The Resolution of Keller's Conjecture

Joshua Brakensiek (Stanford) Marijn Heule (CMU) John Mackey (CMU) David Narváez (RIT)

IJCAR July 2, 2020

Overview

A Brief History of Keller's Conjecture

Keller Graphs and Maximum Cliques

Encoding Keller's Conjecture into SAT

Proofs and Symmetry Breaking

Experimental Results

Conclusions and Future Work

Table of Contents

A Brief History of Keller's Conjecture

Keller Graphs and Maximum Cliques

Encoding Keller's Conjecture into SAT

Proofs and Symmetry Breaking

Experimental Results

Conclusions and Future Work

Introduction

Consider tiling a floor with square tiles, all of the same size. Is it the case that any gap-free tiling results in at least two fully connected tiles, i.e., tiles that have an entire edge in common?

Introduction

Consider tiling a floor with square tiles, all of the same size. Is it the case that any gap-free tiling results in at least two fully connected tiles, i.e., tiles that have an entire edge in common?

Keller's Conjecture

In 1930, Ott-Heinrich Keller conjectured that this phenomenon holds in every dimension.

Keller's Conjecture.
For all $n \geq 1$, every tiling of the n-dimensional space with unit cubes has two which fully share a face.

Dimensions Resolved

- In 1940, Perron proved that Keller's conjecture is true for $1 \leq n \leq 6$.

Dimensions Resolved

- In 1940, Perron proved that Keller's conjecture is true for $1 \leq n \leq 6$.
- In 1992, Lagarias and Shor showed that Keller's conjecture is false for $n \geq 10$.

Dimensions Resolved

- In 1940, Perron proved that Keller's conjecture is true for $1 \leq n \leq 6$.
- In 1992, Lagarias and Shor showed that Keller's conjecture is false for $n \geq 10$.
- In 2002, Mackey showed that Keller's conjecture is false for $n \geq 8$.

Dimensions Resolved

- In 1940, Perron proved that Keller's conjecture is true for $1 \leq n \leq 6$.
- In 1992, Lagarias and Shor showed that Keller's conjecture is false for $n \geq 10$.
- In 2002, Mackey showed that Keller's conjecture is false for $n \geq 8$.

What about dimension 7?

Main Result

Theorem (Brakensiek, Heule, Mackey, and Narváez, 2020). Keller's conjecture is true in dimension 7.

Main Result

Theorem (Brakensiek, Heule, Mackey, and Narváez, 2020).
Keller's conjecture is true in dimension 7.

- Ends the 90 year quest to resolve Keller's conjecture in all dimensions.

Main Result

Theorem (Brakensiek, Heule, Mackey, and Narváez, 2020).
Keller's conjecture is true in dimension 7.

- Ends the 90 year quest to resolve Keller's conjecture in all dimensions.
- Proof involves resolving a maximum clique question about Keller graphs using SAT solving.

Main Result

Theorem (Brakensiek, Heule, Mackey, and Narváez, 2020).
Keller's conjecture is true in dimension 7.

- Ends the 90 year quest to resolve Keller's conjecture in all dimensions.
- Proof involves resolving a maximum clique question about Keller graphs using SAT solving.
- The SAT formula is very difficult to solve, required extensive symmetry breaking.

Main Result

Theorem (Brakensiek, Heule, Mackey, and Narváez, 2020).
Keller's conjecture is true in dimension 7.

- Ends the 90 year quest to resolve Keller's conjecture in all dimensions.
- Proof involves resolving a maximum clique question about Keller graphs using SAT solving.
- The SAT formula is very difficult to solve, required extensive symmetry breaking.
- Total proof size is over 200 gigabytes! Verified by a proof checker.

Table of Contents

> A Brief History of Keller's Conjecture

> Keller Graphs and Maximum Cliques

> Encoding Keller's Conjecture into SAT

> Proofs and Symmetry Breaking

> Experimental Results

> Conclusions and Future Work

Formal Description

- A clique in a graph is a set of pairwise adjacent vertices.

Formal Description

- A clique in a graph is a set of pairwise adjacent vertices.
- We define the Keller graph $G_{n, s}$ to has $(2 s)^{n}$ vertices/cubes. Each has n dimensions/dots have one of $2 s$ colors which come in s complementary pairs: e.g. black/white and red/green.

Formal Description

- A clique in a graph is a set of pairwise adjacent vertices.
- We define the Keller graph $G_{n, s}$ to has $(2 s)^{n}$ vertices/cubes. Each has n dimensions/dots have one of $2 s$ colors which come in s complementary pairs: e.g. black/white and red/green.
- Two vertices are adjacent if and only if 1) at least one corresponding dimension/dot has a complementary pair of colors; and 2) they differ in at least two dimensions/dots.

