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Abstract. We present TaSSAT, a powerful local search SAT solver that
effectively solves hard combinatorial problems. Its unique approach of
transferring clause weights in local minima enhances its efficiency in
solving problem instances. Since it is implemented on top of YalSAT,
TaSSAT benefits from practical techniques such as restart strategies and
thread parallelization. Our implementation includes a parallel version
that shares data structures across threads, leading to a significant re-
duction in memory usage. Our experiments demonstrate that TaSSAT
outperforms similar solvers on a vast set of SAT competition bench-
marks. Notably, with the parallel configuration of TaSSAT, we improve
lower bounds for several van der Waerden numbers.
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1 Introduction

The SAT problem asks if there exists a satisfying truth assignment for a given
formula in propositional logic. SAT is known to be intractable [10], but modern
SAT solvers, particularly conflict-driven clause learning (CDCL) solvers, have
made significant progress in solving large formulas from various application do-
mains. When it comes to combinatorial problems, stochastic local search (SLS)
solvers are often more effective than CDCL. Because SLS and CDCL solvers
have complementary strengths, some SAT solvers like Kissat [7] and CryptoMin-
iSAT [16] combine SLS and CDCL techniques, and SLS methods play a key role
in shaping the capabilities of modern SAT solvers.

SLS solvers explore truth assignments by flipping the truth value of individual
variables until a solution is found or until timeout. The solver generally tries to
flip variables that will minimize the number of falsified clauses. When a solver
determines that no variable flip will lead to an improvement according to some
heuristic or metric, it has reached a local minimum.

To escape local minima, the solver can either make random flips or adjust its
internal state until improvement is possible. Despite being an effective family of
algorithms for escaping local minima, Dynamic Local Search (DLS) has attracted
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limited attention in the recent years. DLS algorithms assign weights to clauses,
search to find a solution by minimizing the total amount of weight held by
falsified clauses, and adjust these weights in local minima as a means of escaping
them.

The tool we present in this paper is ultimately based on DDFW [15] (di-
vide and distribute fixed weights), a DLS algorithm that dynamically transfers
weight from satisfied to falsified clauses along neighborhood relationships in local
minima. DDFW is remarkably effective at solving hard combinatorial problems,
such as matrix multiplication [13], graph coloring [12], edge matching [11], the
coloring of the Pythagorean triples [14], and finding bounds for van der Waer-
den numbers [3]. Notably, DDFW solves satisfiable instances of the Pythagorean
triples problem in under a minute, whereas CDCL solvers take CPU years.

In this paper, we introduce Transfer and Share SAT (TaSSAT), a novel par-
allel SLS solver. TaSSAT implements LiWeT, a simplification of the algorithm
from our recent work [9] modifying DDFW. Our implementation of TaSSAT is
built on top of a leading SLS solver YalSAT [5], and it adds two new features.
First, it incorporates the weight-transfer methods from LiWeT, leading to more
efficient solving. Specifically, a new weight-transfer parameter allows TaSSAT to
shift more clause weight in local minima, enhancing its adaptability during the
search. Second, TaSSAT’s parallel mode shares data structures among threads
to reduce its memory footprint by up to 80%.

Our results show that TaSSAT substantially outperforms YalSAT on an ex-
tensive benchmark set of 5355 anniversary instances from the 2022 SAT Compe-
tition. Further, TaSSAT’s parallel version improves the lower bounds for nine van
der Waerden numbers, surpassing prior work by Ahmed et al. [3] that used 29
algorithms (including DDFW) and extensive parallelization. Our results demon-
strate the clear algorithmic and practical improvements of TaSSAT.

2 Preliminaries

A SAT formula in conjunctive normal form (CNF) is a conjunction of clauses,
each of which is a disjunction of literals (Boolean variables or their negations).
A clause C is satisfied by a truth assignment α if α satisfies at least one of its
literals, and is otherwise falsified. A formula F is satisfied by α when all of its
clauses are. Clauses C and D are neighbors if they share a common literal.

