a proof.

2.2 Binary Decision Diagrams

Reduced, Ordered Binary Decision Diagrams (which we refer to as simply “BDDs”)
provide a canonical form for representing Boolean functions, and an associated set of
algorithms for constructing them and testing their properties. A number of tutorials have
been published [2,5,6]. providing a background on BDDs and their algorithms.

With BDDs, functions are defined over a set of variables X = {x1, x2, . . . , xn}.
We let L1 and L0 denote the two leaf nodes, representing the constant functions 1 and
0, respectively. Each nonterminal node u has an associated variable Var(u) and children
Hi(u), indicating the case where the node variable has value 1, and Lo(u), indicating
the case where the node variable has value 0.

Nodes are stored in a unique table, indexed by the key 〈Var(u),Hi(u), Lo(u)〉, so
that isomorphic nodes are never created. The nodes are shared across all of the gener-
ated BDDs [24]. In presenting algorithms, we assume a function GETNODE(x, u1, u0)
that checks the unique table for a node with variable x and children u1 and u0. It ei-
ther returns the node stored there, or it creates a new node and enters it into the table.
With this table, we can guarantee that the subgraphs with root nodes u and v represent
the same Boolean function if and only if u = v. We can therefore identify Boolean
functions with their BDD root nodes.

BDD packages support multiple operations for constructing and testing the prop-
erties of Boolean functions represented by BDDs. A number of these are based on the
Apply algorithm [4]. Given BDDs u and v representing functions f and g, respectively,
and a Boolean operation (e.g., AND), the algorithm generates the BDD representation
w of the operation applied to those functions (e.g., f ∧ g.) For each operation, the pro-
gram maintains an operation cache indexed by the argument nodes u and v, mapping
to the result node w. With this cache, the worst case number of recursive steps required
by the algorithm is bounded by the product of the sizes (in nodes) of the arguments.

We use the term APPLYAND to refer to the Apply algorithm for Boolean operation
∧ and APPLYOR to refer to the Apply algorithm for Boolean operation ∨.

Extended Resolution Proofs with BDDs 5

3 Proof Generation During BDD Construction

In our formulation, every newly created BDD node u is assigned an extension variable.
(As notation, we use the same name for the node and for its extension variable.) We
then extend the Apply algorithm to generate proofs based on the recursive structure of
the BDD operations.

Let Sm denote the set of input clauses. Our goal is to generate a proof that Sm `
⊥, i.e., there is no satisfying assignment for these clauses. Our BDD-based approach
generates a sequence of BDDs with root nodes u1, u2, . . . , ut, where ut = L0, based
on a combination of the following operations. (The exact sequencing of operations is
determined by the evaluation mechanism, as is described in Section 4.)

1. For input clause Ci generate its BDD representation ui using a series of APPLYOR
operations.

2. For roots uj and uk, generate the BDD representation of their conjunction ul =
uj ∧ uk using the APPLYAND operation.

3. For root uj and some set of variables Y ⊆ X , perform existential quantification:
uk = ∃Y uj .

Although the existential quantification operation is not mandatory for a BDD-based
SAT solver, it can greatly improve its performance [13]. It is the BDD counterpart to
Davis-Putnam variable elimination on clauses [11]. As the notation indicates, there are
often multiple variables that can be eliminated simultaneously. Although the operation
can cause a BDD to increase in size, it generally causes a reduction. Our experimental
results demonstrate the importance of this operation.

As these operations proceed, we simultaneously generate a set of proof steps. The
details of each step are given later in the presentation. For each BDD generated, we
maintain the proof invariant that its root node uj satisfies Sm ` uj .

1. Following the generation of the BDD ui for clause Ci, we also generate a proof
that Ci ` ui. This is described in Section 3.1.

2. Justifying the conjunctions requires two parts:
(a) Using a modified version of the APPLYAND algorithm we follow the structure

of its recursive calls to generate a proof that the algorithm preserves implica-
tion: uj ∧ uk → ul. This is described in Section 3.2.

(b) This implication can be combined with the earlier proofs that Sm ` uj and
Sm ` uk to prove Sm ` ul.

3. Justifying the quantification also requires two parts:
(a) Following the generation of uk via existential quantification, we perform a sep-

arate check that uj → uk. This check uses a proof-generating version of the
Apply algorithm for implication testing that we refer to as PROVEIMPLICATION.
This is described in Section 3.3.

(b) This implication can be combined with the earlier proof that Sm ` uj to prove
Sm ` uk.

