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Satisfiability (SAT) Solving Has Many Applications

formal verification

planning and
scheduling

exploit
generation

automated
theorem proving
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term rewriting

termination

encode decodeSAT solver

There are very hard problems in all these application areas!
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Combinatorial Equivalence Checking

Chip makers use SAT to check the correctness of their designs.
Equivalence checking involves comparing a specification with
an implementation or an optimized with a non-optimized circuit.
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Unavoidable Monochromatic Solutions [Schur 1917]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a+ b = c?

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a3 + b3 = c3? No

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a2 + b2 = c2? Maybe

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402
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Pythagorean Triples Problem [Ronald Graham, early 1980s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) ∧ (¬xa ∨ ¬xb ∨ ¬xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].
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A Monochromatic-Free Coloring of Maximal Size
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Enormous Progress in the Last Two Decades

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key

technology of the 21st century”

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems”
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SAT Solver Paradigms

Conflict-driven clause learning (CDCL):

I Makes fast decisions;

I Converts conflicting assignments into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Look-ahead:

I Aims at finding a small binary search-tree;

I Splits the formula by looking ahead.

Strength: Effective on small, hard formulas.

Weakness: Expensive.
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Portfolio Solvers

The most commonly used parallel solving paradigm is portfolio:

I Run multiple (typically identical) solvers with different
configurations on the same formula; and

I Share clauses among the solvers.

F CDCL

CDCL

CDCL

The portfolio approach is effective on large “easy” problems,
but has difficulties to solve hard problems (out of memory).
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Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere 2011]

The Cube-and-Conquer paradigm has two phases:

Cube First, a look-ahead solver is employed to split the
problem—the splitting tree is cut off appropriately.

Conquer At the leaves of the tree, CDCL solvers are employed.

F

CDCL

F1

CDCL

F2

CDCL

. . .

CDCL

FN−1

CDCL

FN

Cube-and-Conquer achieves a near-equal splitting and the
sub-problems are scheduled independently (easy parallel CDCL).
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The Hidden Strength of Cube-and-Conquer

Let N denote the number of leaves in the cube-phase:

I the case N = 1 means pure CDCL,
I and very large N means pure look-ahead.

Consider the total run-time (y-axis) in dependency on N (x-axis):
I typically, first it increases, then
I it decreases, but only for a large number of subproblems!

Example with Schur Triples
and 5 colors: a formula with
708 vars and 22608 clauses.

The performance tends to be
optimal when the cube and
conquer times are comparable.
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Variant 1: Concurrent Cube-and-Conquer

The main heuristic challenge is deciding when to cut:

I Cutting too early results in hard subproblems for CDCL,
thereby limiting the speed-up by parallelization (and the
hidden strength).

I Cutting too late adds redundant lookahead costs.

Idea: Run a CDCL solver in parallel with the look-ahead solver:

I Both solvers work on the same subformula (assignment)

I Lookahead computes a good splitting variable

I Meanwhile CDCL tries to solve the subproblem

I The first solver that finishes determines the next step:
A lookahead win → split, a CDCL win → backtrack.
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Variant 2: Cubes on Demand

Only split when CDCL cannot quickly solve a (sub)problem.

I Split when a certain limit is reach, say 10,000 conflicts —
a dynamic limit works best in practice.

I The cores focus on solving the easier subproblems — the
smallest formulas after propagating the cube units.

Treengeling by Armin Biere is based on cubes on demand.

I Implements splitting by cloning the solver.

I Adds two solvers running on the original formula in parallel.

Treengeling won the parallel track of SAT Competition 2016.
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Pythagorean Triples Results Summary [Heule et al. 2016]

I Almost linear speed-ups even when using 1000s of cores;

I The total computation was about 4 CPU years, but less
than 2 days in wallclock time using 800 cores;

I If we use all 110 000 cores of TACC’s Stampede cluster,
then the problem can be solved in less than an hour;

I Reduced the trivial 27825 cases to roughly 240 cases.

Comparison with state-of-the-art solver Treengeling (T)
(estimations based on Pythagorean Triples subproblems):

I T requires at least two orders of magnitude more CPU time;

I T’s scaling is not linear: 100x speedup using 1000 cores;

I Using 1000 cores, T would use ∼40,000 hours wallclock time.
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Motivation for Validating Proofs of Unsatisfiability

SAT solvers may have errors and only return yes/no.

I Documented bugs in SAT, SMT, and QSAT solvers;
[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors;

I Proofs now mandatory for the annual SAT Competitions;

I Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be verifiable.
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Overview of Solving Framework with Proof Verification

1: encode 2: re-encode 3: split 4: solve

5: validate

cubes

encoder

original
formula

re-encoded
formula

re-encoding
proof

tautology
proof

cube
proofs
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Phase 5: Validate Pythagorean Triples Proofs

5: validate

original
formula

re-encoding
proof

tautology
proof

cube
proofs

The size of the merged proof is almost 200 terabyte and has
been validated in 16,000 CPU hours.

Proofs can be validated in parallel [Heule and Biere 2015].

The proof has recently been certified using verified checkers.
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Conclusions

Parallel SAT solving has been very successful:

I Industry uses SAT for hardware verification tasks;

I Long-standing open math problems can now be solved;

I The results can be certified using highly-trusted systems.

There is a bright future with interesting challenges:

I How to deal with hard software verification problems?

I Can machine learning be used to improve performance?

I How to create a parallel SAT solver with linear time
speedups on a wide spectrum of problems using many
thousands of cores (working out of the box)?
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