Local Search for Fast Matrix Multiplication

Marijn Heule, Manuel Kauers, and Martina Seidl

Starting at Carnegie Mellon University in August

SAT 2019 Conference, Lisbon July 9, 2019

Matrix Multiplication: Introduction

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right) \\
& c_{1,1}=a_{1,1} \cdot b_{1,1}+a_{1,2} \cdot b_{2,1} \\
& c_{1,2}=a_{1,1} \cdot b_{1,2}+a_{1,2} \cdot b_{2,2} \\
& c_{2,1}=a_{2,1} \cdot b_{1,1}+a_{2,2} \cdot b_{2,1} \\
& c_{2,2}=a_{2,1} \cdot b_{1,2}+a_{2,2} \cdot b_{2,2}
\end{aligned}
$$

Matrix Multiplication: Introduction

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right) \\
& c_{1,1}=M_{1}+M_{4}-M_{5}+M_{7} \\
& c_{1,2}=M_{3}+M_{5} \\
& c_{2,1}=M_{2}+M_{4} \\
& c_{2,2}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Matrix Multiplication: Introduction

$$
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right)
$$

... where

$$
\begin{aligned}
& M_{1}=\left(a_{1,1}+a_{2,2}\right) \cdot\left(b_{1,1}+b_{2,2}\right) \\
& M_{2}=\left(a_{2,1}+a_{2,2}\right) \cdot b_{1,1} \\
& M_{3}=a_{1,1} \cdot\left(b_{1,2}-b_{2,2}\right) \\
& M_{4}=a_{2,2} \cdot\left(b_{2,1}-b_{1,1}\right) \\
& M_{5}=\left(a_{1,1}+a_{1,2}\right) \cdot b_{2,2} \\
& M_{6}=\left(a_{2,1}-a_{1,1}\right) \cdot\left(b_{1,1}+b_{1,2}\right) \\
& M_{7}=\left(a_{1,2}-a_{2,2}\right) \cdot\left(b_{2,1}+b_{2,2}\right)
\end{aligned}
$$

Matrix Multiplication: Introduction

$$
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right)
$$

- This scheme needs 7 multiplications instead of 8 .

Matrix Multiplication: Introduction

$$
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right)
$$

- This scheme needs 7 multiplications instead of 8 .
- Recursive application allows to multiply $n \times n$ matrices with $\mathcal{O}\left(n^{\log _{2} 7}\right)$ operations in the ground ring.

Matrix Multiplication: Introduction

$$
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right)
$$

- This scheme needs 7 multiplications instead of 8 .
- Recursive application allows to multiply $n \times n$ matrices with $\mathcal{O}\left(n^{\log _{2} 7}\right)$ operations in the ground ring.
- Let ω be the smallest number so that $n \times n$ matrices can be multiplied using $\mathcal{O}\left(n^{\omega}\right)$ operations in the ground domain.

Matrix Multiplication: Introduction

$$
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right)
$$

- This scheme needs 7 multiplications instead of 8 .
- Recursive application allows to multiply $n \times n$ matrices with $\mathcal{O}\left(n^{\log _{2} 7}\right)$ operations in the ground ring.
- Let ω be the smallest number so that $n \times n$ matrices can be multiplied using $\mathcal{O}\left(n^{\omega}\right)$ operations in the ground domain.
- Then $2 \leq \omega<3$. What is the exact value?

Efficient Matrix Multiplication: Theory

- Strassen 1969:

$$
\omega \leq \log _{2} 7 \leq 2.807
$$

Efficient Matrix Multiplication: Theory

- Strassen 1969:
- Pan 1978:
- Bini et al. 1979:
$\omega \leq \log _{2} 7 \leq 2.807$
$\omega \leq 2.796$
$\omega \leq 2.7799$
- Schönhage 1981:
$\omega \leq 2.522$
- Romani 1982:
$\omega \leq 2.517$
- Coppersmith/Winograd 1981: $\omega \leq 2.496$
- Strassen 1986:
- Coppersmith/Winograd 1990: $\omega \leq 2.376$