As case 3(a) states, we do not attempt to track the detailed logic underlying the
quantification operation. Instead, we run a separate check that the quantification pre-
serves implication. As is the case with many BDD packages, our implementation can

6 R. E. Bryant and M. J. H. Heule

perform existential quantification of an arbitrary set of variables in a single pass over
the argument BDD. A single implication test suffices for the entire quantification.

Sinz and Biere’s formulation of proof generation by a BDD-based SAT solver [28]
introduces special extension variables n1 and n0 to represent the BDD leaves L1 and
L0. Their proof then includes unit clauses n1 and n0 to force these variables to be set to
1 and 0, respectively. This formulation greatly reduces the number of special cases to
consider in the proof-generating version of the APPLYAND operation, but it complicates
the generation of resolution proofs for the implication test. Instead, we directly associate
leaves L1 and L0 with > and ⊥, respectively.

The n variables in the input clauses all have associated BDD variables. The proof
then introduces an extension variable every time a new BDD node is created. In the fol-
lowing presentation, we use the node name (e.g., u) to indicate the associated extension
variable. In the actual implementation, the extension variable identifier (an integer) is
stored as one of the fields in the node representation.

When creating a new node, the GETNODE function adds (up to) four defining
clauses for the associated extension variable. For node u with variable Var(u) = x,
Hi(u) = u1, and Lo(u) = u0, the clauses are:

Notation Formula Clause

HD(u) x→ (u→ u1) xuu1
LD(u) x→ (u→ u0) xuu0
HU(u) x→ (u1 → u) xu1 u
LU(u) x→ (u0 → u) xu0 u

The names for these clauses combine an indication of whether they correspond to vari-
able x being 1 (H) or 0 (L) and whether they form an implication from the node down
to its child (D) or from the child up to its parent (U). When either node u0 or u1 is a leaf
node, some of these clauses degenerate to tautologies. Such clauses are omitted from
the proof. Each clause is numbered according to its position in the sequence of clauses
comprising the proof. These defining clauses encode the assertion u↔ ITE(x, u1, u0),
where ITE denotes the if-then-else operation, defined as ITE(x, y, z) = (x∧y)∨(x∧z).
As can be seen, the defining clauses are blocked with respect to extension variable u.

3.1 Generating BDD Representations of Clauses

The BDD representation u of a clause C is generated by using the APPLYOR operation
on the BDD representations of its literals. This BDD has a simple, linear structure with
one node for each literal. Each successive node has a branch to leaf node L1 when the
literal is true and to the next node in the chain when the literal is false. The proof that
C ` u is based on this linear structure, employing the upward defining clauses HU and
LU for the nodes in the chain [28].

3.2 The APPLYAND Operation

The key idea in generating proofs for the AND operation is to follow the recursive
structure of the Apply algorithm. We do this by integrating proof generation into the

Extended Resolution Proofs with BDDs 7

Terminal Cases
Case Result

u = v (u, >)
u = L0 (L0, >)
v = L0 (L0, >)
u = L1 (v, >)
v = L1 (u, >)

APPLYANDRECUR(u, v)
J ←− {}
x←− min(Var(u),Var(v))
if x = Var(u):

u1, u0 ←− Hi(u), Lo(u)
J ←− J ∪ {HD(u), LD(u)}

else: u1, u0 ←− u, u
if x = Var(v):

v1, v0 ←− Hi(v), Lo(v)
J ←− J ∪ {HD(v), LD(v)}

else: v1, v0 ←− v, v
w1, s1 ←− APPLYAND(u1, v1)
w0, s0 ←− APPLYAND(u0, v0)
J ←− J ∪ {s1, s0}
if w1 = w0:

w ←− w1

else:
w ←− GETNODE(x,w1, w0)
J ←− J ∪ {HU(w), LU(w)}

s←− JUSTIFYAND(〈u, v, w〉, J)
AndCache(〈u, v〉)←− (w, s)
return (w, s)

Fig. 1. Terminal cases and recursive step of APPLYAND operation, modified for proof generation.
Each call returns both a node and a proof step.

APPLYAND procedure. The overall control flow is identical to the standard version,
except the function returns both a BDD node w and a step number s. For arguments u
and v, the generated step s has clause u v w along with antecedents defining a resolution
proof of the implication u∧v → w. We refer to this as the justification for the operation.
The operation cache is modified to hold both the returned node and the justifying step
number as values.

Figure 1 shows the main components of the implementation. When the two ar-
guments are equal or one of the leaves is a terminal node, then the recursion termi-
nates (left). These cases have tautologies as their justification. Failing a terminal case,
the code checks in the operation cache for matching arguments u and v, returning the
cached result if found.

