
Certified Knowledge Compilation

with Application to

Verified Model Counting

Randal E. Bryant
Wojciech Nawrocki
Jeremy Avigad

Marijn J. H. Heule

SAT, 2023
1 / 32

Motivation: Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

2 / 32

Motivation: Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Standard Tools

▶ Lingering doubt about whether result can be trusted

▶ If find bug in tool, must rerun all prior verifications

2 / 32

Motivation: Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Standard Tools

▶ Lingering doubt about whether result can be trusted

▶ If find bug in tool, must rerun all prior verifications

Formally Verified Tools

▶ Hard to develop

▶ Hard to make scalable

2 / 32

Proof-Generating Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Proof-Generating Tools

▶ Verify individual executions, not entire program

▶ Can have bugs in tool but still trust result
▶ Can we trust the checker?

Ideal: formally verified

3 / 32

Model Counting

Formula ϕ

[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x2]

Models M(ϕ)

{x1, x2, x3, x4} {x1, x2, x3, x4}
{x1, x2, x3, x4} {x1, x2, x3, x4}
{x1, x2, x3, x4} {x1, x2, x3, x4}

Definitions

▶ Input variables x1, x2, . . . , xn
▶ Assignment: α = {ℓ1, ℓ2, . . . , ℓn} with each ℓi ∈ {xi , x i}
▶ Models: M(ϕ) is set of satisfying assignments for formula ϕ

4 / 32

Model Counting

Formula ϕ

[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x2]

Models M(ϕ)

{x1, x2, x3, x4} {x1, x2, x3, x4}
{x1, x2, x3, x4} {x1, x2, x3, x4}
{x1, x2, x3, x4} {x1, x2, x3, x4}

Definitions

▶ Input variables x1, x2, . . . , xn
▶ Assignment: α = {ℓ1, ℓ2, . . . , ℓn} with each ℓi ∈ {xi , x i}
▶ Models: M(ϕ) is set of satisfying assignments for formula ϕ

Model Counting Problem

▶ Given formula ϕ, compute |M(ϕ)|
▶ Challenging: #SAT more difficult than SAT

4 / 32

Knowledge Compilation

▶ Darwiche [DarMar-2002]

ϕ |M(ϕ)|Knowledge
Compiler

(Hard)

Model
Counter

(Easy)

Compiled
Form

Convert CNF formula into more tractable representation

▶ Potentially exponential size

▶ Model counting polynomial in size of representation

5 / 32

Knowledge Compilation

▶ Darwiche [DarMar-2002]

ϕ |M(ϕ)|Knowledge
Compiler

(Hard)

Model
Counter

(Easy)

Compiled
Form

Convert CNF formula into more tractable representation

▶ Potentially exponential size

▶ Model counting polynomial in size of representation

Concerns:

▶ Is the compiled form logically equivalent to the input formula?

▶ Is the counting computed correctly?

5 / 32

(Weighted) Model Counting

▶ Assign weight w(xi) to each input variable xi
• 0.0 < w(xi) < 1.0

▶ Define w(x i) = 1− w(xi)

• Write as ∼w(xi)

▶ Weighted count ∆(ϕ,w) of formula ϕ:

∆(ϕ,w) =
∑

α∈M(ϕ)

∏
ℓi∈α

w(ℓi)

Standard Model Counting

▶ w(xi) = w(x i) = 1/2 for all i
▶ ∆(ϕ,w) gives density of function

• Fraction of assignments that satisfy ϕ

▶ Scale by 2n to get model count

6 / 32

Partitioned-Operation Formulas

Allowed Operations

▶ Product: ϕ1 ∧p ϕ2, where D(ϕ1) ∩ D(ϕ2) = ∅
• D(ϕ): Set of variables occuring in ϕ

▶ Sum: ϕ1 ∨p ϕ2, where M(ϕ1) ∩M(ϕ2) = ∅
▶ Negation: ¬ϕ

Weighted Count of Partitioned Formula

∆(ϕ1 ∧p ϕ2, w) = ∆(ϕ1,w) × ∆(ϕ2,w)

∆(ϕ1 ∨p ϕ2, w) = ∆(ϕ1,w) + ∆(ϕ2,w)

∆(¬ϕ, w) = ∼∆(ϕ,w)

7 / 32

Partitioned-Operation Graph (POG)

Formula ϕ

[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x3 ∨ x4] ∧
[x1 ∨ x2]