In DLS, clauses are assigned weights, denoted as W : C → R≥0, representing
the cost of leaving a clause falsified. The total weight of the falsified clauses
is the falsified weight. Variables that reduce the falsified weight when flipped
are called weight-reducing variables, while those that do not impact the falsified
weight when flipped are called sideways variables.

DDFW starts with a random initial truth assignment and sets all clause
weights to parameter w0 (w0 = 8 in the original paper [15]). It then flips weight-
reducing variables until none remain. Upon reaching a local minimum, DDFW
randomly chooses between making a sideways flip (if possible, and with a 15%
chance) or entering the weight transfer phase. During weight transfer, each falsi-
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Fig. 1: PAR-2 scores for parameter searches on initpct, basepct, and currpct.
The plots are oriented to best show the performance trends, so the axes vary.

fied clause receives a fixed weight from a maximum-weight satisfied neighbor CS

(except for 1% of the time, when a random satisfied clause is chosen instead). The
amount of weight transferred from CS depends on its weight: if W (CS) > w0,
then a weight of 2 is taken; otherwise, a weight of 1 is taken.

3 LiWeT: The Linear Weight Transfer Algorithm

TaSSAT takes ideas from DDFW and distills them into an algorithm called
LiWeT (Linear Weight Transfer), which is a simplification of our prior work [9].
LiWeT uses a novel linear weight transfer rule to determine how much weight
to move in local minima. The rule takes three parameters: currpct, a multiplier
on the current clause’s weight; basepct, a multiplier on the initial weight w0;
and initpct, a multiplier for clauses with exactly w0 weight. For most clauses
Cs, the amount of weight that is transferred is currpct ·W (CS)+ basepct ·w0.
For clauses with W (CS) = w0, the amount taken is initpct · w0. As a result,
initpct controls how much weight is initially taken from a clause.

The weight transfer rule offers two key advantages. First, the use of floating-
point parameters rapidly establishes distinct weights for clauses, eliminating the
need for tie-breaking near local minima and, consequently, explicit sideways flips.
Second, the initpct parameter enables LiWeT to release a larger proportion of
the total clause weight, enhancing its adaptability to challenging formulas. In
DDFW and LiWeT, maximum-weight neighbors are selected for each falsified
clause within local minima. Clauses with weights less than w0 are unlikely to
contribute more weight, artificially reducing the total amount of weight LiWeT
can move around. The initpct parameter prevents this from happening.

LiWeT differs from DDFW in one other respect: in local minima, it increases
the probability of choosing a randomly satisfied clause, rather than a maximum-
weight neighbor, to 10%. We found that this improves overall performance.

Algorithm 1 shows LiWeT’s pseudocode.
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Algorithm 1: The LiWeT algorithm

Input: CNF formula F , w0, initpct, basepct, currpct
Output: Satisfiability of F

1 W (C)← w0 for all C ∈ F
2 α← random truth assignment on the variables in F
3 for 1 to MAXFLIPS do
4 if α satisfies F then return “SAT”
5 else
6 if a weight reducing variable is available then
7 flip the variable that reduces the falsified weight the most
8 else
9 foreach clause C ∈ F falsified under α do

10 CS ← select a satisfied clause
11 if W (CS) = w0 then w ← initpct · w0

12 else w ← currpct ·W (CS) + basepct · w0

13 transfer w from CS to C

14 return “No SAT”

To determine the effect of the three parameters, we conducted parameter
searches across them. We ranged basepct ∈ [0, 0.3], currpct ∈ [0, 0.2], and
initpct ∈ [0, 1.0] with increments of 0.1, 0.05 and 0.2, respectively. Our searches
were done on a combined 168 instances from the 2019 SAT Race and the 2021
and 2022 SAT competitions, each with a 900-second timeout. We picked these
instances because they were solved by previous versions of LiWeT and DDFW,
and thus were less likely to result in timeout.

