Views:
A way for pattern matching to
cohabit with data abstraction

Philip Wadler
Programming Research Group, Oxford University, UK
and Programming Methodology Group, Chalmers University, Sweden

Abstract

Pattern matching and data abstraction are important concepts in de-
signing programs, but they do not fit well together. Pattern matching
depends on making public a free data type representation, while data
abstraction depends on hiding the representation. This paper proposes
the views mechanism as a means of reconciling this conflict. A view
allows any type to be viewed as a free data type, thus combining the
clarity of pattern matching with the efficiency of data abstraction.

1 Introduction

Induction and abstraction are fundamental tools of the mathemati-
cian’s trade, and equally essential to the computer scientist. Pattern
matching is a language feature that supports induction, and data ab-
straction is a feature that supports abstraction; but unfortunately these
two features do not get on well together. This paper proposes the views
mechanism as a means of resolving this problem.

As an example of the conflict between pattern matching and data
abstraction, consider the definition of exponentiation. Mathematicians
traditionally define it as follows:

0 =1
zntl = z(zn) (1)

This definition makes it easy to prove properties of exponentiation
by means of induction. Functional programming languages encour-
age a similar style of definition. For example, in a language like Hope
[BMS80] or Miranda [Tur85} we might declare a new type

peano = Zero | Succ peano
and then we can write a definition that is essentially equivalent to (1):

power z Zero =1 @)
power z (Sucen) = z X powerzn

This style of definition has several advantages: each case is dis-
played clearly as a pattern on the left-hand side of an equation; the
compiler can check that no cases have been accidentally omitted; and
the definitions are well-suited for proofs by structural induction [Bur69)
and for program transformation [BD77].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 0-89791-215-2/87/0100-0307 75¢

Received 10/30/86

However, there is a problem with the above definition: it specifies a
particular way of representing natural numbers, as the free data type
peano. The representation of the number seven is the data structure

Succ (Suce (Succ (Suce (Suce (Suce (Suce Zero)}))))

Compared with the representation of integers built-in to the computer
hardware, this representation is astonishingly inefficient. If we had fol-
lowed the fundamental principle of data abstraction (or representation
Aiding) then this problem would not arise, because we would be free
to implement natural numbers in any convenient way, including the
built-in integer data type.

In short, pattern matching supports clear definitions and induction,
but it requires that the representing type be a free data type and be
visible. Data abstraction supports efficiency, but it requires that the
representing type be hidden. Thus, the programmer is often faced with
an unenviable choice between clarity and efficiency.

The programming language Hope finesses this problem in the special
case of the natural numbers. It provides a special mechanism that
allows the built-in integer type to be viewed as if it were the type peano.
Such a useful mechanism is clearly a candidate for generalization, as
the need to view one data type as if it were another is hardly limited
to this special case. This paper proposes a language mechanism called
views as a means of satisfying this need. A view specifies how any
arbitrary data type (including an abstract data type) can be viewed as
a free data type. It is even poesible to specify several different views of
the same type.

This paper discusses views in the context of functional languages;
similar ideas may be useful in imperative languages. The notation used
in this paper is styled after Miranda. The essential requirement is that
the hoet language permits the declaration of free data types. Views
are useful regardless of whether eager, applicative order evaluation (as
in Hope) or lasy, normal order evaluation (as in Miranda) is used; the
examples in this paper work with either evaluation order.

Views as described here should not be confused with views in OBJ2
[FGIMS85]. Views in OBJ2 specify homomorphisms between mod-
ules; views as described here specify isomorphisms between data types,
(Joseph Goguen has suggested that the views in this paper be called
“bi-views".)

The problem of extending pattern-matching to apply to non-free
types is also addressed by Miranda, through the mechanism of *lawful
types” [Tho86]. This mechanism is rather more limited than views. A
lawful type is simply a subset of a free type, whereas views allow one
to specify a correspondence between a free type and any desired type.

The remainder of this paper is organited as follows. Section 2 in-
troduces views by showing how to define a view of integers. Section
3 briefly describes an alternative view of integers. Section 4 gives a
simple example of views and abatract data types, in the context of two
representations of complex numbers. Sections 5 through 8 demonstrate
further applications of views to lists and trees. Section 9 shows two un-
usual uses of views. Section 10 and 11 describe how views support
equational reasoning and induction. Section 12 outlines an efficient
implementation method. Section 13 concludes.