R(ϕ, w)r

x1

x2

x3

x4

∨p

∧p ∧p

∨p

∧p ∧p

▶ Directed graph representation of partitioned-operation formula

▶ Each edge can be negative or positive

8 / 32

Weighted Count of POG

R(ϕ, w)r

x1

x2

x3

x4

∨p

∧p ∧p

∨p

∧p ∧p

∆(ϕ, w)

w(x1)

w(x2)

w(x3)

w(x4)

+

× ×

+

× ×

∼

∼

∼

∼

▶ Evaluation: Number of operations linear in graph size

9 / 32

Certifying Toolchain

Knowledge
Compiler

Proof
Generator

Proof
Checker

Weighted
Counter

Trusted CodeϕI
.cnf

.ddnnf .cpog OK /
Not OK

∆(ϕI ,w)

▶ Knowledge Compiler (D4 [LagMar-2017]): Convert CNF into
representation using only partitioned operations

▶ Proof Generator: Generate file combining POG definition +
equivalence proof

▶ Proof Checker: Validate proof file

▶ Weighted Counter: Compute standard or weighted model
count

10 / 32

Verifying the Trusted Code

Knowledge
Compiler

Proof
Generator

Proof
Checker

Weighted
Counter

Verified CodeϕI
.cnf

.ddnnf .cpog OK /
Not OK

∆(ϕI ,w)

Using the Lean 4 theorem prover [DemUlr-2021]

▶ Soundness of proof system

• Helped us identify unsoundness in our prototype proof rules

▶ Verified proof checker

• Around 6× slower than one implemented in C

▶ Verified weighted counter

11 / 32

Formally Verified Theorems

Theorem (Proof framework and checker correctness)

If the CPOG proof checker has assembled POG P starting from
input formula ϕI , and the final check succeeds, then ϕI is logically
equivalent to the formula ϕP represented by P.

Theorem (Correctness of efficient weighted counter)

For any POG P, the weighted counter executed on P with weights
w returns ∆(ϕP ,w).

12 / 32

Related Work: CD4

CD4: Certifying D4 [CapLagMar-2021]

▶ Modified version of D4
▶ Generates annotated output + clausal proof in DRAT format
▶ Verify with checker + drat-trim [HeuHunWet-2013]

▶ Experiments: Scales very well

Limitations:

▶ Proof framework tied closely to compiler implementation
▶ No formal proof of soundness

• Found exploitable weakness

13 / 32

Related Work: MICE

MICE: Proof framework for top-down model counters
[FicHecRol-2022]

▶ Modify model counter or generate proof from D4 output

▶ Generates series of proof obligations

▶ Experiments: Scaling problems when many shared subgraphs

Limitations:

▶ Only verifies standard model counting

▶ Proof framework based on specific class of model counters

▶ No formal proof of soundness

▶ No verified checker

14 / 32

Importance of Formal Verification

Claim:

Any proof framework that has not been
mechanically verified is unsound

▶ Borne out by our own experience

15 / 32

CPOG File: Declaration + Proof

Clausal Representation of POG θP

▶ Tseitin encoding of POG operations

• Extension variable u for each operation node u
• Node u with k children characterized by k + 1 defining clauses

▶ Each child indicated by literal

• Positive or negated argument
• Input variable or result from other operation

▶ Unit clause [r] for root node r

Proof Steps

▶ Sequence of clause additions and deletions

16 / 32

CPOG Proof Objective

ϕI (X) ⇐⇒ ∃!Z θP(X ,Z)

▶ ϕI : Input formula
▶ θP : POG formula

• Defining clauses for POG
• Unit clause [r] for root literal

▶ Z : extension variables for the POG operations
▶ For any assignment α to X :

• Defining clauses induce unique extension α∗ to X ∪ Z
• α satisfies ϕI if and only if α∗(r) = 1

Proof Methodology
▶ Transform ϕI to θP

• Via sequence of equivalence-preserving proof steps

17 / 32

CPOG Example: Formula

▶ Encode formula x1 ↔ x2.