Figure 1 shows the PAR-2 scores for two parameter searches, where a lower
score indicates better performance.1 The left plot shows that TaSSAT performs
better with higher values of both basepct and currpct when initpct = 1.
The optimal configuration is (basepct, currpct) = (0.175, 0.075). The right
plot shows that LiWeT performs best when initpct = 1 for any basepct value
when currpct = 0. This suggests that taking all weight from satisfied clauses
early in the search is crucial for better performance. We ran all subsequent
TaSSAT experiments with (initpct, basepct, currpct) = (1, 0.175, 0.075).

We conclude this section by outlining the distinctions between the algorithm
presented in [9] and LiWeT, underscoring the simplifications introduced in the
latter compared to the former. Compared to the algorithm from our previous
work [9], LiWeT has two fewer parameters. Previously, the algorithm used two
pairs of (a, c) parameters to transfer a ∗W (CS)+ c weight from satisfied clauses
CS in local minima. One pair of (a, c) values was used when W (CS) > w0, and
the other for when W (CS) = w0. In LiWeT, we replaced the second pair with
initpct. Then based on the observation in the right plot of Figure 1, we set

1 The PAR-2 score is defined as the average solving time, with twice the timeout as
the time for unsolved instances.
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initpct to 1 for performance reasons. This adjustment eliminates initpct from
line 11 of Algorithm 1, transforming it into a two-parameter algorithm.

Another simplification was the the removal of sideways variable flips from
LiWeT. DDFW and previous versions of our algorithm would flip sideways vari-
ables, but we found that they rarely occured with floating-point weights, and
refusing to flip them didn’t affect performance. Notably, these simplifications
enhance the algorithmic power of LiWeT over the previous algorithm, which we
demonstrate in section 5.

4 Implementation of TaSSAT and PaSSAT

We implemented TaSSAT on top of YalSAT [6], a state-of-the-art SLS solver that
implements the ProbSAT algorithm [4]. As a result, our implementation benefits
from the practical techniques present in YalSAT, including restart techniques.
Our TaSSAT implementation2 includes a parallel version, called PaSSAT, that
improves the memory management of the parallel version of YalSAT.

Because LiWeT is computationally expensive when there are a higher number
of falsified clauses, TaSSAT has an optional mode to run ProbSAT until the
number of falsified clauses drops beneath a dynamically computed threshold
based on the formula’s size, at which point it resumes LiWeT. By default, we
ran TaSSAT with this option disabled in our experiments, but we enabled it for
the van der Waerden experiments.

We also improve on the parallel features in YalSAT. The main issue in the
parallel version of YalSAT was that the formula data structures were not shared.
As a result, each thread had to independently parse, store, and simplify the input
formula, resulting in redundant computation and a bloated memory footprint.
We solved this problem in PaSSAT by nominating a primary thread to parse and
simplify the formula and to allocate the core data structures. Once the primary
thread finishes, it hands solving off to the secondary threads, which can then
jointly refer to the shared data structures.

5 Evaluation

We now present our experimental results3 of TaSSAT against similar algorithms.
Our baseline solvers are the original YalSAT (YalSAT-Prob); our DDFW-inspired,
YalSAT-based solver from previous work [9] (YalSAT-Lin); a YalSAT-based im-
plementation of DDFW (YalSAT-DDFW); and the UBCSAT implementation of
DDFW (UBCSAT-DDFW). We include two DDFW implementations to check
that the YalSAT version performs similarly to the UBCSAT one, despite being
implemented with a different base solver.

We ran these four solvers on two benchmark sets: a set of 5355 instances
from the 2022 SAT Competition’s anniversary track (the anni set) [1] cover-
ing instances from the previous 20 years of competition, and a set of nine van

2 TaSSAT source code is available at https://github.com/solimul/tassat.
3 Details are available at https://github.com/solimul/TACAS-24-solve_details.

https://github.com/solimul/tassat
https://github.com/solimul/TACAS-24-solve_details
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Fig. 2: Performance profiles for solver modifications on the anni benchmark set
show that TaSSAT significantly outperforms the others. Since all solvers can
quickly solve 600 instances, we start the y-axis at 600 to improve readability.

der Waerden number instances.4 For reproducibility, we set all randomization
seeds to 0. For the anni instances, we ran TaSSAT and our baseline solvers in
the StarExec Cluster [2] with a 5000-second timeout. For the van der Waeren
instances, we ran the parallel version of TaSSAT with and without the ProbSAT-
LiWeT option with a 48-hour timeout on the Bridges-2 cluster [?] with AMD
EPYC 7742 CPUs (128 cores, 512GB RAM).