2 Viewing an integer as zero or a succes-
sor

This section introduces the views mechanism by defining a view of the
built-in integer type, int, that is analogous to the free data type peano
discussed in the introduction.

Here is the definition of the view:

view int ::= Zero | Succ int
inn Zero, ifn=0
Suce(n—-1), if n>0
out Zero 0
out {Suce n)

nt1

The first line introduces two new names, Zero and Succ, which may
appear in terms (on the right-hand side of equations) and in patterns
(on the left-hand side of equations).

The in and out clauses are similar to function definitions. The in
clause defines a function to apply to an int to get a Zero or Suce; it is
used when Zero or Suce appear in a pattern on the left-hand side of an
equation. The out clause defines a function to apply to a Zero or Suce
to get an Int; it is used when Zero or Swcc appear on the right-hand
side of an equation.

A view is well-defined only when the functions defined by the in
and out clause are inverses of each other. Together, they specify an
isomorphism between (a subset of) the vicwed type and (a subset of)
the viewnng type. In this case, the isomorphism is between the natural
numbers (a subset of the viewed type, int) and values constructed with
Succ and Zero (the viewing type).

Given the above view declaration, one may write definitions such
as (2) in Section 1, or the following definition of Fibonacci numbers:

fib Zero = Zero
fib {Suce Zero) = Suce Zero
fib (Suce (Succ n)) = (fibn) + (fib (Succ n))

Here, views are used on the right-hand side only for symmetry (and
purpoees of demonstration). It would work just as well to say fid Zero =
0 for the first equation. Later, we will see examples where the use of
views on the right-hand side is more natural.

This view applies only to natural numbers. Any attempt to view a
negative integer as a Zero or Suce (for example, by evaluating fib (—1))
will cause a run-time error.

It is easy to translate a program that uses views into a program
that does not use views. The view definition above is equivalent to a
type definition and two function definitions:

viewtype ::= Zero | Succ int

viewtn n = Zero, if n=0
= Sswcc(n—-1), if n>0

viewout Zero =0

viewout (Sueccn) = n+1

The function viewin has type int — viewtype and the function viewout
has type viewtype — int.

A function definition such as power or fib is translated in two steps.
First, all pattern matching is translated into case expressions; see
[Aug85,Wad87]. Second, calls of viewsn and wsewout are inserted at
appropriate places. For example, the fib definition above is equivalent
to:

fibm =
case viewin m of
Zero = viewowt Zero
Succm’ = case viewin m' of
Zero = wviewout (Succ (viewost Zero))
Sucen = fibn+ fib(viewout (Succ n))

Note that values of type viewiype appear in the program only in a
very restricted way (namely, as a result of viewsn or as an argument to
viewout).

Any view may always be expanded out in the way outlined above.
Thus, views do not require any significant change in the semantics of a
functional language.

308

3 Another view of integers

It is possible to have more than one view of a data type. An alternative
view of integers is as follows:

view int ::= Zero | Even int | Odd int

inn = Zero, if n=0
= Even (ndiv2), iff n>0Anmod2=0
= 0dd{(n—-1)div2), if n>0Anmod2=1
out Zero =0
out (Evenn) = 2xn, f2xn>0
out (0ddn) = 2xn+1, H2xn+1>0

The in and out clauses again define inverse functions. Note that the
constructor Zero appears in both views; this is permissible and unam-
biguous because it is given the same definition in each.

Using this view one can give a more efficient definition of exponen-
tiation:
1
power (z X z) n
z X power (z X z) n

power z Zero
power z {Even n)
power z (Odd n)

This expresses the traditional divide-and-conquer algorithm.

4 Viewing a complex number in cartesian
and polar coordinates

This section gives a simple illustration of how abatract data types can
be combined with pattern matching. The pattern matching here is
extremely simple—no case analysis or recursive types are involved—
but still useful.

Two well known representations of complex numbers are the polar
and the cartesian. We might choose to represent complex numbers in
the polar representation, and provide the cartesian as a view:

complez ::= Pole real real

view complex ::= Cart real real
in{Polert) = Cart(rxcost)(rxaint)

out (Certzy) = Pole(sqrt(z72+y™2)) (atang z y)
We can then define the operations of multiplication and addition as

follows:;

add (Cart z y) (Cart 2’ y')
mault (Pole r t) (Pole r' ¢')

Cart(z+ ') (y + ¥')
Pole (r x ') (t + ')

nn

Here addition was defined in terms of the cartesian representation and
multiplication in terms of the polar representation.

