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 8.1 Natural Language Understanding in Prolog 

 Because of its declarative semantics, built-in search, and pattern matching, 
Prolog provides an important tool for programs that process natural 
language. Indeed, natural language understanding was one of Prolog’s 
earliest applications. As we will see with many examples in this chapter, we 
can write natural language grammars directly in Prolog, for example, 
context-free, context-sensitive, recursive descent semantic network, as well 
as stochastic parsers. Semantic representations are also easy to create in 
Prolog, as we see for conceptual graphs and case frames in Section 8.2. 
Semantic relationships may be captured either using the first-order 
predicate calculus or by a meta-interpreter for another representation, as 
suggested by semantic networks (Section 2.4.1) or frames (Sections 2.4.2 
and 8.1).  This not only simplifies programming, but also keeps a close 
connection between theories and their implementation. 

In Section 8.3 we present a context-free parser and later add context 
sensitivity to the parse Section 8.5. We accomplish many of the same 
justifications for context sensitivity in parsing, e.g., noun-verb agreement, 
with the various probabilistic parsers of Section 8.4. Finally, semantic 



108 Part II: Programming in Prolog 

 

inference, using graph techniques including join, restrict, and 
inheritance in conceptual graphs, can be done directly in Prolog as 
we see in Section 8.5. 

Many of the approaches to parsing presented in this chapter have been 
suggested by several generations of colleagues and students. 

               8.2 Prolog-Based Semantic Representations 

 Following on the early work in AI developing representational schemes such 
as semantic networks, scripts, and frames (Luger 2009, Section 7.1) a number 
of network languages were developed to model the semantics of natural language 
and other domains. In this section, we examine a particular formalism to show 
how, in this situation, the problems of representing meaning were addressed. 
John Sowa’s conceptual graphs (Sowa 1984) is an example of a network 
representation language. We briefly introduce conceptual graphs and show 
how they may be implemented in Prolog. A more complete introduction to 
this representational formalism may be found in Sowa (1984) and Luger (2009, 
Section 7.2). 

A conceptual graph is a finite, connected, bipartite graph. The nodes of the 
graph are either concepts or conceptual relations. Conceptual graphs do not use 
labeled arcs; instead the conceptual relation nodes represent relations 
between concepts. Because conceptual graphs are bipartite, concepts only 
have arcs to relations, and vice versa. In Figure 8.1 dog and brown are 
concept nodes and color a conceptual relation. To distinguish these 
types of nodes, we represent concepts as boxes and conceptual relations as 
ellipses. 

 

 

 

 

 

 

 

 

Figure 8.1. Conceptual graph relations with different arities. 
In conceptual graphs, concept nodes represent either concrete or abstract 
objects in the world of discourse. Concrete concepts, such as a cat, 
telephone, or restaurant, are characterized by our ability to form an image 
of them in our minds. Note that concrete concepts include generic 
concepts such as cat or restaurant along with concepts of specific cats and 
restaurants. We can still form an image of a generic cat. Abstract concepts 
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include things such as love, beauty, and loyalty that do not correspond to 
images in our minds. 

Conceptual relation nodes indicate a relation involving one or more 
concepts. One advantage of formulating conceptual graphs as bipartite 
graphs rather than using labeled arcs is that it simplifies the representation 
of relations of any number of arcs (arity). A relation of arity n is 
represented by a conceptual relation node having n arcs, as shown in 
Figure 8.1. 

Each conceptual graph represents a single proposition. A typical 
knowledge base will contain a number of such graphs. Graphs may be 
arbitrarily complex but must be finite. For example, one graph in Figure 
8.1 represents the proposition “A dog has a color of brown.” Figure 8.2 is 
a graph of somewhat greater complexity that represents the sentence 
“Mary gave John the book.” This graph uses conceptual relations to 
represent the cases of the verb “to give” and indicates the way in which 
conceptual graphs are used to model the semantics of natural language. 

 

 

 

 

 

Figure 8.2. Conceptual graph of “Mary gave John the book.” 