Figure 2 illustrates our results for the anni dataset. TaSSAT performed the
best by solving 1040 problem instances, surpassing YalSAT-Lin, UBCSAT-DDFW,
YalSAT-DDFW, and YalSAT-Prob with 969, 874, 859, and 857 solved instances,
respectively. In particular, TaSSAT solved 71 more instances than YalSAT-Lin,
the solver from our previous work, showing that our algorithmic changes are,
in fact, improvements. The slight difference in solve counts between UBCSAT-
DDFW and YalSAT-DDFW (874 vs. 859) can be attributed to random noise.

Notably, TaSSAT exclusively solved 12 instances that no 2022 SAT Compe-
tition solver could. However, YalSAT-Prob, YalSAT-Lin, UBCSAT-DDFW, and
YalSAT-DDFW solved 73, 42, 40, and 38 anni instances, respectively, that TaS-
SAT could not.

We also present new lower bounds for van der Waerden numbers by running
PaSSAT. The van der Waerden number w(2; 3, t) is the smallest natural number n

4 Available at https://github.com/solimul/vdw9.

https://github.com/solimul/vdw9
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Table 1: Lower bounds for van der Waerden numbers w(2; 3, t).

t 31 32 33 34 35 36 37 38 39

Ahmed et al. [3] 930 1006 1063 1143 1204 1257 1338 1378 1418
Our work 953 1011 1071 1145 1208 1260 1341 1380 1419

where for any partition of {1, . . . , n} into P0 and P1, either P0 contains a 3-
term arithmetic progression or P1 contains a t-term arithmetic progression. In
Table 1, we present in the top row previously-known lower bounds for w(2; 3, t)
for 31 ≤ t ≤ 39.

The best lower bounds are obtained when PaSSAT leverages TaSSAT with the
activation of the ProbSAT-LiWeT toggle and integrates YalSAT-style restarts.
This configuration solves all 9 vdw benchmarks, pushing the lower bounds of
these 9 numbers to values that are highlighted in the bottom row of Table 1. In
contrast, using the default TaSSAT configuration, PaSSAT solves 7 vdw bench-
marks, establishing same lower bounds for all the numbers shown in the bottom
row of Table 1, except for w(2; 3, 32) and w(2; 3, 37). Hence, this version enhances
the lower bounds for w(2; 3, 32) and w(2; 3, 37) to 1010 and 1340, respectively,
just 1 short of their best-evaluated lower bounds. The performance of TaSSAT-
Prob-LiWeT compared to TaSSAT-LiWeT is evident in their respective average
PAR-2 scores, with values of 31,943 and 91,744.

Putting these results into perspective, Ahmed et al. [3] were unable to solve
any of these vdw instances, despite employing 29 algorithms and extensive par-
allelization. Notably, the best result attained by Ahmed et al. using only SLS
methods for w(2; 3, 31) was 919. We improved this bound to 953 These results
emphasize the unique algorithmic strengths of our solver.

In addition to improved solving, PaSSAT achieves significant memory reduc-
tion compared to our previous parallel solver [9]. Across the seven vdw bench-
marks solved by both PaSSAT and the parallel solver, the average memory re-
duction is substantial, decreasing from 3.2 GB to 686.17 MB, a nearly 80%
reduction. The reduction held even for the largest problem instance (t = 39),
where the memory footprint decreased by nearly 80%, from 4.42 GB to 966 MB.

Code and Data Availability Statement

The code and data that support the contributions of this work are openly avail-
able in the “Artifact for TaSSAT: A Stochastic Local Search Solver for SAT”
at https://zenodo.org/records/10042124 [8]. The authors confirm that the
data supporting the findings of this study are available within the article and
the artifact.

https://zenodo.org/records/10042124
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