
1/38

Everything’s Bigger in Texas
The Largest Math Proof Ever

Solving and Verifying the Boolean Pythagorean

Triples problem via Cube-and-Conquer

Marijn J.H. Heule

Joint work with Oliver Kullmann and Victor W. Marek

Rice University August 24, 2016

2/38

The Rise of Brute Reason

I can stand brute force, but brute reason is quite unbearable.
It is hitting below the intellect. Oscar Wilde, 1890

Hilbert’s Program (1900) on formalizing all mathematics and
proving its consistency by very simple means.

Gödel’s Incompleteness Theorem (1931) seemed to destroy the
positive spirit of the time.

The mental work of a mathematician concerning Yes-or-No
questions could be completely replaced by a machine.

Kurt Gödel in a letter to Von Neumann, 1956

Cook’s Theorem (1971) on the NP-completeness of SAT
tempered the hope of solving all decision problems efficiently.

Now SAT solving has emerged as a disruptive technology
turning the fear of “you can’t solve it!” into “solve it with SAT!”

2/38

The Rise of Brute Reason

I can stand brute force, but brute reason is quite unbearable.
It is hitting below the intellect. Oscar Wilde, 1890

Hilbert’s Program (1900) on formalizing all mathematics and
proving its consistency by very simple means.

Gödel’s Incompleteness Theorem (1931) seemed to destroy the
positive spirit of the time.

The mental work of a mathematician concerning Yes-or-No
questions could be completely replaced by a machine.

Kurt Gödel in a letter to Von Neumann, 1956

Cook’s Theorem (1971) on the NP-completeness of SAT
tempered the hope of solving all decision problems efficiently.

Now SAT solving has emerged as a disruptive technology
turning the fear of “you can’t solve it!” into “solve it with SAT!”

2/38

The Rise of Brute Reason

I can stand brute force, but brute reason is quite unbearable.
It is hitting below the intellect. Oscar Wilde, 1890

Hilbert’s Program (1900) on formalizing all mathematics and
proving its consistency by very simple means.

Gödel’s Incompleteness Theorem (1931) seemed to destroy the
positive spirit of the time.

The mental work of a mathematician concerning Yes-or-No
questions could be completely replaced by a machine.

Kurt Gödel in a letter to Von Neumann, 1956

Cook’s Theorem (1971) on the NP-completeness of SAT
tempered the hope of solving all decision problems efficiently.

Now SAT solving has emerged as a disruptive technology
turning the fear of “you can’t solve it!” into “solve it with SAT!”

2/38

The Rise of Brute Reason

I can stand brute force, but brute reason is quite unbearable.
It is hitting below the intellect. Oscar Wilde, 1890

Hilbert’s Program (1900) on formalizing all mathematics and
proving its consistency by very simple means.

Gödel’s Incompleteness Theorem (1931) seemed to destroy the
positive spirit of the time.

The mental work of a mathematician concerning Yes-or-No
questions could be completely replaced by a machine.

Kurt Gödel in a letter to Von Neumann, 1956

Cook’s Theorem (1971) on the NP-completeness of SAT
tempered the hope of solving all decision problems efficiently.

Now SAT solving has emerged as a disruptive technology
turning the fear of “you can’t solve it!” into “solve it with SAT!”

3/38

Satisfiability (SAT) solving has many applications

formal verification

planning

graph theory

combinatorics

bioinformatics

cryptography

train safety

rewrite termination

encode decodeSAT solver

Main challenges regarding solving hard problems using SAT:

I Can we achieve linear speedups on multi-core systems?

I Can we produce proofs to gain confidence in the results?

3/38

Satisfiability (SAT) solving has many applications

formal verification

planning

graph theory

combinatorics

bioinformatics

cryptography

train safety

rewrite termination

encode decodeSAT solver

Main challenges regarding solving hard problems using SAT:

I Can we achieve linear speedups on multi-core systems?

I Can we produce proofs to gain confidence in the results?