Efficient Matrix Multiplication: Theory

- Strassen 1969:
- Pan 1978:
- Bini et al. 1979:
- Schönhage 1981:
- Romani 1982:
- Coppersmith/Winograd 1981:
- Strassen 1986:
- Coppersmith/Winograd 1990:
- Stothers 2010:
- Williams 2011:
- Le Gall 2014:
$\omega \leq \log _{2} 7 \leq 2.807$
$\omega \leq 2.796$
$\omega \leq 2.7799$
$\omega \leq 2.522$
$\omega \leq 2.517$
$\omega \leq 2.496$
$\omega \leq 2.479$
$\omega \leq 2.376$
$\omega \leq 2.374$
$\omega \leq 2.3728642$
$\omega \leq 2.3728639$

Efficient Matrix Multiplication: Practice

- Only Strassen's algorithm beats the classical algorithm for reasonable problem sizes.

Efficient Matrix Multiplication: Practice

- Only Strassen's algorithm beats the classical algorithm for reasonable problem sizes.
- Want: a matrix multiplication algorithm that beats Strassen's algorithm for matrices of moderate size.

Efficient Matrix Multiplication: Practice

- Only Strassen's algorithm beats the classical algorithm for reasonable problem sizes.
- Want: a matrix multiplication algorithm that beats Strassen's algorithm for matrices of moderate size.
- Idea: instead of dividing the matrices into 2×2-block matrices, divide them into 3×3-block matrices.

Efficient Matrix Multiplication: Practice

- Only Strassen's algorithm beats the classical algorithm for reasonable problem sizes.
- Want: a matrix multiplication algorithm that beats Strassen's algorithm for matrices of moderate size.
- Idea: instead of dividing the matrices into 2×2-block matrices, divide them into 3×3-block matrices.
- Question: What's the minimal number of multiplications needed to multiply two 3×3 matrices?

Efficient Matrix Multiplication: Practice

- Only Strassen's algorithm beats the classical algorithm for reasonable problem sizes.
- Want: a matrix multiplication algorithm that beats Strassen's algorithm for matrices of moderate size.
- Idea: instead of dividing the matrices into 2×2-block matrices, divide them into 3×3-block matrices.
- Question: What's the minimal number of multiplications needed to multiply two 3×3 matrices?
- Answer: Nobody knows.

The 3×3 Case is Still Open

Question: What's the minimal number of multiplications needed to multiply two 3×3 matrices?

The 3×3 Case is Still Open

Question: What's the minimal number of multiplications needed to multiply two 3×3 matrices?

- naive algorithm: 27

The 3×3 Case is Still Open

Question: What's the minimal number of multiplications needed to multiply two 3×3 matrices?

- naive algorithm: 27
- padd with zeros, use Strassen twice, cleanup: 25

The $3 x 3$ Case is Still Open

Question: What's the minimal number of multiplications needed to multiply two 3×3 matrices?

- naive algorithm: 27
- padd with zeros, use Strassen twice, cleanup: 25
- best known upper bound: 23 (Laderman 1976)

The $3 x 3$ Case is Still Open

Question: What's the minimal number of multiplications needed to multiply two 3×3 matrices?

- naive algorithm: 27
- padd with zeros, use Strassen twice, cleanup: 25
- best known upper bound: 23 (Laderman 1976)
- best known lower bound: 19 (Bläser 2003)

The 3×3 Case is Still Open

Question: What's the minimal number of multiplications needed to multiply two 3×3 matrices?

- naive algorithm: 27
- padd with zeros, use Strassen twice, cleanup: 25
- best known upper bound: 23 (Laderman 1976)
- best known lower bound: 19 (Bläser 2003)
- maximal number of multiplications allowed if we want to beat Strassen: 21 (because $\log _{3} 21<\log _{2} 7<\log _{3} 22$).