Alternatively, we might choose to represent complex numbers in the
cartesian representation, and provide the polar as a view. This requires
just a small variation on the previous declaration:

complez ::= Cart real real

view complez ::= Pole real real

in(Cartzy) = Pole(sqrt(z"2+ y~2))(atang z y)
out (Polert) = Cart(rxcost)(rxsint)
The definitions of add and muli given previously are still valid un-
der this new declaration. This shows how views can be used to hide
choice of representation, while still allowing the convenience of pattern
matching.

The traditional method for hiding a representation is an abstract
data type. Just as abstract data types export values and functions, they
should also be able to export views. It is easy to modify the abstract
data type mechanism of Miranda to include views, for example:

abstype complex with
complex ::= Cart real real
complez ::= Pole real real

This abstract type only defines views, but in general an abstract type
might define both views and functions; the syntax for declaring func-
tions is shown below.

This declaration can be implemented with a polar representation
and a cartesian view, or with a cartesian representation and a polar
view, or with some third representation and cartesian and polar both
as views. The definitions of add and mult will still be valid regardless
of the representation chosen.

For comparison, consider the equivalent abstract type if views are
not used:

abstype complez with
zpart, ypart, rpart, tpart :: complez — real
mbkcart, mkpole :: real — real — complez

The single identifier Cart has been replaced by three identifiers, zpart,
ypart, and mkcart; and similarly for Pole. The corresponding defini-
tions of addition and multiplication are:

eddcc
mult ¢ ¢’

mkcart (zpart ¢ + zpart ') (ypart c + ypart ¢')
mkpole (rpart ¢ X rpart c') (tpart c + tpart c')

In this example the difference is not great, but for more complicated
examples the advantages of views—compactness and the ability to use
pattern matching—would be more pronounced.

The example given here is slightly contrived, because in practice it
would be more sensible to define the operations add and mult inside
the abstraction, rather than outside it. However, it serves to show
how views combine well with data abstraction, and particularly how
views can reconcile the conflict between pattern matching and data
abstraction mentioned in the introduction. One way to summarise this
result is as follows. Traditionally, abstraction is achieved by refusing
to export the representation. With views, abstraction can be achieved
by exporting as many representations as desired.

5 Viewing a list backwards

Assume that lists are represented in the traditional way, so that, for
example, [1,2] is taken as an abreviation for 1 Cons (2 Cons Ni),
where the constructors Nil and Cons are defined as follows:

lista == Nil|aCons(lista)

(Here z Cons zs is just different syntax for Cons z zs.)

Of course, the Cons representation of lists is “biased” towards the
first element of the List. For example, it is much easier to write a
function to return the first element of the list than a function to return
the last:

kead (z Cons zs) = z
last (z Cons Nil) = z
lost (z Cons (z' Cons z5)) = last (z' Cons zs)

We can define a new view, based on constructors Nil and Snoc,
that is biased in the opposite way:

view list a ::= Nil | (list a) Snoc
in (z Cons Ml) = NilSaocz
in (z Cons (z6 Snoc z')) = (z Comns zs) Snoc z’
out {Nil Snoc z) = zCons Nil
out ((z Cons zs) Snoc 2') = 2z Cons (zs Snoe z’)

This allows us to view the list [1,2] as if were (Nsl Snoc 1) Snoc 2. We
can now write definitions such as

last (zs Snoe z) = z
rotleft (z Conszs) = zsSnocs
rotright (zs Snoc z) = z Conszs

Here last is equivalent to the definition above, and, for example,
rotleft [1,2,3,4] = [2, 8,4, 1] and rotright [1,2,3,4] = [4,1,2,3].

Attention is drawn to three features of the above view.

First, the constructor Nil, which is part of the representation, also
appears in the view, just as Zero was shared between the two different
views of integers. In general, it is permissible (and unambiguous) to
let views of the same representation share any number of constructors
with the representation and with each other.

309

Second, some left-hand sides in the in clause above contain Snoc.
Matching against these will cause a recursive invocation of in. The out
clause is recursive in a similar way. Recursive in and out clauses are
perfectly acceptable, in the same way that recursive function definitions
are.