4/38

Pythagorean Triples Problem

The Art of SAT Solving

Producing and Verifying the Largest Math Proof

Media, Meaning, and Truth

Conclusions and Future Work

5/38

Pythagorean Triples Problem

6/38

Schur’s Theorem [Schur 1917]

Can the set of natural numbers N = {1, 2, 3, . . . } be k-colored
such that there is no monochromatic solution of a+b=c with
a < b < c? Else, what is the smallest [1, n] counterexample?

Consider the case k = 2 with the colors named red and blue:

2 3 → 1 2 3 5 → 1 2 3 4 5 6 → ×

decide
1 + 2 = 3 1 + 4 = 5

2 + 4 = 6
2 + 3 = 5 1 + 5 = 6

Theorem (Schur’s Theorem)

For each k > 0, there exists a number S(k), known as Schur
number, such that there exists a k-coloring of [1, S(k)]
without a monochromatic solution of a + b = c with
a, b, c ≤ S(k), while this is impossible for [1, S(k)+1].

6/38

Schur’s Theorem [Schur 1917]

Can the set of natural numbers N = {1, 2, 3, . . . } be k-colored
such that there is no monochromatic solution of a+b=c with
a < b < c? Else, what is the smallest [1, n] counterexample?

Consider the case k = 2 with the colors named red and blue:

2 3 → 1 2 3 5 → 1 2 3 4 5 6 → ×

decide
1 + 2 = 3 1 + 4 = 5

2 + 4 = 6
2 + 3 = 5 1 + 5 = 6

Theorem (Schur’s Theorem)

For each k > 0, there exists a number S(k), known as Schur
number, such that there exists a k-coloring of [1, S(k)]
without a monochromatic solution of a + b = c with
a, b, c ≤ S(k), while this is impossible for [1, S(k)+1].

6/38

Schur’s Theorem [Schur 1917]

Can the set of natural numbers N = {1, 2, 3, . . . } be k-colored
such that there is no monochromatic solution of a+b=c with
a < b < c? Else, what is the smallest [1, n] counterexample?

Consider the case k = 2 with the colors named red and blue:

2 3 → 1 2 3 5 → 1 2 3 4 5 6 → ×

decide
1 + 2 = 3 1 + 4 = 5

2 + 4 = 6
2 + 3 = 5 1 + 5 = 6

Theorem (Schur’s Theorem)

For each k > 0, there exists a number S(k), known as Schur
number, such that there exists a k-coloring of [1, S(k)]
without a monochromatic solution of a + b = c with
a, b, c ≤ S(k), while this is impossible for [1, S(k)+1].

7/38

Pythagorean Triples Problem [Graham]

Can the set of natural numbers N = {1, 2, 3, . . . } be colored
with red and blue such that there is no monochromatic
Pythagorean triple (a, b, c ∈ N with a2 + b2 = c2)?
Otherwise, what is the smallest [1, n] counterexample?

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is yes [PhD thesis, 2015].

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean triple a2 + b2 = c2

two clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving + proof logging)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].

7/38

Pythagorean Triples Problem [Graham]

Can the set of natural numbers N = {1, 2, 3, . . . } be colored
with red and blue such that there is no monochromatic
Pythagorean triple (a, b, c ∈ N with a2 + b2 = c2)?
Otherwise, what is the smallest [1, n] counterexample?

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is yes [PhD thesis, 2015].

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean triple a2 + b2 = c2

two clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving + proof logging)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].

7/38

Pythagorean Triples Problem [Graham]

Can the set of natural numbers N = {1, 2, 3, . . . } be colored
with red and blue such that there is no monochromatic
Pythagorean triple (a, b, c ∈ N with a2 + b2 = c2)?
Otherwise, what is the smallest [1, n] counterexample?

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is yes [PhD thesis, 2015].

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean triple a2 + b2 = c2

two clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving + proof logging)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].

8/38

An Extreme Solution (a valid partition of [1, 7824]) I

10001000

20002000

30003000

40004000

50005000

60006000

70007000

1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

1

101

201

301

401

501

2

102

202

302

402

502

3

103

203

303

403

503

4

104

204

304

404

504

5

105

205

305

405

505

6

106

206

306

306

10001000

20002000

30003000

40004000

50005000

60006000

70007000

1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

1

101

201

301

401

501

2

102

202

302

402

502

3

103

203

303

403

503

4

104

204

304

404

504

5

105

205

305

405

505

6

106

206

306

306

10001000

20002000

30003000

40004000

50005000

60006000

70007000

1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

9/38

Main Contribution

We present a framework that combines, for the first time, all
pieces to realize linear speedups and produce verifiable SAT
results for very hard problems.