Failing the terminal case tests and the cache lookup, the program proceeds as shown
in the procedure APPLYANDRECUR (right). Here, the procedure branches on the vari-
able x that is the minimum of the two root variables. The procedure accumulates a set
of steps J to be used in the implication proof. These include the two steps (possibly
tautologies) from the two recursive calls. At the end, it invokes a function JUSTIFYAND
to generate the required proof. It stores both the result node w and the proof step s in
the operation cache, and it provides these values as the return values.

Proof Generation for the General Case. Proving the nodes generated by APPLYAND
satisfy the implication property proceeds by inducting on the structure of the argument

8 R. E. Bryant and M. J. H. Heule

VHD

x v v1

UHD

xuu1

WHU

xw1 w
ANDH

u1 v1 w1

xu1 v1 w
xu v1 w

xu v w

ANDL

u0 v0 w0

WLU

xw0 w
xu0 v0 w

ULD

xuu0

xu v0 w
VLD

x v v0
xu v w

u v w

Fig. 2. Resolution proof for general step of the APPLYAND operation

and result BDDs. That is, it can assume that the results w1 and w0 of the recursive calls
to arguments u1 and v1 and to u0 and v0 satisfy the implications u1 ∧ v1 → w1 and
u0 ∧ v0 → w0, and that these calls generated proof steps s1 and s0 justifying these
implications. Figure 2 shows the structure of the resolution proof for the general case,
where none of the equalities hold and the recursive calls do not yield tautologies. The
proof relies on the following clauses as antecedents, arising from the recursive calls and
from the defining clauses for nodes u, v, and w:

Term Formula Clause Term Formula Clause

ANDH u1 ∧ v1 → w1 u1 v1 w1 ANDL u0 ∧ v0 → w0 u0 v0 w0

WHU x→ (w1 → w) xw1 w WLU x→ (w0 → w) xw0 w
UHD x→ (u→ u1) xuu1 ULD x→ (u→ u0) xuu0
VHD x→ (v → v1) x v v1 VLD x→ (v → v0) x v v0

Along the left, the clauses cover the case of x = 1, first resolving clause ANDH and
WHU, then resolving the result first with clause UHD and then clause VHD. A similar
progression occurs along the right covering the case of x = 0. The two chains are
then merged by resolving on variable x to yield the final implication. As this figure
illustrates, a total of seven resolution steps are required. These can be merged into two
linear resolution chains, and so the proof generator produces at most two clauses per
APPLYAND operation.

Proof Generation for Special Cases. The proof structure shown in Figure 2 only holds
for the most general form of the recursion. However, there are many special cases, such
as when the recursive calls yield tautologous results, when some of the child nodes are
equal, and when the two recursive calls return the same node.

Our method for handling both the general and special cases relies on the V-shaped
structure of the proofs, as is illustrated in Figure 2. That is, there are two linear chains,
one along the left and one along the right consisting of some subsequence of the fol-
lowing clauses:

AH = ANDH,WHU, UHD, VHD

AL = ANDL,WLU, ULD, VLD

These will be proper subsequences when some of the clauses are not included in the
set J in APPLYAND (Figure 1), or they are tautologies. In addition, some of the clauses
may be extraneous and therefore must not occur as antecedents.

Extended Resolution Proofs with BDDs 9

Rather than trying to enumerate the special cases, we found it better to create a
general-purpose linear chain resolver that handles all of the cases in a uniform way. This
resolver is called on the each of the clause sequences AH and AL. It proceeds through
a sequence of clauses, discarding any tautologies and any clauses that do not resolve
with the result so far. It then emits the proof clauses with the selected antecedents.

3.3 Testing Implication

Terminal Cases
Case Result

u = v >
u = L0 >
v = L1 >

u = L1, v 6= L1 Error
v = L0, u 6= L0 Error

PROVEIMPLICATIONRECUR(u, v)
J ←− {}
x←− min(Var(u),Var(v))
if x = Var(u):

u1, u0 ←− Hi(u), Lo(u)
J ←− J ∪ {HD(u), LD(u)}

else: u1, u0 ←− u, u
if x = Var(v):

v1, v0 ←− Hi(v), Lo(v)
J ←− J ∪ {HU(v), LU(v)}

else: v1, v0 ←− v, v
s1 ←− PROVEIMPLICATION(u1, v1)
s0 ←− PROVEIMPLICATION(u0, v0)
J ←− J ∪ {s1, s0}
s←− JUSTIFYIMPLICATION(〈u, v〉, J)
ImplyCache(〈u, v〉)←− s
return s

Fig. 3. Terminal cases and recursive step of PROVEIMPLICATION operation

When the existential quantification operation applied to node u generates node v,
the program generates a proof that u → v, by calling procedure PROVEIMPLICATION
with u and v as arguments. This procedure has the same recursive structure as the
Apply algorithm, except that it does not generate any new nodes. It only returns the
step number for a proof of the clause u v. It uses an operation cache, but only to hold
proof step numbers. Figure 3 shows the terminal cases for this procedure, as well as the
recursion that occurs when neither a terminal case applies nor are the arguments found
in the operation cache. A failure of the implication test indicates an error in the solver,
and so it signals a fatal error if the implication does not hold.