Laderman's scheme from 1976

$$
\begin{aligned}
& \left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)\left(\begin{array}{lll}
b_{1,1} & b_{1,2} & b_{1,3} \\
b_{2,1} & b_{2,2} & b_{2,3} \\
b_{3,1} & b_{3,2} & b_{3,3}
\end{array}\right)=\left(\begin{array}{lll}
c_{1,1} & c_{1,2} & c_{1,3} \\
c_{2,1} & c_{2,2} & c_{2,3} \\
c_{3,1} & c_{3,2} & c_{3,3}
\end{array}\right) \\
& c_{1,1}=-M_{6}+M_{14}+M_{19} \\
& c_{2,1}=M_{2}+M_{3}+M_{4}+M_{6}+M_{14}+M_{16}+M_{17} \\
& c_{3,1}=M_{6}+M_{7}-M_{8}+M_{11}+M_{12}+M_{13}-M_{14} \\
& c_{1,2}=M_{1}-M_{4}+M_{5}-M_{6}-M_{12}+M_{14}+M_{15} \\
& c_{2,2}=M_{2}+M_{4}-M_{5}+M_{6}+M_{20} \\
& c_{3,2}=M_{12}+M_{13}-M_{14}-M_{15}+M_{22} \\
& c_{1,3}=-M_{6}-M_{7}+M_{9}+M_{10}+M_{14}+M_{16}+M_{18} \\
& c_{2,3}=M_{14}+M_{16}+M_{17}+M_{18}+M_{21} \\
& c_{3,3}=M_{6}+M_{7}-M_{8}-M_{9}+M_{23}
\end{aligned}
$$

Laderman's scheme from 1976

$$
\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)\left(\begin{array}{lll}
b_{1,1} & b_{1,2} & b_{1,3} \\
b_{2,1} & b_{2,2} & b_{2,3} \\
b_{3,1} & b_{3,2} & b_{3,3}
\end{array}\right)=\left(\begin{array}{lll}
c_{1,1} & c_{1,2} & c_{1,3} \\
c_{2,1} & c_{2,2} & c_{2,3} \\
c_{3,1} & c_{3,2} & c_{3,3}
\end{array}\right)
$$

where...

$$
\begin{aligned}
& M_{1}=\left(-a_{1,1}+a_{1,2}+a_{1,3}-a_{2,1}+a_{2,2}+a_{3,2}+a_{3,3}\right) \cdot b_{2,2} \\
& M_{2}=\left(a_{1,1}+a_{2,1}\right) \cdot\left(b_{1,2}+b_{2,2}\right) \\
& M_{3}=a_{2,2} \cdot\left(b_{1,1}-b_{1,2}+b_{2,1}-b_{2,2}-b_{2,3}+b_{3,1}-b_{3,3}\right) \\
& M_{4}=\left(-a_{1,1}-a_{2,1}+a_{2,2}\right) \cdot\left(-b_{1,1}+b_{1,2}+b_{2,2}\right) \\
& M_{5}=\left(-a_{2,1}+a_{2,2}\right) \cdot\left(-b_{1,1}+b_{1,2}\right) \\
& M_{6}=-a_{1,1} \cdot b_{1,1} \\
& M_{7}=\left(a_{1,1}+a_{3,1}+a_{3,2}\right) \cdot\left(b_{1,1}-b_{1,3}+b_{2,3}\right) \\
& M_{8}=\left(a_{1,1}+a_{3,1}\right) \cdot\left(-b_{1,3}+b_{2,3}\right) \\
& M_{9}=\left(a_{3,1}+a_{3,2}\right) \cdot\left(b_{1,1}-b_{1,3}\right)
\end{aligned}
$$

Laderman's scheme from 1976

$$
\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)\left(\begin{array}{lll}
b_{1,1} & b_{1,2} & b_{1,3} \\
b_{2,1} & b_{2,2} & b_{2,3} \\
b_{3,1} & b_{3,2} & b_{3,3}
\end{array}\right)=\left(\begin{array}{lll}
c_{1,1} & c_{1,2} & c_{1,3} \\
c_{2,1} & c_{2,2} & c_{2,3} \\
c_{3,1} & c_{3,2} & c_{3,3}
\end{array}\right)
$$

where...