The status quo of using combinatorial solvers and years of
computation is arguably intolerable for mathematicians:

I Kouril and Paul [2008] computed the sixth van der
Waerden number — vdW (6, 6) = 1132 — using dedicated
hardware without producing a proof.

I McKay’s and Radziszowski’s big result [1995] in Ramsey
Theory — R(4, 5) = 25 — still cannot be reproduced with
methods that can be validated.

We demonstrate our framework on the Pythagorean triples
problem, potentially the hardest problem solved with SAT yet.

10/38

The Art of SAT Solving

11/38

Enormous Progress in the Last Two Decades

Formulas with 100’s of variables and 1,000’s of clauses were
solvable in the mid-nineties to formulas with 100,000’s of
variables to 1,000,000’s of clauses now.

12/38

The Boolean Schur Triples Problem F9

Can the set {1, . . . , n} be red/blue colored such that there is
no monochromatic solution of a + b = c with a < b < c?
Below the encoding of this problem with n = 9 (formula F9):

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x̄4) ∧
(x1 ∨ x4 ∨ x5) ∧ (x̄1 ∨ x̄4 ∨ x̄5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x̄2 ∨ x̄3 ∨ x̄5) ∧
(x1 ∨ x5 ∨ x6) ∧ (x̄1 ∨ x̄5 ∨ x̄6) ∧ (x2 ∨ x4 ∨ x6) ∧ (x̄2 ∨ x̄4 ∨ x̄6) ∧
(x1 ∨ x6 ∨ x7) ∧ (x̄1 ∨ x̄6 ∨ x̄7) ∧ (x2 ∨ x5 ∨ x7) ∧ (x̄2 ∨ x̄5 ∨ x̄7) ∧
(x3 ∨ x4 ∨ x7) ∧ (x̄3 ∨ x̄4 ∨ x̄7) ∧ (x1 ∨ x7 ∨ x8) ∧ (x̄1 ∨ x̄7 ∨ x̄8) ∧
(x2 ∨ x6 ∨ x8) ∧ (x̄2 ∨ x̄6 ∨ x̄8) ∧ (x3 ∨ x5 ∨ x8) ∧ (x̄3 ∨ x̄5 ∨ x̄8) ∧
(x1 ∨ x8 ∨ x9) ∧ (x̄1 ∨ x̄8 ∨ x̄9) ∧ (x2 ∨ x7 ∨ x9) ∧ (x̄2 ∨ x̄7 ∨ x̄9) ∧
(x3 ∨ x6 ∨ x9) ∧ (x̄3 ∨ x̄6 ∨ x̄9) ∧ (x4 ∨ x5 ∨ x9) ∧ (x̄4 ∨ x̄5 ∨ x̄9)

Is this formula satisfiable?

13/38

Unit Clause Propagation and Search Tree

Unit Clause Propagation (UCP or `1) assigns unit clauses —all
literals, but one are assigned to false— till fixpoint or conflict.

Example

Consider the following clauses occurring in F9:

(x1∨��x2∨��x3), (��x2∨��x3∨x5), (��̄x1∨x̄4∨��̄x5), (��x2∨��x4∨x6), (��̄x1∨��̄x5∨��̄x6)

F9 ∧ (x̄2) ∧ (x̄3) `1 (x1), (x5), (x̄4), (x6),⊥

A binary search-tree with
only six leaves is enough
to refute F9 with UCP. . .

. . . , but this requires good
variable selection heuristics
for the decision variables
(the internal nodes).

x2

x3 x3

`1⊥ `1⊥x5 x5

`1⊥ `1⊥ `1⊥ `1⊥

13/38

Unit Clause Propagation and Search Tree

Unit Clause Propagation (UCP or `1) assigns unit clauses —all
literals, but one are assigned to false— till fixpoint or conflict.