Third, in the definition above the in and out clauses are exact
inverses of one another. This can be abbreviated as follows:

view list a ::= Nil | (list o) Snoc a
inout (z Cons Mil)
inout (z Cons (zs Snoc z'))

Nil Snoc =z
(z Cons zs) Snoc z'

As mentioned previously, a view is well-defined only when the in and
out clauses define functions that are inverses of one another. In the
case that a view can be defined using an inout clause, this property
follows automatically.

Of course, the representation is still biased. For example, z Cons zs
evaluates much more efficiently than zs Snoc z. Also, consider the two
function definitions,

fi (z Cons (z' Cons zs)) = ¢, 21" z5
5 ((z2 Snoc z')Snocz) =e¢zzs2' 2

The matching in f; takes constant time, while the matching in f; takes
time proportional to the length of the input list. Indeed, the input list
is traversed once to decompose the list for the outer Snoe, and then
the entire input list (except for its last element) is traversed again to
decompose it for the inner Snoc. The next section descibes a repre-
sentation where all bias is removed, and the cons and snoc views are
equally efficient.

6 The join representation of lists

As an alternative to the cons representation of lists, several researchers
have suggested the following representation [Mee84,SH82):

list a ::= Nil | Unit a | (list &) Join (hst a)

(Interestingly, Meertens has made this suggestion for reasons of math-
ematical elegance, whereas Sleep and Holmstrom have suggested it for
reasons of efficiency!) Each list now has many possible representations.
For example, the list [1, 2] might be represented by any of the following:

(Unit 1) Join (Unit 2)
(Nil Join (Unit 1)) Join ((Unst 2) Join Nil)
(Unit 1) Join ((Unit 2) Join Nil)

Indeed, each list has a potentially infinite number of representations,
since zs and Nil Join zs both represent the same list.

Assuming this new representation, we can define a view that allows
one to view a join list as if it were a cons list:

view list a ::= Nil | a Cons (list a)

in (Unit z) = zCons Wl

in (Nl Join zs) = inzs

in ((Unit z) Join xs) = zConszs

in ((zs Join ys) Join 2s) = in (22 Join (ys Join 2s))
out (z Cons zs) = (Unit z) Join zs

The in clause maps all of the different ways of representing [1,2] as a
join list into the same view as a cons list, namely

1Cons (2 Cons Nil).

Conversely, the out clause maps this term back into a particular rep-
resentation as a join list, namely

(Unit 1) Join ({ Unit 2) Join Nil).

The correctness of the view depends on the equivalence between the
various ways of representing a join list; otherwise, the in and out
functions would not be inverses.

Note that recursion in the in clause above is indicated explicitly, as
compared with the implicit recursion in the snoc view of the previous
section.

The equation in the out clause above also appears, inverted, in the
in clause. Thus, it is easy to show that the in and out clauses define
inverse functions. In this case, the out clause cannot be omitted in
favour of an inout clause, because a cons list can be represented in
more than one way by a join list. Choosing which equations to include
in the out clause is equivalent to choosing which representation to use.

A snoc view of join lists can be defined in a way completely sym-
metric to the definition given above. This is left as an exercise for the
reader.

A join list can always be viewed as a cons list or a snoc list in time
proportional to the sise of the join list. (Further, unless the join list has
an abundance of Nil nodes, its sise will be proportional to the sise of the
corresponding cons and snoc lists.) Also, when the join representation
is used, appending two lists requires constant time, rather than time
proportional to the size of one of the lists. It is these properties that
make the join representation desirable in terms of efficiency.

7 Viewing a list of pairs as a pair of lists

The function that converts a pair of lists into a list of pairs is defined
as follows:

xip (Nil, Nil)

7ip (a Cons as, b Cons bs)

= Ml

= (a,}) Cons xip (as, bs)

{The pair notation is just another syntax for constructors; think of
(s, b) a8 equivalent to Pair a b.) For example,

=ip ([1,2,3], [, ‘D", ¢’]) = [(1,'8"), (2,D"), (3, °¢")]

Very often, it is also necessary to decompose a list of pairs into a pair
of lists. This is usually done by an idiom such as the following:

f ce

easbs
where as

bs

[a](a,8) « cs]
[6](a)b) ~ ca]
(This uses list comprehension notation; see [Tur81,Wad87].)