$$
\begin{aligned}
& M_{10}=\left(a_{1,1}+a_{1,2}-a_{1,3}-a_{2,2}+a_{2,3}+a_{3,1}+a_{3,2}\right) \cdot b_{2,3} \\
& M_{11}=\left(a_{3,2}\right) \cdot\left(-b_{1,1}+b_{1,3}+b_{2,1}-b_{2,2}-b_{2,3}-b_{3,1}+b_{3,2}\right) \\
& M_{12}=\left(a_{1,3}+a_{3,2}+a_{3,3}\right) \cdot\left(b_{2,2}+b_{3,1}-b_{3,2}\right) \\
& M_{13}=\left(a_{1,3}+a_{3,3}\right) \cdot\left(-b_{2,2}+b_{3,2}\right) \\
& M_{14}=a_{1,3} \cdot b_{3,1} \\
& M_{15}=\left(-a_{3,2}-a_{3,3}\right) \cdot\left(-b_{3,1}+b_{3,2}\right) \\
& M_{16}=\left(a_{1,3}+a_{2,2}-a_{2,3}\right) \cdot\left(b_{2,3}-b_{3,1}+b_{3,3}\right) \\
& M_{17}=\left(-a_{1,3}+a_{2,3}\right) \cdot\left(b_{2,3}+b_{3,3}\right) \\
& M_{18}=\left(a_{2,2}-a_{2,3}\right) \cdot\left(b_{3,1}-b_{3,3}\right)
\end{aligned}
$$

Laderman's scheme from 1976

$$
\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)\left(\begin{array}{lll}
b_{1,1} & b_{1,2} & b_{1,3} \\
b_{2,1} & b_{2,2} & b_{2,3} \\
b_{3,1} & b_{3,2} & b_{3,3}
\end{array}\right)=\left(\begin{array}{lll}
c_{1,1} & c_{1,2} & c_{1,3} \\
c_{2,1} & c_{2,2} & c_{2,3} \\
c_{3,1} & c_{3,2} & c_{3,3}
\end{array}\right)
$$

where...

$$
\begin{aligned}
& M_{19}=a_{1,2} \cdot b_{2,1} \\
& M_{20}=a_{2,3} \cdot b_{3,2} \\
& M_{21}=a_{2,1} \cdot b_{1,3} \\
& M_{22}=a_{3,1} \cdot b_{1,2} \\
& M_{23}=a_{3,3} \cdot b_{3,3}
\end{aligned}
$$

Other schemes with 23 multiplications

- While Strassen's scheme is essentially the only way to do the 2×2 case with 7 multiplications, there are several distinct schemes for 3×3 matrices using 23 multiplications.

Other schemes with 23 multiplications

- While Strassen's scheme is essentially the only way to do the 2×2 case with 7 multiplications, there are several distinct schemes for 3×3 matrices using 23 multiplications.
- If we insist in integer coefficients, there have so far (and to our knowledge) been only three other schemes for 3×3 matrices and 23 multiplications.

Other schemes with 23 multiplications

- While Strassen's scheme is essentially the only way to do the 2×2 case with 7 multiplications, there are several distinct schemes for 3×3 matrices using 23 multiplications.
- If we insist in integer coefficients, there have so far (and to our knowledge) been only three other schemes for 3×3 matrices and 23 multiplications.
- Using altogether about 35 years of computation time, we found more than 13000 new schemes for 3×3 and 23 , and we expect that there are many others.

Other schemes with 23 multiplications

- While Strassen's scheme is essentially the only way to do the 2×2 case with 7 multiplications, there are several distinct schemes for 3×3 matrices using 23 multiplications.
- If we insist in integer coefficients, there have so far (and to our knowledge) been only three other schemes for 3×3 matrices and 23 multiplications.
- Using altogether about 35 years of computation time, we found more than 13000 new schemes for 3×3 and 23 , and we expect that there are many others.
- Unfortunately we found no scheme with only 22 multiplications

How to Search for a Matrix Multiplication Scheme? (1)

$$
\begin{aligned}
M_{1} & =\left(\alpha_{1,1}^{(1)} a_{1,1}+\alpha_{1,2}^{(1)} a_{1,2}+\cdots\right)\left(\beta_{1,1}^{(1)} b_{1,1}+\cdots\right) \\
M_{2} & =\left(\alpha_{1,1}^{(2)} a_{1,1}+\alpha_{1,2}^{(2)} a_{1,2}+\cdots\right)\left(\beta_{1,1}^{(2)} b_{1,1}+\cdots\right) \\
& \vdots \\
c_{1,1} & =\gamma_{1,1}^{(1)} M_{1}+\gamma_{1,1}^{(2)} M_{2}+\cdots
\end{aligned}
$$

Set $c_{i, j}=\sum_{k} a_{i, k} b_{k, j}$ for all i, j and compare coefficients.