Conceptual graphs can be translated directly into predicate calculus and 
hence into Prolog. The conceptual relation nodes become the predicate 
name, and the arity of the relation indicates the number of arguments of 
the predicate. Each Prolog predicate, as with each conceptual graph, 
represents a single proposition. 

The conceptual graphs of Figure 8.1 may be rendered in Prolog as: 
bird(X), flies(X). 
dog(X), color (X, Y), brown(Y). 
child(X), parents(X, Y, Z), father(Y), mother(Z). 

where X, Y, and Z are bound to the appropriate individuals. Type 
information can be added to parameters as indicated in Section 5.2. We can 
also define the type hierarchy through a variation of isa predicates. 

In addition to concepts, we define the relations to be used in conceptual 
graphs. For this example, we use the following concepts: 

agent links an act with a concept of type animate. agent defines the 
relation between an action and the animate object causing the action. 

experiencer links a state with a concept of type animate. It defines the 
relation between a mental state and its experiencer. 

instrument links an act with an entity and defines the instrument used 
in an action. 
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object links an event or state with an entity and represents the verb–
object relation. 

part links concepts of type physobj and defines the relation between 
whole and part. 

The verb plays a particularly important role in building an interpretation, as it 
defines the relationships between the subject, object, and other components of 
the sentence. We can represent each verb using a case frame that specifies: 

The linguistic relationships (agent, object, instrument, and so on) appropriate 
to that particular verb. Transitive verbs, for example, can have a direct object; 
intransitive verbs do not. 

Constraints on the values that may be assigned to any component of the case 
frame. For example, in the case frame for the verb bites, we have asserted that 
the agent of biting must be of the type dog. This causes “Man bites dog” to be 
rejected as semantically incorrect. 

Default values on components of the case frame. In the “bites” frame, we 
have a default value of teeth for the concept linked to the instrument relation. 

The case frames for the verbs like and bite appear in Figure 8.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

Figure 8.3. Case frames for the verbs “like” and “bite.” 

These verb-based case frames are also easily built in Prolog. Each verb is 
paired with a list of the semantic relations assumed to be part of the verb. 
These may include agents, instruments, and objects. We next offer 
examples of the verbs give and bite from Figure 8.3. For example, the verb 
give requires a subject, object, and indirect object. In the English sentence 
“John gives Mary the book,” this structure takes on the obvious 
assignments. We can define defaults in a case frame by binding the 
appropriate variable values. For example, we could give bite a default 
instrument of teeth, and, indeed indicate that the instrument for biting, 
teeth, belong to the agent! Case frames for these two verbs might be: 
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verb(give, 
    [human (Subject), 
       agent (Subject, give), 
       act_of_giving (give), 
       object (Object, give), 
       inanimate (Object), 
       recipient (Ind_obj, give), 
       human (Ind_obj) ] ). 

verb(bite, 
    [animate (Subject), 
       agent (Subject, Action), 
       act_of_biting (Action), 
       object (Object, Action), 
       animate (Object), 
       instrument (teeth, Action), 
       part_of (teeth, Subject) ] ). 

Logic programming also offers a powerful medium for building 
grammars as well as representations for semantic meanings. We next 
build recursive descent parsers in Prolog, and then add syntactic and 
semantic constraints to these parsers. 

               8.3  A Context-Free Parser in Prolog 

 Consider the subset of English grammar rules below. These rules are 
“declarative” in the sense that they simply define relationships among parts 
of speech. With this subset of rules a large number of simple sentences can 
be judged as well formed or not. The “<−>” indicate that the symbol on 
the left hand side can be replaced by the symbol or symbols on the right. 
For example, a Sentence can be replaced by a NounPhrase followed 
by a VerbPhrase. 