Clearly, zip defines a isomorphism: given a list of pairs ¢s there is
always a unique pair of lists as and bs such that aip (as, bs) = cs. Thus,
we can discard the definition of zip given above, and instead define a
view Zip of pairs of lists:

view list {a, B) := Zip (list , list f)
inout Mi
inout ({a,) Cons Zip (as, bs))

= Zip (Nil, Nil)

= Zip (a Cons as, b Cons bs)
(Here the type of the pair (a,) is written (a, 8).) Now we can write
Zsp (as, bs) in place of np (as, bs) on the right-hand side of equations.
We can also write Zip (as, bs) on the left-hand sides of equations. For
example, the idiom given above becomes

1 (Zip (as, bs))

which is somewhat shorter.

e as bs

8 Two representations of trees

One common representation of trees is the following:

tree Leaf | Branch (tree a) (tree a)

Another common representation uses what is called the “spine” (mixing
an anatomical metaphor with an arboreal one). Spine trees, together
with the isomorphism that relates them to branch trees, can be conve-
niently described by the following view:

view tree a ::= Spine a (list (tree a))
inout (Leaf z)
inout (Branch (Spine # xts) #t)

Spine z Nil
Spine z (zts Snoc zt)

For example, the branch tree

Branch (Branch (Leaf *f”) (Leaf *2”)) (Leaf *b”)

310

is equivalent to the spine tree
Spine *f* [Spine 2" [}, Spine *b” []].

Of course, one could use spine treee as the underlying representation
with branch trees as the view, or hide the representation in an abstract
type and provide both branch and spine as views.

9 Two other uses of views

This section presents two rather unusual uses of views. It is not clear
whether these uses should be considered good style, but they do demon-
strate the power of the view mechanism.

Occasionally, it is convenient to both match an argument against a
pattern, and to refer to it by a single name. (One might say we wish to
“eat our argument and have it too".) Hope provides the as construct
for this purpose. For example, one might write:

1
n X factorial n'

factorial (n as Zero)
factorial (n a8 Succ n')

Surprisingly, as can be defined as a view:

view a = aasa
inz = zassz
out (zasz') = 1z, ifz=12

This defines an isomorphism between any type a, and the subset of
the viewing type a as o where the left and right arguments of the
constructor are equal. It is unlikely that one would want to use as on
the right-hand side in an equation, but the out clause is necessary for
the view to be well-defined.

One may even use views in place of predicates. For example, one
might define:

view int ::= EvenP int | OddP int

inn = EveaPn, if nmod2=0
= OddPn, if nmod2=1
out EvenPn = n, if nmod2=0
out 0OddPn = n, if nmod2=1
Then we can write
f (BvenPn) = e1n
J(0ddPn) = en
instead of
fn = en if nmod2=0
= en, if nmod2=1

Replacing conditions by patterns may occasionally be clearer, particu-
larly if many functions test the same condition. It may also improve
clarity when a function has many arguments, and the test of the con-
dition interacts with pattern matching for the other arguments. From
the out clause, it can be seen that the termn EvenP n is equivalent to n
with the additional assertion that n is even. Conceivably, it might be
useful to use EvenP and OddP on the right-hand sides of equations, as
a way of documenting that certain conditions hold.

10 Equational reasoning

In order for a language feature to be useful, it must be easy to reason
about programs containing that feature. Views have been carefully de-
signed to support two important proof techniques, equational reasoning
and induction. These are discussed in this section and the next.

Equational reasoning is a principle of such supreme importance that
it goes by many names: referential transparency, the rule of Leibnis,
and more plainly “substituting equals for equals”. As a very simple
example, given the function definition

last (z Cons Mil)
last (z Cons (z' Cons zs})

z (1)

last (' Cons zs) 2)

equational reasoning is sufficient to calculate the value of last |‘a’, ‘b’],

as follows:

{ast (‘a’ Cons (‘b’ Cons Nil)) last (b’ Cons Nil) (by 2)

‘b’ (by 1)
A key principle in the design of views is that all equations in the in

and out clauses of the view can be used just like any other equations
for equational reasoning. Thus, given the view

view list o ::= Nil | (list a) Snoc a
inout (z Cons Nil)
inout (z Cons (zs Snoc z'))

and the definition

Nil Snoc z (3
{z Cons z:) Snoc z’ (4)

last (zs Snoez) = z (5)
we may now calculate as follows:

last (‘a’ Cons {*b’ Cons Nil))