How to Search for a Matrix Multiplication Scheme? (2)

This gives the Brent equations (for 3×3 with 23 multiplications)

$$
\forall i, j, k, l, m, n \in\{1,2,3\}: \sum_{q=1}^{23} \alpha_{i, j}^{(q)} \beta_{k, l}^{(q)} \gamma_{m, n}^{(q)}=\delta_{j, k} \delta_{i, m} \delta_{l, n}
$$

The $\delta_{u, v}$ on the right refer to the Kronecker-delta, i.e., $\delta_{u, v}=1$ if $u=v$ and $\delta_{u, v}=0$ otherwise.
$3^{6}=729$ cubic equations
$23 \cdot 9 \cdot 3=621$ variables

How to Search for a Matrix Multiplication Scheme? (2)

This gives the Brent equations (for 3×3 with 23 multiplications)

$$
\forall i, j, k, l, m, n \in\{1,2,3\}: \sum_{q=1}^{23} \alpha_{i, j}^{(q)} \beta_{k, l}^{(q)} \gamma_{m, n}^{(q)}=\delta_{j, k} \delta_{i, m} \delta_{l, n}
$$

The $\delta_{u, v}$ on the right refer to the Kronecker-delta, i.e., $\delta_{u, v}=1$ if $u=v$ and $\delta_{u, v}=0$ otherwise.

$$
\begin{aligned}
& 3^{6}=729 \text { cubic equations } \\
& 23 \cdot 9 \cdot 3=621 \text { variables }
\end{aligned}
$$

Laderman claims that he solved this system by hand, but he doesn't say exactly how.

How to Search for a Matrix Multiplication Scheme? (3)

This gives the Brent equations (for 3×3 with 23 multiplications)

$$
\forall i, j, k, l, m, n \in\{1,2,3\}: \sum_{q=1}^{23} \alpha_{i, j}^{(q)} \beta_{k, l}^{(q)} \gamma_{m, n}^{(q)}=\delta_{j, k} \delta_{i, m} \delta_{l, n}
$$

The search space of the 3×3 case is enormous, even if $\alpha_{i, j}^{(q)}, \beta_{k, l}^{(q)}, \gamma_{m, n}^{(q)}$ are restricted to the values in $\{-1,0,1\}$

How to Search for a Matrix Multiplication Scheme? (3)

This gives the Brent equations (for 3×3 with 23 multiplications)

$$
\forall i, j, k, l, m, n \in\{1,2,3\}: \sum_{q=1}^{23} \alpha_{i, j}^{(q)} \beta_{k, l}^{(q)} \gamma_{m, n}^{(q)}=\delta_{j, k} \delta_{i, m} \delta_{l, n}
$$

The search space of the 3×3 case is enormous, even if $\alpha_{i, j}^{(q)}, \beta_{k, l}^{(q)}, \gamma_{m, n}^{(q)}$ are restricted to the values in $\{-1,0,1\}$

Solution: Solve this system in \mathbb{Z}_{2}.
Reading $\alpha_{i, j}^{(q)}, \beta_{k, l}^{(q)}, \gamma_{m, n}^{(q)}$ as boolean variables and + as XOR, the problem becomes a SAT problem.

Notice that solutions in \mathbb{Z}_{2} may not be solutions in \mathbb{Z}

Lifting

Remember the Brent equations:

$$
\forall i, j, k, l, m, n \in\{1,2,3\}: \sum_{q=1}^{23} \alpha_{i, j}^{(q)} \beta_{k, l}^{(q)} \gamma_{m, n}^{(q)}=\delta_{j, k} \delta_{i, m} \delta_{l, n}
$$

- Suppose we know a solution in \mathbb{Z}_{2}.
- Assume it came from a solution in \mathbb{Z} with coefficients in $\{-1,0,+1\}$.
- Then each $0 \in \mathbb{Z}_{2}$ was $0 \in \mathbb{Z}$ and each $1 \in \mathbb{Z}_{2}$ was $-1 \in \mathbb{Z}$ or $+1 \in \mathbb{Z}$.
- Plug the 0 s of the \mathbb{Z}_{2}-solution into the Brent equations.
- Solve the resulting equations.