Sentence <−> NounPhrase VerbPhrase 

NounPhrase <−> Noun 

NounPhrase <−> Article Noun 

VerbPhrase <−> Verb 

VerbPhrase <−> Verb NounPhrase 

Adding some vocabulary to the grammar rules: 
Article(a) 

Article(the) 

Noun(man) 

Noun(dog) 

Verb(likes) 

Verb(bites) 

These grammar rules have a natural fit to Prolog, for example, a 
sentence is a nounphrase followed by a verbphrase: 

sentence(Start, End) :-  

     nounphrase(Start, Rest), verbphrase(Rest, End). 
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This sentence Prolog rule takes two parameters, each a list; the first list, 
Start, is a sequence of words. The rule attempts to determine whether 
some initial part of this list is a NounPhrase. Any remaining tail of the 
NounPhrase list will match the second parameter and be passed to the 
first parameter of the verbphrase predicate. Any symbols that remain 
after the verbphrase check are passed back as the second argument of 
sentence. If the original list is a sentence, the second argument of 
sentence must be empty, [].Two alternative Prolog descriptions of 
nounphrase and verbphrase parses follow. 

Figure 8.4 is the parse tree of “the man bites the dog,” with and 
constraints in the grammar reflected by and links in the tree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4. The and/or parse tree for “The man bites the dog.” 

To simplify our Prolog code, we present the sentence as a list: [the, 
man, likes, the, dog]. This list is broken up by, and passed to, 
the various grammar rules to be examined for syntactic correctness. Note 
how the “pattern matching” works on the list in question: pulling off the 
head, or the head and second element; passing on what is left over; and so 
on. The utterance predicate takes the list to be parsed as its argument 
and calls the sentence rule, initializing the second parameter of 
sentence to []. The complete grammar is defined: 

utterance(X) :- sentence(X, [ ]). 

sentence(Start, End) :-  

        nounphrase(Start, Rest), verbphrase(Rest, End). 

   nounphrase([Noun | End], End) :-  

        noun(Noun). 

   nounphrase([Article, Noun | End], End) :-  

        article(Article), noun(Noun). 

   verbphrase([Verb | End], End) :-  

        verb(Verb). 
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   verbphrase([Verb | Rest], End) :-  

        verb(Verb), nounphrase(Rest, End). 

article(a). 

article(the). 

noun(man). 

noun(dog). 

verb(likes). 

verb(bites). 

Example sentences may be tested for correctness: 
?- utterance([the, man, bites, the, dog]). 

Yes 

?- utterance([the, man, bites, the]). 

no 

The interpreter can also fill in possible legitimate words to incomplete 
sentences: 

?- utterance([the, man, likes, X]). 

X = man 

; 

X = dog 

; 

no 

Finally, the same code may be used to generate the set of all well-formed 
sentences using this limited dictionary and set of grammar rules: 

?- utterance(X). 

[man, likes] 

; 

[man, bites] 

; 

[man, likes, man] 

; 

[man, likes, dog] 

etc. 

If the user continues asking for more solutions, eventually all possible well-
formed sentences that can be generated from the grammar rules and our 
vocabulary are returned as values for X. Note that the Prolog search is left-
to-right and depth-first. 

The grammar rules specify a subset of legitimate sentences of English. The 
Prolog grammar code represents these specifications. The interpreter is 
asked questions about them and the answer is a function of the 
specifications and the question asked. Since there are no constraints 
enforced across the subtrees that make up the full parse of a sentence, see 
Figure 8.4, the parser/generator for this grammar is said to be context free. 
In Section 8.3 we use probabilistic measures to add constraints both to 
particular word combinations and to the structures of the grammar. 
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               8.4  Probabilistic Parsers in Prolog 

 In this section we extend the context-free grammar of Section 8.2 to 
include further syntactic and semantic constraints. For example, we may 
want some grammatical structures to be less likely than others, such as a 
noun by itself being less likely than an article followed by a noun. Further, 
we may want the sentence “The dog bites the widget” to be less likely than 
the sentence “The dog bites the man.” Finally, if our vocabulary includes 
the verb like (as well as likes), we want “The man likes the dog” to be 
acceptable, but “The man like the dog” to fail. The parsers for Sections 
8.3.1 and 8.3.2 were suggested by Professor Mark Steedman of the 
University of Edinburgh and transformed to the syntax of this book by Dr. 
Monique Morin of the University of New Mexico. 

We next create two probabilistic parsers in Prolog, first a context free 
parser and second, a lexicalized context free parser.  