= last (*a’ Cons (Nil Snoc ‘b’)) (by 3)
= last ((‘a’ Cons Nil) Snoc ‘b’) (by 4)
= b (by 5)

Of course, the main value of equational reasoning is not in calcu-
lating values but in performing proofs. Given the definitions

rotleft (z Cons zs)
rotright (zs Snoc z)

z2 Snoc z (e)
z Cons zs (7)

we may prove
rotleft (rotright 2s) = zs

for a non-empty finite list zs, by simply observing that

rotleft (zs Snoc z) (by 6)

rotleft (rotright (z Cons zs) =
= zCons zs (by 7)

Both the definitions and the proof are rather more involved if views are
not used.

Equational reasoning is valid for all definitions that use pattern
matching over free data types. A view establishes an isomorphism
between (a subset of) the viewed data type and (a subset of) a free
data type. Thus, equational reasoning is also valid for all definitions
that use pattern matching over views.

However, some caution is required, because the view may imply
additional conditions that the program must satisfy. For example, the
polar view of complex numbers in Section 4 is valid only if for all angles
t; and f; the equation

Pole 0 t; = Pole 0 t;

is consistent with the rest of the program. This is required because all
points of the form Pole 0 t map into the same cartesian representation,
Cart00.

As a more extended example, consider the view of join lists as cons
lists. A look at this view will reveal that it establishes the following
conditions on join lists:

Nil Join zs
2+ Join (ys Join 22)

zs
(z2 Join ys) Join 35

That is, Join must have Nil as a (left) identity and be associative.
The programmer must verify that every definition containing Join is
consistent with these conditions. It is also desirable that definitions be
consistent with the condition

zsJoin Nil = zs

but this is not required by the view.
An example of a satisfactory definition is

length Nil
length (Unit z)
length (zs Join ys)

0
1
length z3 + length ys

This definition establishes a homomorphism mapping Join onto + and
Ni onto 0. It is valid because + has 0 as an identity and is associa-
tive, and so the desired properties are preserved. (For further discus-

sion homomorphisms and operations on lists, the reader is referred to
|Mee84,Birse].)

An example of an unsatisfactory definition is

ally Nil =1
atlly (Unit z) = 2
silly (s Join ys) = aslly zs + ailly ys

This definition does not preserve the desired properties, because 1 is not
a right identity of +. Thus, from the condition that zs = Nil Join zs
we could derive

2 = sslly (Unit ‘a’) = silly (Nil Join (Unst ‘a’)) = 3

It is impossible to reason equationally about a program containing this
definition, which is just as well since it is indeed a silly program.
A further example of an unsatisfactory definition is

nothead ((Unit z) Joinzs) = 3
This definition won’t do, because we have
(Unit “a?) Join (Unit ‘') = Nil Join ((Unit ‘a’) Join (Unit ‘b))

but applying nothead to the left of this equation yields ‘a’, while ap-
plying nothead to the right yields an undefined value.

One should consider it a bonus that views reveal an additional con-
dition that definitions involving Join must be checked for. On the
other hand, it is useful to be able to limit the portions of the program
that must be go checked. This can be done in the usual way, by encap-
sulating Join within an abstract data type. Further, it is completely
safe to export the cons and snoc views of lists outside of this type,
because they are guaranteed to enforce the necessary conditions. For
example, the definition

head (s Conszs) = =z

is completely satisfactory, because the cons view necessarily respects
the equivalences among various join representations of the same list.

11 Induction

It is also essential that induction should work over views. For example,
in order to demonstrate that a property P(zs) holds for every list zs,
it is sufficient to show

1. P(Nil) holds, and
2. P(zs Snoc z) holds, assuming P(zs) holds.

Similarly, one can prove properties of the natural numbers by inducting
over Zero and Succ.

In general, induction over a view is valid to demonstrate properties
that hold for all elements generated by the viewing type. For example,
every finite list can be generated using Nl and Snoc, o0 induction over
these serves to prove properties of finite lists. Similarly, every natural
number can be generated using Zero and Succ, so induction over these
serves to prove properties of natural numbers. Here the induction only
demonstrates properties of a subset (natural numbers) of the viewed
type (integers).

A more problematic example is the unusual view of even and odd
integers presented in Section 9. The set of values that can be generated
using just the two constructors EvenP and OddP is empty, and so
induction is not appropriate over this view.