Each recursive step accumulates up to six proof steps as the set J to be used in the
implication proof:

Term Formula Clause Term Formula Clause

IMH u1 → v1 u1 v1 IML u0 → v0 u0 v0
UHD x→ (u→ u1) xuu1 ULD x→ (u→ u0) xuu0
VHU x→ (v1 → v) x v1 v VLU x→ (v0 → v) x v0 v

10 R. E. Bryant and M. J. H. Heule

VHU

x v1 v

UHD

xuu1

IMH
u1 v1

xu v1
xu v

IML
u0 v0

ULD

xuu0

xu v0

VLU

x v0 v
x u v

u v

Fig. 4. Resolution proof for general step of the PROVEIMPLICATION operation

The resolution proof for the general case is shown in Figure 4. It has a similar structure
to the proof for the APPLYAND operation, with two linear chains combined by a res-
olution on variable x. Our same general-purpose linear chain resolver can handle both
the general case and the many special cases that arise.

4 Experimental Results

We implemented the proof-generating, SAT solver PGBDD (for Proof-Generating BDD).
It is written entirely in Python and consists of around 2000 lines of code, including a
BDD package, support for generating extended-resolution proofs, and the overall SAT
solver framework.1

Although slow, it can handle large enough benchmarks to provide useful insights
into the potential for a BDD-based SAT solver to generate proofs of challenging prob-
lems, especially when quantification is supported. It generates proofs in the LRAT for-
mat [9].

Our BDD package supports mark-and-sweep garbage collection. It starts the mark-
ing using the root nodes for all active terms in the sequence of root nodes u1, u2,
Following the marking phase, it traverses the unique table and eliminates the unmarked
nodes. It also traverses the operation caches and eliminates any entries for which one of
the argument nodes or the result node is unmarked. When a node is deleted, the solver
can also direct the proof checker to delete its defining clauses. Similarly, when an entry
is deleted from the operation cache, the solver can direct the proof checker to delete
those clauses added while generating the justification for the entry.

In addition to the input CNF file, the program can accept a variable-ordering file,
mapping the input variables in the CNF to their levels in the BDD.

The solver supports three different evaluation mechanisms:

Linear: Form the conjunction of the clauses, according to their order in the input file.
No quantification is performed. This matches the operation described in [28].

Bucket Elimination: Place the BDDs representing the clauses into buckets according
to the level of their topmost variable. Then process the buckets from lowest to high-
est. While a bucket has more than one element, repeatedly remove two elements,
form their conjunction, and place the result in the bucket designated by the topmost
variable. Once the bucket has a single element, existentially quantify the topmost

1 The solver, along with code for generating and testing a set of benchmarks, is available at
https://github.com/rebryant/pgbdd-artifact.

https://github.com/rebryant/pgbdd-artifact

Extended Resolution Proofs with BDDs 11

variable and place the result in the appropriate bucket [12]. This matches the oper-
ation described in [21].

Scheduled: Perform operations as specified by a scheduling file. This file contains a
sequence of lines, each providing a command in a simple, stack-based notation:

c c1, . . . , ck Generate and push the BDDs for the specified clauses.
am Pop and conjoin the top m elements. Push the result.
q v1, . . . , vk Quantify the top element by the specified variables.

In generating benchmarks, we wrote programs to generate the CNF files, the variable
orderings, and the schedules in a unified framework.

For all of our benchmarks we report the total number of clauses in the proof, in-
cluding the input clauses, the defining clauses for the extension variables (up to four
per BDD node generated) and the derived clauses (one per input clause and up to two
per result inserted into either AndCache or ImplyCache.)

We compare the performance of our BDD-based SAT solver with that of KISSAT,
the winner of the 2020 SAT competition [3], representing the state of the art in search-
based SAT solvers.