Example

Consider the following clauses occurring in F9:

(x1∨��x2∨��x3), (��x2∨��x3∨x5), (��̄x1∨x̄4∨��̄x5), (��x2∨��x4∨x6), (��̄x1∨��̄x5∨��̄x6)

F9 ∧ (x̄2) ∧ (x̄3) `1 (x1), (x5), (x̄4), (x6),⊥

A binary search-tree with
only six leaves is enough
to refute F9 with UCP. . .

. . . , but this requires good
variable selection heuristics
for the decision variables
(the internal nodes).

x2

x3 x3

`1⊥ `1⊥x5 x5

`1⊥ `1⊥ `1⊥ `1⊥

14/38

SAT Solver Paradigms

Local search: Given a full assignment ϕ for a formula F , flip
the truth value of variables until the ϕ satisfies F .

Strength: Can quickly find solutions, even for hard formulas.

Weakness: Cannot prove unsatisfiability.

Look-ahead: Aims at finding a small binary search-tree by
selection effective splitting variables by looking ahead.

Strength: Produces small search-trees, even for hard formulas.

Weakness: Expensive and can only find tree-based refutations.

Conflict-driven clause learning (CDCL): Assigns variables until
a clause gets falsified, turns this conflict into a learned clause,
which is added to the formula, and restarts with new heuristics.

Strength: Can quickly find refutations, even for huge formulas.

Weakness: Point of competence and hard to parallelize.

14/38

SAT Solver Paradigms

Local search: Given a full assignment ϕ for a formula F , flip
the truth value of variables until the ϕ satisfies F .

Strength: Can quickly find solutions, even for hard formulas.

Weakness: Cannot prove unsatisfiability.

Look-ahead: Aims at finding a small binary search-tree by
selection effective splitting variables by looking ahead.

Strength: Produces small search-trees, even for hard formulas.

Weakness: Expensive and can only find tree-based refutations.

Conflict-driven clause learning (CDCL): Assigns variables until
a clause gets falsified, turns this conflict into a learned clause,
which is added to the formula, and restarts with new heuristics.

Strength: Can quickly find refutations, even for huge formulas.

Weakness: Point of competence and hard to parallelize.

14/38

SAT Solver Paradigms

Local search: Given a full assignment ϕ for a formula F , flip
the truth value of variables until the ϕ satisfies F .

Strength: Can quickly find solutions, even for hard formulas.

Weakness: Cannot prove unsatisfiability.

Look-ahead: Aims at finding a small binary search-tree by
selection effective splitting variables by looking ahead.

Strength: Produces small search-trees, even for hard formulas.

Weakness: Expensive and can only find tree-based refutations.

Conflict-driven clause learning (CDCL): Assigns variables until
a clause gets falsified, turns this conflict into a learned clause,
which is added to the formula, and restarts with new heuristics.

Strength: Can quickly find refutations, even for huge formulas.

Weakness: Point of competence and hard to parallelize.

15/38

Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere 2011]

The Cube-and-Conquer paradigm has two phases:

Cube First a look-ahead solver is employed to split the
problem — the splitting tree is cut off appropriately.

Conquer At the leaves of the tree, CDCL solvers are employed.

F

CDCL

F1

CDCL

F2

CDCL

. . .

CDCL

FN−1

CDCL

FN

Cube-and-Conquer achieves a good equal splitting and the
sub-problems are scheduled independently (easy parallel CDCL).

16/38

The Hidden Strength of Cube-and-Conquer

Let N denote the number of leaves in the cube-phase:

I the case N = 1 means pure CDCL,
I and very large N means pure look-ahead.

Consider the total run-time (y-axis) in dependency on N (x-axis):
I typically, first it increases, then
I it decreases, but only for a large number of subproblems!

Example with Schur Triples
and 5 colors: a formula with
708 vars and 22608 clauses.

Subproblems are solved with
Glucose 3.0 as conquer solver.

The performance tends to be
optimal when the cube and
conquer times are comparable.