Lifting

Remember the Brent equations:

$$
\forall i, j, k, l, m, n \in\{1,2,3\}: \sum_{q=1}^{23} \alpha_{i, j}^{(q)} \beta_{k, l}^{(q)} \gamma_{m, n}^{(q)}=\delta_{j, k} \delta_{i, m} \delta_{l, n}
$$

- Suppose we know a solution in \mathbb{Z}_{2}.
- Assume it came from a solution in \mathbb{Z} with coefficients in $\{-1,0,+1\}$.
- Then each $0 \in \mathbb{Z}_{2}$ was $0 \in \mathbb{Z}$ and each $1 \in \mathbb{Z}_{2}$ was $-1 \in \mathbb{Z}$ or $+1 \in \mathbb{Z}$.
- Plug the 0 s of the \mathbb{Z}_{2}-solution into the Brent equations.
- Solve the resulting equations.

Can every \mathbb{Z}_{2}-solution be lifted to a \mathbb{Z}-solution in this way?

- No, and we found some which don't admit a lifting.
- But they are very rare. In almost all cases, the lifting succeeds.

How to Search for a Matrix Multiplication Scheme? (4)

This gives the Brent equations (for 3×3 with 23 multiplications)

$$
\forall i, j, k, l, m, n \in\{1,2,3\}: \sum_{q=1}^{23} \alpha_{i, j}^{(q)} \beta_{k, l}^{(q)} \gamma_{m, n}^{(q)}=\delta_{j, k} \delta_{i, m} \delta_{l, n}
$$

Another solution: Solve this system by restricting equations with a zero righthand side to zero or two.
Still treat $\alpha_{i, j}^{(q)}, \beta_{k, I}^{(q)}, \gamma_{m, n}^{(q)}$ as boolean variables.
Notice that this restriction removes solutions, but it even works for Laderman.

How to Search for a Matrix Multiplication Scheme? (4)

This gives the Brent equations (for 3×3 with 23 multiplications)

$$
\forall i, j, k, l, m, n \in\{1,2,3\}: \sum_{q=1}^{23} \alpha_{i, j}^{(q)} \beta_{k, l}^{(q)} \gamma_{m, n}^{(q)}=\delta_{j, k} \delta_{i, m} \delta_{l, n}
$$

Another solution: Solve this system by restricting equations with a zero righthand side to zero or two.
Still treat $\alpha_{i, j}^{(q)}, \beta_{k, I}^{(q)}, \gamma_{m, n}^{(q)}$ as boolean variables.
Notice that this restriction removes solutions, but it even works for Laderman.

Important challenge: how to break the symmetries?
Most effective approach so far: sort the $\delta_{j, k} \delta_{i, m} \delta_{l, n}=1$ terms

Neighborhood Search

Neighborhood Search Results

So what?

- Okay, so there are many more matrix multiplication methods for 3×3 matrices with 23 coefficient multiplications than previously known.

So what?

- Okay, so there are many more matrix multiplication methods for 3×3 matrices with 23 coefficient multiplications than previously known.
- In fact, we have shown that the dimension of the algebraic set defined by the Brent equation is much larger than was previously known.

So what?

- Okay, so there are many more matrix multiplication methods for 3×3 matrices with 23 coefficient multiplications than previously known.
- In fact, we have shown that the dimension of the algebraic set defined by the Brent equation is much larger than was previously known.
- But none of this has any immediate implications on the complexity of matrix multiplication, neither theoretically nor practically.

So what?

- Okay, so there are many more matrix multiplication methods for 3×3 matrices with 23 coefficient multiplications than previously known.
- In fact, we have shown that the dimension of the algebraic set defined by the Brent equation is much larger than was previously known.
- But none of this has any immediate implications on the complexity of matrix multiplication, neither theoretically nor practically.
- In particular, it remains open whether there is a multiplication method for 3×3 matrices with 22 coefficient multiplications. If you find one, let us know.

What's Next?

Scheme Database

Check out our website for browsing through the schemes and families we found:

http://www.algebra.uni-linz.ac.at/research/matrix-multiplication/

Local Search for Fast Matrix Multiplication

Marijn Heule, Manuel Kauers, and Martina Seidl

Starting at Carnegie Mellon University in August

SAT 2019 Conference, Lisbon July 9, 2019