4.1 Mutilated Chessboard

The mutilated chessboard problem considers an n× n chessboard, with the corners on
the upper left and the lower right removed. It attempts to tile the board with dominos,
with each domino covering two squares. Since the two removed squares had the same
color, and each domino covers one white and one black square, no tiling is possible.
This problem has been well studied in the context of resolution proofs, for which it can
be shown that any proof must be of exponential size [1].

A standard CNF encoding involves defining Boolean variables to represent the
boundaries between adjacent squares, set to 1 when a domino spans the two squares,
and set to 0 otherwise. The clauses then encode an Exactly1 constraint for each square,
requiring each square to share a domino with exactly one of its neighbors. We label the
variables representing a horizontal boundary between a square and the one below as
yi,j , with 1 ≤ i < n and 1 ≤ j ≤ n. The variables representing the vertical boundaries
are labeled xi,j , with 1 ≤ i ≤ n and 1 ≤ j < n. With a mutilated chessboard, we have
y1,1 = x1,1 = yn−1,n = xn,n−1 = 0.

As the log-log plot in Figure 5 shows, PGBDD has exponential performance when
using linear conjunction or bucket elimination. Indeed, KISSAT outperforms PGBDD
when operating in these modes. However, KISSAT can also be seen to have exponential
performance—to reach n = 22, it generates a proof with over 136 million clauses.

On the other hand, another approach, inspired by symbolic model checking [7]
yields polynomial performance. It is based on the following observation: when pro-
cessing the columns from left to right, the only information required to place dominos
in column j is the identity of those rows i for which a domino crosses horizontally from
j − 1 to j. This information is encoded in the values of xi,j−1 for 1 ≤ i ≤ n.

12 R. E. Bryant and M. J. H. Heule

4 8 16 32 64 128
103

104

105

106

107

108

n

Mutilated Chessboard Clauses

No Quantification
Bucket
Linear
KISSAT

Column Scan

Fig. 5. Total number of clauses in proofs of n × n mutilated chess boards. The proofs using the
column scanning approach grow as n2.69.

Let us group the variables into columns, with Xj denoting variables x1,j , . . . , xn,j ,
and Yj denoting variables y1,j , . . . , yn−1,j . Scanning the board from left to right, con-
siderXj to encode the “state” of processing after completing column j. As the scanning
process reaches column j, there is a characteristic function σj−1(Xj−1) describing the
set of allowed crossings of horizontally-oriented dominos from column j − 1 into col-
umn j. No other information about the configuration of the board to the left is required.
The characteristic function after column j can then be computed as:

σj(Xj) = ∃Xj−1
[
σj−1(Xj−1) ∧ ∃Yj Tj(Xj−1, Yj , Xj)

]
(1)

where Tj(Xj−1, Yj , Xj) is a “transition relation” consisting of the conjunction of the
Exactly1 constraints for column j. From this, we can existentially quantify the variables
Yj to obtain a BDD encoding all compatible combinations of the variables Xj−1 and
Xj . By conjuncting this with the characteristic function for column j − 1 and existen-
tially quantifying the variables Xj−1, we obtain the characteristic function for column
j. With a mutilated chessboard, we generate leaf node L0 in attempting the final con-
junction. Note that Equation (1) does not represent a reformulation of the mutilated
chessboard problem. It simply defines a way to schedule the conjunction and quantifi-
cation operations over the input clauses and variables.

In our experiments, we found that this scanning reaches a fixed point after pro-
cessing n/2 columns. That is, from that column onward, the characteristic functions
become identical, except for a renaming of variables. This indicates that the set of all
possible horizontal configurations stabilizes halfway across the board. Moreover, the
BDD representations of the states grow as O(n2). For n = 124, the largest has just
3,969 nodes.

Extended Resolution Proofs with BDDs 13

One important rule-of-thumb in symbolic model checking is that the successive
values of the next-state variables must be adjacent in the variable ordering. Furthermore,
the vertical variables in Yj must be close to their counterparts in Xj−1 and Xj . Both
objectives can be achieved by ordering the variables row-wise, interleaving the variables
xi,j and yi,j , ordering first by row index i and then by column index j. This requires
the quantification operations of Equation 1 to be performed on non-root variables.

Figure 5 shows that the “column-scanning” approach yields performance scaling as
n2.69, allowing us to handle cases up to n = 124. Keep in mind that the problem size
here should be measured as n2, the number of squares in the board. Thus, a problem
instance with n = 124 is over 31 times larger than one with n = 22 (the upper limit
reached by KISSAT), in terms of the number of input variables and clauses. Indeed,
the case of n = 22 is straightforward for PGBDD, requiring only a few seconds and
generating a proof with 161,694 clauses.2 By contrast, KISSAT requires 12.6 hours and
generates over 136 million clauses.