17/38

Pythagorean Triples Results Summary

I After splitting —into a million subproblems— there were
no hard subproblems: each could be solved within 1000 s;

I We used 800 cores on the
TACC Stampede cluster;

I The total computation was
about 4 CPU years, but less
than 2 days in wallclock time;

I If we use all 110 000 cores,
then the problem can be
solved in less than an hour;

I Almost linear speed-ups even
when using 1000’s of cores;

I Reduced the trivial 27825 to roughly 240.

18/38

Producing and Verifying the
Largest Math Proof Ever

19/38

Motivation for validating unsatisfiability proofs

Satisfiability solvers are used in amazing ways...

I Hardware and software verification (Intel and Microsoft)
I Hard-Combinatorial problems:

I van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]

I Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]

I Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

..., but SAT solvers may have errors and only return yes/no.

I Documented bugs in SAT, SMT, and QBF solvers
[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors

I Proofs now mandatory for the annual SAT Competitions.

I Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be checkable.

20/38

Proofs and Refutations

A clause C is solutions-preserving with respect to a formula F
if all solutions of F satisfy C (denoted by ≡).

A proof trace is a sequence of solutions-preserving clauses.
Solutions-preserving should be checkable in polynomial time.

Formula

≡ ≡ ≡ ≡

⊥

Proof

A refutation is a proof trace containing the empty clause, ⊥.

20/38

Proofs and Refutations

A clause C is solutions-preserving with respect to a formula F
if all solutions of F satisfy C (denoted by ≡).

A proof trace is a sequence of solutions-preserving clauses.
Solutions-preserving should be checkable in polynomial time.

Formula ≡

≡ ≡ ≡

⊥

Proof

A refutation is a proof trace containing the empty clause, ⊥.

20/38

Proofs and Refutations

A clause C is solutions-preserving with respect to a formula F
if all solutions of F satisfy C (denoted by ≡).

A proof trace is a sequence of solutions-preserving clauses.
Solutions-preserving should be checkable in polynomial time.

Formula ≡ ≡

≡ ≡

⊥

Proof

A refutation is a proof trace containing the empty clause, ⊥.

20/38

Proofs and Refutations

A clause C is solutions-preserving with respect to a formula F
if all solutions of F satisfy C (denoted by ≡).

A proof trace is a sequence of solutions-preserving clauses.
Solutions-preserving should be checkable in polynomial time.

Formula ≡ ≡ ≡

≡

⊥

Proof

A refutation is a proof trace containing the empty clause, ⊥.

20/38

Proofs and Refutations

A clause C is solutions-preserving with respect to a formula F
if all solutions of F satisfy C (denoted by ≡).

A proof trace is a sequence of solutions-preserving clauses.
Solutions-preserving should be checkable in polynomial time.

Formula ≡ ≡ ≡ ≡

⊥

Proof

A refutation is a proof trace containing the empty clause, ⊥.

20/38

Proofs and Refutations

A clause C is solutions-preserving with respect to a formula F
if all solutions of F satisfy C (denoted by ≡).

A proof trace is a sequence of solutions-preserving clauses.
Solutions-preserving should be checkable in polynomial time.

Formula ≡ ≡ ≡ ≡

⊥

Proof

A refutation is a proof trace containing the empty clause, ⊥.

21/38

Solutions-Preserving Modulo x

Let ϕ be an assignment and x a literal. We denote with ϕ⊗ x
a copy of ϕ in which the assignment to x is flipped. If ϕ does
not assign x , then ϕ⊗ x assigns x to true.

A clause C is solutions-preserving modulo x (SPMx) with
respect to a formula F if and only if for every solution ϕ of F ,
ϕ or ϕ⊗ x satisfies F and C .

Example

Consider the formula F = (x ∨ y)∧ (x ∨ ȳ). The clause (x̄ ∨ y)
is solutions-preserving modulo y with respect to F . F has two
solutions ϕ1 := {x = 1, y = 1} and ϕ2 := {x = 1, y = 0}.
ϕ1 satisfies C (and F) and ϕ2 ⊗ y satisfies F and C .

All techniques in state-of-the-art SAT solvers can be expressed
using SPMx steps [Järvisalo, Heule, and Biere 2012].