12 Implementation

As explained in Section 2, each view can be expanded out into the defi-
nition of a new type, viewtype, and applications of conversion functions,
viewsn and viewout. This is workable, but not ideal. Constructors of
the viewed type (such as Zero and Succ) appear only as the result
of vsewin or the argument to vicwout. At run-time, such constructors
are always allocated storage and then immediately examined and never
referenced again. It would be preferable to use a scheme that avoided

allocating such constructors altogether.

Such a scheme is poesible. Instead of introducing a new type and
two conversion functions, in the modified scheme a view with & con-
structors introduces k + 1 new functions {and no new types). One func-
tion acts as the equivalent of viewin and the associated case expression,
while the remaining k functions provide an equivalent of viewout for
each constructor.

For example, the view of integers in Section 2 translates into the
following three functions:

viewcasezsn = z ifn=0
= s{n—-1) fa>0

zero = 0

sucen = n+1

Note that viewcasc is designed so that if n corresponds to Zero then z is
returned, and if n corresponds to Succ n’ then s n’ is returned. Since
s is itself a function, viewcase can be defined only in a higher-order
language, where functions may be passed to other functions.

Under this acheme, the definition of it now translates as follows:

fibm = viewcase
sero
(Am'.viewcase
(2ucc zero)

(An. n + fid (suce n))
m')
m

It is left to the reader to verify that this translation is equivalent to the
one described in Section 2.

The new translation scheme has the desired property that it in-
troduces no new constructors (like Succ and Zero) and hence requires
no extra allocation operations at run-time. However, it has the disad-
vantage that application of viewcase may be more difficult to evaluate
efficiently than the corresponding case expressions. The exact nature
of this problem will depend on the evaluation method used. Here the
problem will be considered in the context of a G-machine style com-
piler, and a solution suggested. Some familiarity with the G-machine
is assumed; see [Aug84,Joh85,Pey87| for an introduction.

As an example, consider the following definition (which happens to
provide a fast method for calculating Fibonacci numbers):

fibz a b Zero
fibz a b (Succ n)

= g

= fibzb{a+d)n

Translated using the above scheme, this becomes
fibzabm = viewcases (An.fibzb(a+b)n)m

After lambda-lifting, this definition in turn becomes

fbzabm
fibzgabn

viewcase a (fibzga b) m
fbzb(a+d)n

At run-time, the code implementing the body of fibz will need to al-
locate heap storage to represent the application {fidzy a 3). Thus, we
have saved the allocation of a constructor Zero or Succ only to replace
it by a potentially larger allocation (since in general storage will need
to be allocated for each free variable in each argument to viewcase).

Fortunately, this problem can be solved by simply rearranging the
way free variables are passed into arguments to wviewcase. In the
rearranged method, all free variables of the function containing the
viewcase are lambda-abstracted from each argument to the viewcase
(and in the same order); these variables are then passed into the result

312

returned by the viewcase. Thus, the definition of fibz now translates
to

fibzabm=
viewcase (Aa.Ab.Am.a)(An.daAbim.fibzb(a + b)n)mabm

After lambda-lifting this becomes

fibzabm
fibz;abm
fibzy;nabm

viewcase fibz; fibz,mabm

;ib:b(a+b)n

Now the body of fibz need merely push pointers to fibz, and fibz, onto
the stack, copy the parameter m onto the top of the stack, and perform
a tail-call (that is, a jump) to viewcase. In turn, viewcase will examine
the argument m; if it is sero it will perform a tail-call (jump) to fibz,,
and if it is positive it will push m — 1 onto the stack and perform a
tail-call (jump) to fibz;. By passing the free variables in the body of
fibz to each argument in the same order, the rearrangement of the stack
necessary at run-time is minimised. (Given the above definition of fibz,
the current G-machine compiler would not produce quite the sequence
of steps described here, but it could be modified to do so0.)

This is quite acceptably efficient. Further efficiency might be gained
by expanding out non-recursive function applications at compile time.
{The compilers described by [HK84,FW86] perform expansion of this
kind.) For example, performing expansion on the above definition of
fibz yields

fibzabm if m=0
if m>0

fibe b (a+) (m—1),

which resembles the code one would write if a view had not been used.
However, it is difficult to see how to perform an equivalent expansion
of a recursive viewcase, such as the one associated with the snoc view
of lists.