The plot labeled “No Quantification” demonstrates the importance of including ex-
istential quantification in solving this problem. These data were generated by using the
same schedule as with column scanning, but with all quantification operations omitted.
As can be seen, this approach could not scale beyond n = 14.

Most attempts to generate propositional proofs of the mutilated chessboard have
exponential performance. No solver in the 2018 SAT competition could handle the in-
stance with n = 20. Heule, Kiesl, and Biere [19] devised a problem-specific approach
that could generate proofs up to n = 50 by exploiting special symmetries in the prob-
lem, using a set of rewriting rules to dramatically reduce the search space. Our approach
also exploits symmetries in the problem, but by exploiting a way to compactly encode
the set of possible configurations between successive columns. Other than these two,
we know of no other approach for generating polynomially-sized propositional proofs
for the problem.

4.2 Pigeonhole Problem
The pigeonhole problem is one of the most studied problems in propositional reasoning.
Given a set of n holes and a set of n+1 pigeons, it asks whether there is an assignment of
pigeons to holes such that 1) every pigeon is in some hole, and 2) every hole contains at
most one pigeon. The answer is no, of course, but any resolution proof for this must be
of exponential length [15]. Groote and Zantema have shown that any BDD-based proof
of the principle that only uses the Apply algorithm must be of exponential size [14]. On
the other hand, Cook constructed an extended resolution proof of size O(n4), in part to
demonstrate the expressive power of extended resolution [8].

We consider two encodings of the problem. Both are based on a set of variables pi,j
for 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1, with the interpretation that pigeon j is assigned
to hole i. Encoding the property that each pigeon j is assigned to some hole can be
expressed as a single clause:

Pigeonj =

n∨
i=1

pi,j

2 All times reported here were measured on a 3 GHz Intel i7-9700 CPU with 16GB of memory.

14 R. E. Bryant and M. J. H. Heule

4 8 16 32 64 128
103

104

105

106

107

108

n

Pigeonhole Clauses

Tseitin-Bucket
Direct-Bucket
Direct-Linear
Tseitin-Linear
Tseitin-KISSAT

Tseitin-Column Scan

Fig. 6. Total number of clauses in proofs of pigeonhole problem for n holes. Using a direct en-
coding led to exponential performance, but using a Tseitin encoding and column scanning gives
proofs that grow as n3.03.

Encoding the property that each hole i contains at most one pigeon can be done in
two different ways. A direct encoding simply states that for any pair of pigeons j and
k, at least one of them must not be in hole i:

Direct i =

n+1∧
j=1

n+1∧
k=j+1

pi,j ∨ pi,k

This encoding requiresΘ(n2) clauses for each hole, yielding a total CNF size ofΘ(n3).
A second, Tseitin encoding introduces Tseitin variables to track which holes are

occupied, starting with pigeon 1 and working upward. We use an encoding published
by Sinz [27] that uses Tseitin variables si,j for 1 ≤ i ≤ n and 1 ≤ j ≤ n, where si,j
equals 1 if a pigeon j′ occupies hole i for some j′ ≤ j. It requires 3n − 1 clauses and
n Tseitin variables per hole, yielding an overall CNF size of Θ(n2).

As is illustrated by the log-log plots of Figure 6, this choice of encoding not only
affects the CNF size, it dramatically affects the size of the proofs generated by PGBDD.
With a direct encoding, we could not find any combination of evaluation strategy or
variable ordering that could go beyond n = 16. Similarly, the Tseitin encoding did
not help when using linear evaluation or bucket elimination. Indeed, we see KISSAT,
using the Tseitin encoding, matching or exceeding our program for these cases, but all
of these have exponential performance. (KISSAT could only reach n = 15 when using
a direct encoding.)

On the other hand, the column scanning approach used for the mutilated checker-
board can also be applied to the pigeonhole problem when the Tseitin encoding is used.
Consider an array with hole i represented by row i and pigeon j represented by col-
umn j. Let Sj represent the Tseitin variables si,j for 1 ≤ i ≤ n. The “state” is then

Extended Resolution Proofs with BDDs 15

encoded in these Tseitin variables. In processing pigeon j, we can assume that the pos-
sible combinations of values of Tseitin variables Sj−1 is encoded by a characteristic
function σj−1(Sj−1). In addition, we incorporate into this characteristic function the
requirement that each pigeon k, for 1 ≤ k ≤ j − 1 is assigned to some hole. Letting Pj

denote the variables pi,j for 1 ≤ i ≤ n, the characteristic function at column j can then
be expressed as:

σj(Sj) = ∃Sj−1
[
σj−1(Sj−1) ∧ ∃Pj Tj(Sj−1, Pj , Sj)

]
(2)

where the “transition relation” Tj consists of the clauses associated with the Tseitin
variables, plus the clause encoding constraint Pigeonj . As with the mutilated chess-
board, having a proper variable ordering is critical to the success of a column scanning
approach. We interleave the ordering of the variables pi,j and si,j , ordering them first
by i (holes) and then by j (pigeons.)