Formal Description

- A clique in a graph is a set of pairwise adjacent vertices.
- We define the Keller graph $G_{n, s}$ to has $(2 s)^{n}$ vertices/cubes. Each has n dimensions/dots have one of $2 s$ colors which come in s complementary pairs: e.g. black/white and red/green.
- Two vertices are adjacent if and only if 1) at least one corresponding dimension/dot has a complementary pair of colors; and 2) they differ in at least two dimensions/dots.

- Corrádi and Szabó's work (1990) showed that there is a counterexample to Keller's conjecture in some dimension n if one can show $G_{n, s}$ has a clique of size 2^{n}.

From Keller's Conjecture to Graph Theory: $G_{2,2}$

Brakensiek, Heule, Mackey, and Narváez

Toward Resolving Dimension 7

- In 2011, Debroni, Eblen, Langston, Myrvold, Shor and Weerapurage showed that the largest clique in $G_{7,2}$ has size 124 .
- To confirm Keller's conjecture in dimension 7, one needs to prove that $G_{7,64}$ does not have a clique of size $2^{7}=128$.
- Between 2013 and 2017, Łysakowska and Kisielewicz showed that if one of $G_{7,3}, G_{7,4}$ or $G_{7,6}$ has no clique of size 2^{7}, then Keller's conjecture is true in dimension 7.

Table of Contents

A Brief History of Keller's Conjecture
 Keller Graphs and Maximum Cliques

Encoding Keller's Conjecture into SAT

Proofs and Symmetry Breaking

Experimental Results

Conclusions and Future Work

Succinct Encoding: Groups

$G_{n, s}$ can be partitioned into 2^{n} independent sets (groups)
Key Observation: If there is a clique of size 2^{n}, each group has exactly one vertex in the clique.

Brakensiek, Heule, Mackey, and Narváez

Succinct Encoding: Groups

$G_{n, s}$ can be partitioned into 2^{n} independent sets (groups)
Key Observation: If there is a clique of size 2^{n}, each group has exactly one vertex in the clique.

Brakensiek, Heule, Mackey, and Narváez

Succinct Encoding: Groups

$G_{n, s}$ can be partitioned into 2^{n} independent sets (groups)
Key Observation: If there is a clique of size 2^{n}, each group has exactly one vertex in the clique.

Brakensiek, Heule, Mackey, and Narváez

Succinct Encoding: Constraints

- We build a clique by picking a vertex from each group.

Succinct Encoding: Constraints

- We build a clique by picking a vertex from each group.
- Variables: $x_{v, d, c}$ encodes vertex picked from group v at dimension/dot d has color c.

Succinct Encoding: Constraints

- We build a clique by picking a vertex from each group.
- Variables: $x_{v, d, c}$ encodes vertex picked from group v at dimension/dot d has color c.

Constraints:

- First, every dimension/dot must have exactly one color.

Succinct Encoding: Constraints

- We build a clique by picking a vertex from each group.
- Variables: $x_{v, d, c}$ encodes vertex picked from group v at dimension/dot d has color c.

Constraints:

- First, every dimension/dot must have exactly one color.
- Second, each pair of vertices should have complementary colors in some dimension/dot.

Succinct Encoding: Constraints

- We build a clique by picking a vertex from each group.
- Variables: $x_{v, d, c}$ encodes vertex picked from group v at dimension/dot d has color c.

Constraints:

- First, every dimension/dot must have exactly one color.
- Second, each pair of vertices should have complementary colors in some dimension/dot.
- Third, each pair of vertices should have different colors in some other dimension/dot.

Succinct Encoding: Constraints

- We build a clique by picking a vertex from each group.
- Variables: $x_{v, d, c}$ encodes vertex picked from group v at dimension/dot d has color c.

Constraints:

- First, every dimension/dot must have exactly one color.
- Second, each pair of vertices should have complementary colors in some dimension/dot.
- Third, each pair of vertices should have different colors in some other dimension/dot.

Using auxiliary variables, these expressions can be encoded as succinct propositional formulas.