13 Conclusions

Designers of software are continually faced with trade-offs. Some of
these trade-offs are necessary, but others can be avoided by careful
design. It is particularly worrying when we are forced to choose be-
tween valuable methods such as pattern matching and data abstraction.
Views move this trade-off from the “necessary” to the “avoidable” cat-
egory.

After the views mechanism was defined, several unexpected uses of
it emerged. These included the list-of-pairs to pair-of-lists view dis-
cussed in Section 7 and the two unusual views discussed in Section 9.
No doubt many other uses of views are waiting to be discovered.

Programming languages are awash with features, and new features
must be approached with caution. Views are worth consideration be-
cause they address an important need—reconciling pattern matching
with data abstraction. In doing so, they also bring a new perspective.
Instead of thinking of an abstract data type as something which hides
the representation, with views we can think of it as something which
exports as many representations as convenient.

Acknowledgements. [am grateful to Tony Hoare for pointing out
how views should support equational reasoning; Joseph Goguen for
providing useful comments on an earlier draft of this report; Bernard
Sufrin and John Hughes for acting as sounding boards for these ideas;
and Thomas Johnsson for his careful proofreading.

This research was performed while on a fellowship supported by
ICL.

Trademark notice. Miranda is a trademark of Research Software,

Ltd.

References

[Augsd]

{Aug85]

[BD77]

[Birse)

(BMsa0]

[Bur69]

[FGIMS8S]

[Fwa6)

[HKs84)

[Johss)

[Mee84|

[Pey87)

[SH82|

(Tho86)

{Tur81]

[Turss]

[Wads?)

L. Augustsson. A compiler for lasy ML. In Proceedings of
the 198{ ACM Symposium on Lisp and Functional Program-
ming, pages 218-227, Austin, 1984,

L. Augustsson. Compiling pattern matching. In Proceedings
of the Conference on Functional Programming Languages
and Computer Architecture, Springer-Verlag, September
1985,

R. M. Burstall and J. Darlington. A transformation system
for developing recursive programs. Journal of the ACM,
24(1):44-67, January 1977.

R. S. Bird. An introduction to the theory of lists. In
Marktoberdorf Workshop on Logscs of Programming, August
1986.

R. Burstall, D. MacQueen, and D. Sanella. Hope: An ez-
perimental applicative language. Technical Report Report
CSR-62-80, Edinburgh University, Computer Science Dept.,
1980.

R. M. Burstall. Proving properties of programs by struc-
tural induction. The Computer Journal, 12(1), February
1969,

K. Futasagi, J. A. Goguen, J.P. Jouannaud, and J.
Meseguer. Principles of OBJ2. In ACM Symposium on
Principlea of Programming Languages, pages 52-66, Jan-
uary 1985.

J. Fairbairn and S. C. Wray. Code generation techniques
for functional languages. In Proceedings of the 1986 ACM
Symposium on Lisp and Functional Programming, pages 94—
104, Boston, 1986.

P. Hudak and D. Krans. A combinator-based compiler for
a functional language. In ACM Symposium on Principles
of Programmaing Languages, pages 121-132, January 1984.

T. Johnsson. Lambda lifting: transforming programs to re-
cursive equations. In Proceedings 1985 Conference on Func-
tional Programming Languages and Computer Archilecture,
Nancy, France, 1985.

L. Meertens. Algorithmics: Towards programming as a
mathematical activity. In J. W. de Bakker, et. al., edi-
tors, Mathematics and Computer Science, North-Holland,
1984.

S. L. Peyton-Jones. Implementing Functional Languages
using Graph Reduction. Prentice-Hall, 1987.

M. R. Sleep and S. Holmstrdm. A short note concerning
lagy reduction rules of append. Software Practice and Ez-
perience, 12(11):1082—4, November 1982.

S. Thompeon. Laws in miranda. In ACM Symposium
on Lisp and Functional Programming, pages 1-12, August
1986.

D. A. Turner. Recursion equations as a programming lan-
guage. In J. Darlington, P. Henderson, and D. Turner, ed-
itors, Functional Programming and Its Applications, Cam-
bridge University Press, 1981.

D. A. Turner. Miranda: A non-strict functional language
with polymorphic types. In Proccedings of the Conference
on Functional Programming Languages and Computer Ar-
chitecture, Springer-Verlag, September 1985.

P. L. Wadler. Compiling pattern matching; List compre-
hensions. In [Pey87].

313