22/38

Overview of Solving Framework

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

23/38

Phase 1: Encode

Input: encoder program

Output: the “original” CNF formula

Goal: make the translation to
SAT as simple as possible

1: encode

encoder

original
formulafor (int a = 1; a <= n; a++)

for (int b = a; b <= n; b++) {

int c = sqrt (a*a + b*b);

if ((c <= n) && ((a*a + b*b) == (c*c))) {

addClause (a, b, c);

addClause (-a, -b, -c); } }

F7824 has 6492 (occurring) variables and 18930 clauses, and
F7825 has 6494 (occurring) variables and 18944 clauses.

Notice F7825 = F7824 + 14 clauses. These 14 make it UNSAT.

24/38

Phase 2: Transform

Input: original CNF formula

Output: transformed formula
and transformation proof

Goal: optimize the formula for
the later (solving) phases

2: transform

original
formula

transformed
formula

transform
proof

We applied two transformations (via SPMx):

I Pythagorean Triple Elimination removes Pythagorean
Triples that contain an element that does not occur in any
other Pythagorean Triple, e.g. 32 + 42 = 52 (till fixpoint).

I Symmetry breaking colors the number most frequently
occurring in Pythagorean triples (2520) red.

All transformation (pre-processing) techniques can be
expressed using SPMx steps [Järvisalo, Heule, and Biere 2012].

25/38

Phase 3: Split

Input: transformed formula

Output: cubes and tautology proof

Goal: partition the given formula to
minimize total wallclock time

Two layers of splitting F7824:

I The top level split partitions
the transformed formula into
exactly a million subproblems;

I Each subproblem is
partitioned into tens of
thousands of subsubproblems.
Total time: 25,000 CPU hours

x5

x2x3

x7 x3

x6

ft

f t

ft

t f

t f

f t

D = (x5 ∧ x̄3) ∨
(x5 ∧ x3 ∧ x7) ∨
(x5 ∧ x3 ∧ x̄7) ∨
(x̄5 ∧ x2) ∨
(x̄5 ∧ x̄2 ∧ x3 ∧ x̄6) ∨
(x̄5 ∧ x̄2 ∧ x3 ∧ x6) ∨
(x̄5 ∧ x̄2 ∧ x̄3)

26/38

Phase 4: Solve

Input: transformed formula and cubes

Output: cube proofs (or a solution)

Goal: solve —with proof logging—
all subproblems as fast as possible

4: solve

cubes

transformed
formula

cube proofs
Let ϕi be the i th cube with i ∈ [1, 1 000 000].

We first solved all F7824 ∧ ϕi , total runtime was 13, 000 CPU
hours or, just a wall-clock day). One subproblem is satisfiable.

The backbone of a formula is the set of literals that are
assigned to true in all solutions. The backbone of F7824 after
symmetry breaking (2520) consists of 2304 literals, including

I x5180 and x5865, while 51802 + 58652 = 78252 → 7825

I x̄625 and x̄7800, while 6252 + 78002 = 78252 → 7825

27/38

Phase 5: Validate Pythagorean Triples Proofs

5: validate

original
formula

transform
proof

tautology
proof

cube
proofs

We check the proofs with the DRAT-trim checker, which has
been used to validate the UNSAT results of the international
SAT Competitions since 2013.

Recently it was shown how to validate DRAT proofs in
parallel [Heule and Biere 2015].

The size of the merged proof is almost 200 terabyte and has
been validated in 16,000 CPU hours.

28/38

Overview of Solving Framework: Contributions

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

[HVC 2011]

[LPAR 2010]

[JAR 2012]

[JAIR 2015]

[CADE 2012]

[JSAT 2011]

[APPA 2014]

[HVC 2012]

[ITP 2013]

[FMCAD 2013][SAT 2014]
[STVR 2014]

[LPAR 2015]

[ICGI 2010]

Joint work with: Armin Biere, Warren Hunt, Matti Järvisalo, Oliver
Kullmann, Florian Lonsing, Victor Marek, Martina Seidl, Antonio Ramos,
Peter van der Tak, Sicco Verwer, Nathan Wetzler and Siert Wieringa.