▶ CNF representation:

[x1 ∨ x2] ∧ [x1 ∨ x2]

Clause Database

ID Literals Explanation

1 1 -2 Input
2 -1 2 Input

18 / 32

CPOG Example: POG Declaration

r

x1

x2

∨p

∧p ∧p

s5

p4 p3

CPOG Declarations

3 p 3 -1 -2 0

Clause Database

ID Literals Explanation

1 1 -2 Input
2 -1 2 Input

3 3 1 2 p3
4 -3 -1

5 -3 -2

19 / 32

CPOG Example: POG Declaration

r

x1

x2

∨p

∧p ∧p

s5

p4 p3

CPOG Declarations

3 p 3 -1 -2 0

6 p 4 1 2 0

Clause Database

ID Literals Explanation

1 1 -2 Input
2 -1 2 Input

3 3 1 2 p3
4 -3 -1

5 -3 -2

6 4 -1 -2 p4
7 -4 1

8 -4 2

19 / 32

CPOG Example: POG Declaration

r

x1

x2

∨p

∧p ∧p

s5

p4 p3

CPOG Declarations

3 p 3 -1 -2 0

6 p 4 1 2 0

9 s 5 3 4 4 7 0

Clause Database

ID Literals Explanation

1 1 -2 Input
2 -1 2 Input

3 3 1 2 p3
4 -3 -1

5 -3 -2

6 4 -1 -2 p4
7 -4 1

8 -4 2

9 -5 3 4 s5
10 5 -3

11 5 -4

19 / 32

CPOG Example: POG Declaration

r

x1

x2

∨p

∧p ∧p

s5

p4 p3

CPOG Declarations

9 s 5 3 4 4 7 0

▶ Sum declaration must justify
mutual exclusion

▶ Resolving clauses 4 and 7 gives
p3 ∨ p4.

Clause Database

ID Literals Explanation

1 1 -2 Input
2 -1 2 Input

3 3 1 2 p3
4 -3 -1

5 -3 -2

6 4 -1 -2 p4
7 -4 1

8 -4 2

9 -5 3 4 s5
10 5 -3

11 5 -4

19 / 32

CPOG Proof Structure: Forward Implication

ϕI (X) =⇒ ∃!Z θP(X ,Z)

▶ Add clauses by reverse unit propagation (RUP)

▶ Terminating with unit clause [r]

▶ Any assignment satisfying ϕI (when extended) causes the
POG to evaluate to true

20 / 32

CPOG Example: Forward Implication

r

x1

x2

∨p

∧p ∧p

s5

p4 p3

CPOG Assertions

12 a -2 5 0 11 1 6 0

13 a 5 0 10 12 2 3 0

▶ Must give justifying RUP
sequences

▶ Finish with unit clause asserting
root literal

1 1 -2 Input
2 -1 2 Input

3 3 1 2 p3
4 -3 -1

5 -3 -2

6 4 -1 -2 p4
7 -4 1

8 -4 2

9 -5 3 4 s5
10 5 -3

11 5 -4

12 -2 5

13 5 Root literal

21 / 32

Forward Proof Generation Methods

Monolithic

▶ Single call to proof-generating SAT solver

▶ Experimentally: Scales to POGs with ∼ 106 defining clauses

Structural

▶ Top-down recursion on POG structure
▶ Avoid exponential expansion by defining and applying lemmas

• Can express within CPOG structure

▶ Experimentally: Scales to POGs with ∼ 108 defining clauses

22 / 32

CPOG Proof Structure: Reverse Implication

Reverse Implication Proof

∃!Z θP(X ,Z) =⇒ ϕI (X)