Encoding Size

Keller Graph	Cube Count	Variable Count	Clause Count
$G_{7,3}$	279936	39424	200320
$G_{7,4}$	2097152	43008	265728
$G_{7,6}$	35831808	50176	399232

the number of clauses is smaller than the number of cubes

Table of Contents

> A Brief History of Keller's Conjecture

> Keller Graphs and Maximum Cliques

> Encoding Keller's Conjecture into SAT

Proofs and Symmetry Breaking

Experimental Results

Conclusions and Future Work

Clausal Proofs of Unsatisfiability

Formula

Clausal Proofs of Unsatisfiability

Clausal Proofs of Unsatisfiability

Clausal Proofs of Unsatisfiability

 Proof

Clausal Proofs of Unsatisfiability

Formula

Clausal Proofs of Unsatisfiability

- Checking the redundancy of a clause in polynomial time
- Clausal proofs are easy to emit from modern SAT solvers
- Symmetry breaking can be expressed using clausal proofs

Symmetry Breaking Introduction

Without loss of generality we can assume that

- Both dots of the right top cube are black
- The bottom left dot of the bottom left cube is white before symmetry breaking after symmetry breaking

Symmetry Breaking Introduction

Without loss of generality we can assume that

- Both dots of the right top cube are black
- The bottom left dot of the bottom left cube is white before symmetry breaking after symmetry breaking

This problem becomes trivial after symmetry breaking

Symmetry Breaking Overview

The symmetry breaking consists of three parts:

1. Manual proof that we can assume the following three cubes:
\because ○○ ○○ OO

Symmetry Breaking Overview

The symmetry breaking consists of three parts:

1. Manual proof that we can assume the following three cubes:

2. Clausal proof that we have the following three additional cubes:

Symmetry Breaking Overview

The symmetry breaking consists of three parts:

1. Manual proof that we can assume the following three cubes:

2. Clausal proof that we have the following three additional cubes:

3. Enumerate and filter all options for the rainbow dimensions/dots

Case Split

Given the cubes, in how many ways can we color rainbow dots?

Worst case for r rainbow dots without symmetry breaking is s^{r}
With filtering using symmetry breaking these can be reduced to:

- $s=3: 21525$ (instead of $3^{13}=1594323$)
- $s=4$: 37128 (instead of $4^{13}=67108864$)
- $s=6: 38584$ (instead of $6^{13}=13060694016$)

We express this symmetry breaking in the clausal proof

Case Split

Given the cubes, in how many ways can we color rainbow dots?

Worst case for r rainbow dots without symmetry breaking is s^{r}
With filtering using symmetry breaking these can be reduced to:

- $s=3: 21525$ (instead of $3^{13}=1594323$)
- $s=4$: 37128 (instead of $4^{13}=67108864$)
- $s=6: 38584$ (instead of $6^{13}=13060694016$)

We express this symmetry breaking in the clausal proof
One case was very hard and we split it into smaller cases

Table of Contents

> A Brief History of Keller's Conjecture

> Keller Graphs and Maximum Cliques

> Encoding Keller's Conjecture into SAT

> Proofs and Symmetry Breaking

Experimental Results

Conclusions and Future Work

Experimental Setup

- Each case is solved using CaDiCaL
- Parallel execution on Xeon E5-2690 processors with 24 cores
- CaDiCaL emits proofs in the DRAT format
- DRAT proofs are optimized using DRAT-trim
- The formally-verified ACL2check certifies the optimized proofs

Results on $G_{7,3}$

Results on $G_{7,4}$

Results on $G_{7,6}$

Table of Contents

> A Brief History of Keller's Conjecture

> Keller Graphs and Maximum Cliques

> Encoding Keller's Conjecture into SAT

> Proofs and Symmetry Breaking

> Experimental Results

> Conclusions and Future Work

Conclusions

We resolved the remaining case of Keller's conjecture

- No clique of size 128 in $G_{7,3}, G_{7,4}$, and $G_{7,6}$
- Designed a SAT compact encoding
- Combined parallel SAT solver and symmetry breaking
- Constructed a clausal proof of unsatisfiability
- Certified the proof with a formally-verified checker

Future Work

Toward a full formal proof of Keller's conjecture:

- Formalize Keller's conjecture
- Prove the relation between Keller graphs and the conjecture
- Prove the correctness of the encoding

Future Work

Toward a full formal proof of Keller's conjecture:

- Formalize Keller's conjecture
- Prove the relation between Keller graphs and the conjecture
- Prove the correctness of the encoding

Open questions:

- What is the largest clique in $G_{7,3}, G_{7,4}, G_{7,6}$?
- Is the clique of 256 in $G_{8,2}$ unique (modulo symmetries)?
- Why is there a transition between dimensions 7 and 8?

Fin: A Clique of Size 256 in $G_{8,2}$ (Mackey, 2002)

Brakensiek, Heule, Mackey, and Narváez