29/38

Media, Meaning, and Truth

30/38

Media: The Largest Math Proof Ever

31/38

Mathematics versus Computer Science

A typical argument, as articulated in the Nature 543, pp 17–18:

If mathematicians’ work is understood to be a quest
to increase human understanding of mathematics,
rather than to accumulate an ever-larger collection of
facts, a solution that rests on theory seems superior to
a computer ticking off possibilities.

Widespread missing understanding of computer science:

I Computers do not simply “tick off
possibilities”;

I The “possibilities” are non-trivial, and
simple algorithms might take forever;

I The complexity issues touched here might
be far more interesting/relevant than the
concrete result in Ramsey theory.

32/38

Perhaps meaningless is the true meaning?

Facts may be meaningless, but...

I The “computer ticking off possibilities” is actually quite a
sophisticated thing here, and is absolutely crucial for the
analysis for example of the correctness of microprocessors.

I For some not yet understood reasons it seems that these
benchmarks from the field of Ramsey theory are relevant
for the perhaps most fundamental question in computer
science: what makes a problem hard (P vs NP)?

Perhaps it is precisely that the fact 7825 has
no meaning, which makes these computational
problems meaningful – the bugs in the designs
of complicated artificial systems also have no
meaning!

33/38

Alien Truths

Let’s call alien a true statement (best rather
short) with only a very long proof.

I Already the question, whether we can show
something (like our case) to be alien, is of
highest relevance. There may be a short
proof for the Pythagorean Triples problem,
but probably not for exact bound of 7825.

I But independently, such “alien truths” or “alien
questions” arise in formal contexts, where large
propositional formulas come out from engineering systems,
which in its complexity, especially what concerns “small”
bugs, is perhaps beyond “understanding”.
Mathematicians dislike “nitty-gritty details”, but prefer
“the big picture” (handwaving).

34/38

Human and Alien Truth Hierarchy

Human Classical math proofs, e.g. Schur’s Theorem.

Weakly Human Proofs with a large human component and
some computer effort, e.g. Four Color Theorem.

Weakly Alien A giant humanly generated case-split, e.g.
minimum number of givens is 17 in Sudoku.

Alien A giant case-split that mysteriously avoids an
enormous exponential effort, e.g. the sixth van
der Waerden number, vdW(6,6), is 1132.

Strongly Alien An alien truth regarding a high-level statement,
e.g. any two-coloring of the natural numbers
yields a monochromatic Pythagorean triple.

The traditional interest is to search for a short proof. But
perhaps the question, why there isn’t one, or what makes the
problem hard, is the real question here?

35/38

Conclusions and Future Work

36/38

Conclusions

Theorem (Main result)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].

We solved and verified the theorem via SAT solving:

I Cube-and-conquer facilitated massive parallel solving.

I A new heuristic was developed to substantially reduce the
search space. Moreover the heuristic facilitated almost
linear speed-ups while using 800 cores.

I The proof is huge (200 terabyte), but can be compressed
to 68 gigabyte (13,000 CPU hours to decompress) and be
validated in 16,000 CPU hours.

37/38

Future Directions

Apply our solving framework to other challenges in Ramsey
Theory and elsewhere:

I Century-old open problems appear solvable now. Very
recent result: Schur number 5 is 160.

I Produce proofs for existing results without a proof, for
example vdW(6,6) = 1132 [Kouril and Paul 2008].

Evaluate the influence of the interval [1, n] with n ≥ 7825 on
the size of the proof of the Pythagorean triples problem.

Look-ahead heuristics are crucial and we had to develop
dedicated heuristics to solve the Pythagorean triples problem.

I Develop powerful heuristics that work out of the box.

I Alternatively, add heuristic-tuning techniques to the tool
chain [Hoos 2012].

Develop a mechanically-verified, fast clausal proof checker.

38/38

Everything’s Bigger in Texas
The Largest Math Proof Ever

Solving and Verifying the Boolean Pythagorean

Triples problem via Cube-and-Conquer

Marijn J.H. Heule

Joint work with Oliver Kullmann and Victor W. Marek

Rice University August 24, 2016

	Pythagorean Triples Problem
	The Art of SAT Solving
	Producing and Verifying the Largest Math Proof
	Media, Meaning, and Truth
	Conclusions and Future Work