Probabilistic 
Context-Free 

Parser 

Our first extension is to build a probabilistic context-free parser. To do this, we 
add a probabilistic parameter, Prob, to each grammar rule. Note that the 
probability that a sentence will be a noun phrase followed by a verb phrase 
is 1.0, while the probability that a noun phrase is simply a noun is less than 
the probability of it being an article followed by a noun. These probabilities 
are reflected in pr facts that are related to each grammar rule, r1, r2, …, 
r5. 

The full probability of a particular sentence, Prob, however, is calculated 
by combining a number of probabilities: that of the rule itself together with 
the probabilities of each of its constituents. Thus, the full probability Prob 
of r1 is a product of the probabilities that a particular noun phrase is 
combined with a particular verb phrase. Further, the probability for the 
third rule, r3, will be the product of that type noun phrase occurring (r3) 
times the probabilities of the particular article and noun that make up the 
noun phrase. These noun/article probabilities are given in the two 
argument dictionary “fact” predicates. These probabilities for particular 
words might be determined by sampling some corpus of collected 
sentences. In the examples that follow we simply made-up these 
probabilistic measures. 

utterance(Prob, X) :- sentence(Prob, X, [ ]). 

sentence(Prob, Start, End) :-  

     nounphrase(P1, Start, Rest),  

     verbphrase(P2, Rest, End), 

     pr(r1, P), Prob is P*P1*P2. 

   nounphrase(Prob, [Noun | End], End) :-  

        noun(P1, Noun), pr(r2, P), Prob is P*P1. 

   nounphrase(Prob, [Article, Noun | End], End) :-  

        article(P1, Article), noun(P2,Noun), pr(r3, P),  

        Prob is P*P1*P2. 

   verbphrase(Prob, [Verb | End], End) :-  

        verb(P1, Verb), pr(r4, P), Prob is P*P1. 
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   verbphrase(Prob, [Verb | Rest], End) :-  

        verb(P1, Verb),  

        nounphrase(P2, Rest, End), pr(r5, P),  

        Prob is P*P1*P2. 

   pr(r1, 1.0). 

   pr(r2, 0.3). 

   pr(r3, 0.7). 

   pr(r4, 0.2).  

   pr(r5, 0.8). 

   article(0.25, a). 

   article(0.75, the).  

   noun(0.65, man). 

   noun(0.35, dog). 

   verb(0.9, likes). 

   verb(0.1, bites). 

We now run several example sentences as well as offer general patterns of 
sentences, i.e., sentences beginning with specific patterns of words such as 
“The dog bites…” Finally, we ask for all possible sentences that can be 
generated under these constraints. 

?- utterance(Prob, [the, man, likes, the, dog]). 

Prob = 0.0451474 

Yes 

?- utterance(Prob, [bites, dog]) 

No 

?- utterance(Prob, [the, man, dog]). 

No 

?- utterance(Prob, [the, dog, bites, X]). 

Prob = 0.0028665 

X = man 

; 

Prob = 0.0015435 

X = dog 

; 

No 

?- utterance(Prob, [the, dog, bites, XY]). 

Prob = 0.0028665 

X = man 

Y = [ ] 

; 

Prob = 0.0015435 

X = dog 

Y = [ ] 

; 
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Prob = 0.00167212 

X = a 

Y = [man] ; 

etc. 

?- utterance(Prob, X). 

Prob = 0.0351 

X = [man, likes] 

; 

Prob = 0.0039 

X = [man, bites] 

; 

Prob = 0.027378 

X = [man, likes, man] 

; 

Prob = 0.014742 

X = [man, likes, dog] 

etc. 

A Probabilistic 
Lexicalized 

Context Free 
Parser 

We next demonstrate a probabilistic lexicalized context-free parser. This is a 
much more constrained system in which the probabilities, besides giving 
measures for the various grammatical structures and individual words as in 
the previous section, also describe the possible combinations of words 
(thus, it is a probabilistic lexicalized parser). For example, we now measure 
the likelihood of both noun-verb and verb-object word combinations. 
Constraining noun-verb combinations gives us much of the power of the 
context-sensitive parsing that we see next in Section 8.4, where noun-verb 
agreement is enforced by the constraints across the subtrees of the parse. 