▶ Delete clauses by RUP

• Deleted clause implied by remaining ones

▶ Only clausal representation of POG θP remains at end

23 / 32

CPOG Example: Reverse Implication

CPOG Deletions

d 12 11 1 6 0

▶ All deletions must give justifying
RUP sequence

1 1 -2 Input
2 -1 2 Input

3 3 1 2 p3
4 -3 -1

5 -3 -2

6 4 -1 -2 p4
7 -4 1

8 -4 2

9 -5 3 4 s5
10 5 -3

11 5 -4

12 Deleted
13 5 Root literal

24 / 32

CPOG Example: Reverse Implication

CPOG Deletions

d 12 11 1 6 0

d 1 13 5 7 9 0

▶ All deletions must give justifying
RUP sequence

1 Deleted
2 -1 2 Input

3 3 1 2 p3
4 -3 -1

5 -3 -2

6 4 -1 -2 p4
7 -4 1

8 -4 2

9 -5 3 4 s5
10 5 -3

11 5 -4

12 Deleted
13 5 Root literal

24 / 32

CPOG Example: Reverse Implication

CPOG Deletions

d 12 11 1 6 0

d 1 13 5 7 9 0

d 2 13 4 8 9 0

▶ All deletions must give justifying
RUP sequence

1 Deleted
2 Deleted

3 3 1 2 p3
4 -3 -1

5 -3 -2

6 4 -1 -2 p4
7 -4 1

8 -4 2

9 -5 3 4 s5
10 5 -3

11 5 -4

12 Deleted
13 5 Root literal

24 / 32

Proof Result

Initial Clause Database: ϕI

ID Literals Explanation

1 1 -2 Input
2 -1 2 Input

Final Clause Database: θP

ID Literals Explanation

3 3 1 2 p3
4 -3 -1

5 -3 -2

6 4 -1 -2 p4
7 -4 1

8 -4 2

9 -5 3 4 s5
10 5 -3

11 5 -4

13 5 Root literal

▶ Transformed input formula ϕI into POG formula θP
• Via equivalence-preserving proof steps

25 / 32

CPOG Checking Requirements

▶ Partitioned product: D(ϕ1) ∩ D(ϕ2) = ∅
• Syntactic check of dependencies

▶ Partitioned sum: M(ϕ1) ∩M(ϕ2) = ∅
• Check of mutual-exclusion RUP sequence

▶ Clause addition and deletion

• Check of RUP sequence

26 / 32

Experimental Evaluation

Benchmark Problems:

▶ 180 unique formulas from 2022 unweighted and weighted
model counting competitions

D4 Execution

▶ Time limit of 4000 seconds

▶ Completed 124 problems

▶ Converted to POGs ranging from 304 to 2,761,457,765
defining clauses

Running our toolchain

▶ Limited CPOG generation to 10,000 seconds

▶ Full proofs for 108 problems

▶ Reverse implication proofs for 9 more

▶ No proofs of 7

27 / 32

Experimental Results: Toolchain Runtime

0.01 0.1 1.0 10 100 1,000
0.01

0.1

1.0

10

100

1,000

10,000

0.1×1×

10×

100×

1000×

D4 runtime (seconds)

C
P
O
G
ge
ne
ra
ti
on
,
ch
ec
ki
ng
,
an
d
w
ei
gh
te
d
co
un

t
(s
ec
on
ds
)

Full validation
Reverse implication
No validation

Ratios

Min
0.5×

Harmonic mean
5.9×

Median
16.4×

Max
465.8×

28 / 32

Experimental Results: CPOG Sizes

102 103 104 105 106 107 108 109 1010
102

103

104

105

106

107

108

109

1×

10×

100×

1,000×

10,000×

Defining Clauses

D
efi
ni
ng

+
P
ro
of

C
la
us
es

Full validation
Reverse implication
No validation

Ratios

Min
1.5×

Harmonic mean
3.1×

Median
2.7×

Max
6073.0×

29 / 32

Final Thoughts

Observations

▶ Toolchain can handle all but largest outputs from D4
▶ Framework is very general

• E.g., can generate, prove, and apply lemmas without any
extensions

• Not tied to particular compilation method

Future Work

▶ Improve speed and capacity of toolchain

▶ Handle outputs from other knowledge compilers

▶ Certification of other automated reasoning tools

30 / 32

Supplementary Information

Code

https://github.com/rebryant/cpog

Documentation

https://doi.org/10.5281/zenodo.7966174

▶ Worked example

▶ More details on algorithms

▶ More details on formal verification

▶ Lots of experimental results

31 / 32

https://github.com/rebryant/cpog
https://doi.org/10.5281/zenodo.7966174

References

Filler

CapLagMar-2021 F. Capelli, J.-M. Lagniez, and P. Marquis, “Certifying top-down
decision-DNNF compilers”, AAAI, 2021

DarMar-2002 A. Darwiche and P. Marquis, “A knowledge compilation map,”
JAIR, 2002

DemUlr-2021 L. de Moura and S. Ulrich, “The Lean 4 theorem prover and
programming language,” CADE, 2021

FicHecRol-2022 J. Fichte, M. Hecher, and V. Roland, “Proofs for propositional
model counting,” SAT 2022.

HeuHunWet-2013 M. J. H. Heule, W. A. Hunt, Jr., N. Wetzler, “Trimming while
checking clausal proofs,” FMCAD, 2013.

LagMar-2017 J.-M. Lagniez and P. Marquis, “An improved decision-DNNF
compiler,” IJCAI, 2017

32 / 32