Figure 6 demonstrates the effectiveness of the column-scanning approach. We were
able to handle instances up to n = 150, and with an overall performance trend of n3.03.
Our achieved performance therefore improves on Cook’s bound of O(n4). A SAT-
solving method developed by Heule, Kiesl, Seidl, and Biere can generate short proofs of
multiple encodings of pigeon hole formulas, including the direct encoding [20]. These
proofs are similar to ours after transforming them into the same proof format and the
size is also O(n3) [17].

Unlike with the mutilated chessboard, the scanning does not reach a fixed point.
Instead, the BDDs start very small, because they must encode the locations of only
a small number of occupied holes. They reach their maximum size at pigeon n/2, as
the number of combinations for occupied and unoccupied holes reaches its maximum.
Then the BDD sizes drop off as the encoding needs to track the positions of a decreasing
number of unoccupied holes. Fortunately, all of these BDDs grow quadratically with n,
reaching a maximum of 5,702 nodes for n = 150.

4.3 Evaluation

Overall, our results demonstrate the potential for generating small proofs of unsatisfia-
bility using BDDs. We have achieved polynomial performance for problems for which
search-based SAT solvers have exponential performance.

Other studies have compared BDDs to search-based SAT on a variety of bench-
mark problems. Several of these observed exponential performance for BDD-based
solvers for problems for which we have obtained polynomial performance. Uribe and
Stickel [31] ran experiments with the mutilated chessboard problem, but they did not
do any variable quantification. Pan and Vardi [25] applied a variety of scheduling and
variable ordering strategies for the mutilated chessboard and pigeonhole problems. Al-
though they were able to get better performance than with a search-based SAT solver,
they still observed exponential scaling. Obtaining polynomial performance for these
problems requires more problem-specific approaches than the ones they considered.

Table 1 provides some performance data for the largest instances solved for the two
benchmark problems. A first observation is that these problems are very large, with tens
of thousands of input variables and clauses.

16 R. E. Bryant and M. J. H. Heule

Table 1. Summary data for the largest problems solved

Chessboard Pigeonhole
Instance Chess-124 Pigeon-Tseitin-150

Input variables 30,500 45,150
Total BDD nodes 3,409,112 17,861,833
Maximum live nodes 198,967 225,446

Input clauses 106,136 67,501
Defining clauses 12,127,031 62,585,397
Derived clauses 5,348,303 81,019,084
Maximum live clauses 751,944 1,297,039

SAT time (secs) 5,366 5,206
Checking time (secs) 30 240

The total number of BDD nodes indicates the total number generated by the function
GETNODE, and for which extension variables are created. These are numbered in the
millions, and far exceed the number of input variables. On the other hand, the maximum
number of live nodes shows the effectiveness of garbage collection—at any given point
in the program, at most 6% of the total number of nodes must be stored in the unique
table and tracked in the operation caches. Garbage collection also keeps the number
of clauses that must be tracked by the proof checker below 5% of the total number
of clauses. The elapsed time for the SAT solver ranges up to 1.5 hours. We believe,
however, that an implementation in a more performant language would reduce these
times greatly. The checking times are shown for an LRAT proof checker written in the
C programming language. The proofs have also been checked with a formally verified
proof checker based on the HOL theorem prover [29].

5 Conclusion

Biere, Sinz, and Jussila [21,28] made the critical link between BDDs and extended
resolution proofs. We have shown that adding the ability to perform arbitrary existential
quantification can greatly increase the performance of a proof-generating, BDD-based
SAT solver.

Generating proofs for the two benchmarks problems required special insights into
their structure and then crafting evaluation mechanisms to exploit their properties. We
believe, however, that the column scanning approach we employed could be generalized
and made more automatic.

The ability to generate correctness proofs in a BDD-based SAT solver invites us to
consider generating proofs for other tasks to which BDDs are applied, including QBF
solving, model checking, and model counting. Perhaps a proof of unsatisfiability could
provide a useful building block for constructing correctness proofs for these other tasks.