There are a number of goals here, including “measuring” the “quality” of 
utterances in the language by determining a probabilistic measure for their 
occurring. Thus, we can determine that a possible sentence fails for 
syntactic or semantic reasons by seeing that it produces a very low or zero 
probability measure, rather than by the interpreter simply saying “no.” 

In the following grammar we have hard coded the probabilities of various 
structure and word combinations. In a real system, lexical information 
could be better obtained by sampling appropriate corpora with noun-verb 
or verb-object bigrams. We discuss the n-gram approach to language analysis 
in Luger (2009, Section 15.4) where the probability of word combinations 
was described (two words—bigrams, three words—trigrams, etc.). These 
probabilities are usually determined by sampling over a large collection of 
sentences, called a corpus. The result was the ability to assess the likelihood 
of these word combinations, e.g., to determine the probability of the verb 
“bite” following the noun “dogs.” 

In the following examples the Prob value is made up of the probabilities 
of the particular sentence structure, the probabilities of the verb-noun and 
verb-object combinations, and the probabilities of individual words.  
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utterance(Prob, X) :-  

     sentence(Prob, Verb, Noun, X, [ ]). 

sentence(Prob, Verb, Noun, Start, End) :-    

     nounphrase(P1, Noun, Start, Rest),  

     verbphrase(P2, Verb, Rest, End), 

     pr(r1, P),      % Probability of this structure 

     pr([r1, Verb, Noun], PrDep),  
          % Probability of this noun/verb combo  

     pr(shead, Verb, Pshead),    
          % Probability this verb heads the sentence 

     Prob is Pshead*P*PrDep*P1*P2. 

nounphrase(Prob, Noun, [Noun | End], End) :-  

     noun(P1, Noun), pr(r2, P), Prob is P*P1. 

nounphrase(Prob, Noun, [Article,Noun | End], End) :- 

     article(P1, Article), noun(P2,Noun), pr(r3, P), 

     pr([r3, Noun, Article], PrDep),   
          % Probability of art/noun combo          

     Prob is P*PrDep*P1*P2. 

verbphrase(Prob, Verb, [Verb | End], End) :-  

     verb(P1, Verb), pr(r4, P), Prob is P*P1. 

verbphrase(Prob, Verb, [Verb,Object | Rest], End) :- 

     verb(P1, Verb), nounphrase(P2, Object,  
          Rest, End). 

     pr([r5, Verb, Object], PrDep),  
          % Probability of verb/object combo 

     pr(r5, P), Prob is P*PrDep*P1*P2. 

pr(r1, 1.0). 

pr(r2, 0.3). 

pr(r3, 0.7). 

pr(r4, 0.2). 

pr(r5, 0.8).  
article(1.0, a). 

article(1.0, the). 

article(1.0, these). 

noun(1.0, man). 

noun(1.0, dogs). 

verb(1.0, likes). 

verb(1.0, bite). 

pr(shead, likes, 0.5). 

pr(shead, bite, 0.5). 

pr([r1, likes, man], 1.0). 

pr([r1, likes, dogs], 0.0). 

pr([r1, bite, man], 0.0). 

pr([r1, bite, dogs], 1.0). 
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pr([r3, man, a], 0.5). 

pr([r3, man, the], 0.5). 

pr([r3, man, these], 0.0). 

pr([r3, dogs, a], 0.0). 

pr([r3, dogs, the], 0.6). 

pr([r3, dogs, these], 0.4). 

pr([r5, likes, man], 0.2). 

pr([r5, likes, dogs], 0.8). 

pr([r5, bite, man], 0.8). 

pr([r5, bite, dogs], 0.2). 

The Prob measure gives the likelihood of the utterance; words that aren’t 
sentences return No. 

?- utterance(Prob, [a, man, likes, these, dogs]). 

Prob = 0.03136 

?- utterance(Prob, [a, man, likes, a, man]). 

Prob = 0.0098 

?- utterance(Prob, [a, man, likes, a, man]). 