Extended Resolution Proofs with BDDs 17

References

1. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolution. Theo-
retical Computer Science 310(1-3), 513–525 (Jan 2004)

2. Andersen, H.R.: An introduction to binary decision diagrams. Tech. rep., Technical Univer-
sity of Denmark (October 1997)

3. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling,
and Treengeling entering the SAT competition 2020 (2020), unpublished

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
puters 35(8), 677–691 (1986)

5. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys 24(3), 293–318 (September 1992)

6. Bryant, R.E.: Binary decision diagrams. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem,
R. (eds.) Handbook of Model Checking, pp. 191–217. Springer (2018)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)

8. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News 8(4), 28–32 (Oct 1976)

9. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.: Efficient
certified RAT verification. In: de Moura, L. (ed.) Automated Deduction – CADE-26. LNCS,
vol. 10395, pp. 220–236 (2017)

10. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolution proof
checking. In: Tools and Algorithms for the Construction and Analysis of Systems. LNCS,
vol. 10205, pp. 118–135 (2017)

11. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.ACM 7(3), 201–
215 (1960)

12. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence
113(1–2), 41–85 (1999)

13. Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M., Vanfleet, W.M.: SB-
SAT: a state-based, BDD-based satisfiability solver. In: Giunchiglia, E., Tacchella, A. (eds.)
Theory and Applications of Satisfiability Testing. LNCS, vol. 2919, pp. 398–410 (2004)

14. Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simulate each
other polynomially. Discrete Applied Mathematics 130(2), 157–171 (2003)

15. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308
(1985)

16. Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All about Proofs, Proofs for
All (APPA), Math. Logic and Foundations, vol. 55. College Pub. (2015)

17. Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Tools and Algorithms for
the Construction and Analysis of Systems. LNCS, vol. 10806, pp. 75–92. Springer (2018)

18. Heule, M.J.H., Hunt, W.A., Kaufmann, M., Wetzler, N.D.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) Interactive Theorem Proving.
pp. 269–284. Springer International Publishing, Cham (2017)

19. Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated chessboards. In: Badger,
J.M., Rozier, K.Y. (eds.) NASA Formal Methods. LNCS, vol. 11460, pp. 204–210. Springer
(2019)

20. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfaction. In: Proc. of the
13th Haifa Verification Conference (HVC 2017). LNCS, vol. 10629, pp. 179–194. Springer
(2017). https://doi.org/10.1007/978-3-319-70389-3 12

21. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with
quantification. In: Theory and Applications of Satisfiability Testing. LNCS, vol. 4121, pp.
54–60. Springer (2006)

https://doi.org/10.1007/978-3-319-70389-3_12

18 R. E. Bryant and M. J. H. Heule

22. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics
96-97, 149–176 (1999)

23. Lammich, P.: Efficient verified (UN)SAT certificate checking. Journal of Automated Rea-
soning 64, 513–532 (2020)

24. Minato, S.I., Ishiura, N., Yajima, S.: Shared binary decision diagrams with attributed edges
for efficient Boolean function manipulation. In: Proceedings of the 27th ACM/IEEE Design
Automation Conference. pp. 52–57 (June 1990)

25. Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. In: Hoos, H.H.,
Mitchell, D.G. (eds.) Theory and Applications of Satisfiability Testing. LNCS, vol. 3542, pp.
235–250 (2005)

26. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.ACM 12(1),
23–41 (January 1965)

27. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: Proc. of
the 11th Int. Conference on Principles and Practice of Constraint Programming (CP 2005).
LNCS, vol. 3709, pp. 827–831. Springer (2005)

28. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Proc. of the First
International Computer Science Symposium in Russia (CSR 2006). LNCS, vol. 3967, pp.
600–611. Springer (2006)

29. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake lpr: Verified propagation redundancy check-
ing in CakeML. In: Tools and Algorithms for the Construction and Analysis of Systems
(2021)

30. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automation of
Reasoning: 2: Classical Papers on Computational Logic 1967–1970. pp. 466–483. Springer
(1983)

31. Uribe, T.E., Stickel, M.E.: Ordered binary decision diagrams and the Davis-Putnam pro-
cedure. In: Jouannaud, J.P. (ed.) Constraints in Computational Logics. pp. 34–49. Springer
(1994)

32. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In: Proc. of the 17th Int. Conference on Theory and Appli-
cations of Satisfiability Testing (SAT 2014). LNCS, vol. 8561, pp. 422–429. Springer (2014)

33. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. In: Proceedings of the Conference on De-
sign, Automation and Test in Europe - Volume 1. p. 10880. DATE ’03, IEEE Computer
Society, USA (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Generating Extended Resolution Proofs with a BDD-Based SAT Solver