Prob = 0.0098 

?- utterance(Prob, [the, dogs, likes, these, man]). 

Prob = 0 

?- utterance(Prob, [the, dogs]). 

No 

?- utterance(Prob, [the, dogs, X | Y]) 

Prob = 0 

X = likes Y = [] 

; 

Prob = 0.042 

X = bite Y = [] 

; 

Prob = 0 

X = likes Y = [man] 

; 

Prob = 0.04032 

X = bite Y = [man] 

; 

Prob = 0.01008 

X = bite Y = [dogs] 

; 

Prob = 0.04704 

X = bite Y = [a, man] 

Etc 

?- utterance(Prob, X). 
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Prob = 0.03 

X = [man, likes] 

; 

Prob = 0 

X = [man, bite] 

; 

Prob = 0.0072 

X = [man, likes, man] 

; 

Prob = 0.0288 

X = [man, likes, dogs] 

; 

Prob = 0.0084 

X = [man, likes, a, man] 

etc 

We next enforce many of the same syntax/semantic relationships seen in 
this section by imposing constraints (context sensitivity) across the subtrees 
of the parse. Context sensitivity can be used to constrain subtrees to 
support relationships within a sentence such as article-noun and noun-verb 
number agreement. 

 8.5 Introduction: Logic-Based Representation A Context-Sensitive Parser in Prolog 

 A context-sensitive parser addresses the issues of the previous section in a 
different manner. Suppose we desire to have proper noun–verb agreement 
enforced by the grammar rules themselves. In the dictionary entry for each 
word its singular or plural form can be noted as such. Then in the grammar 
specifications for nounphrase and verbphrase a further parameter 
is used to signify the Number of each phrase. This enforces the constraint 
that a singular noun has to be associated with a singular verb. Similar 
constraints for article–noun combinations can also be enforced. The 
technique we are using is constraining sentence components by enforcing 
variable bindings across the subtrees of the parse of the sentence (note the 
and links in the parse tree of Figure 8.4). 

Context sensitivity increases the power of a context-free grammar 
considerably. These additions are made by directly extending the Prolog 
code of Section 8.2: 

utterance(X) :- sentence(X, [ ]). 

sentence(Start, End) :-  

     nounphrase(Start, Rest, Number), 

     verbphrase(Rest, End, Number). 

nounphrase([Noun | End], End, Number) :-  

     noun(Noun, Number). 

nounphrase([Article, Noun | End], End, Number) :-  

     noun(Noun, Number), article(Article, Number). 
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verbphrase([Verb | End], End, Number) :-  

     verb(Verb, Number). 

verbphrase([Verb | Rest], End, Number) :-  

     verb(Verb, Number), nounphrase(Rest, End, _). 

   article(a, singular). 

   article(these, plural). 

   article(the, singular). 

   article(the, plural). 

    noun(man, singular). 

   noun(men, plural). 

   noun(dog, singular). 

   noun(dogs, plural). 

    verb(likes, singular). 

   verb(like, plural). 

   verb(bites, singular). 

   verb(bite, plural). 

We next test some sentences. The answer to the second query is no, 
because the subject (men) and the verb (likes) do not agree in number. 

?- utterance([the, men, like, the, dog]). 

Yes 

?- utterance([the, men, likes, the, dog]). 

no 

If we enter the following goal, X returns all verb phrases that complete the 
plural “the men …” with all verb phrases with noun–verb number 
agreement. The final query returns all sentences with article–noun as well 
as noun–verb agreement. 

?- utterance([the, men  X]). 

?- utterance(X). 

In the context-sensitive example we use the parameters of dictionary 
entries to introduce more information on the meanings of each of the 
words that make up the sentence. This approach may be generalized to a 
powerful parser for natural language. More and more information may be 
included in the dictionary of the word components used in the sentences, 
implementing a knowledge base of the meaning of English words. For 
example, men are animate and human. Similarly, dogs may be described as 
animate and nonhuman. With these descriptions new rules may be added 
for parsing, such as “humans do not bite animate nonhumans” to eliminate 
sentences such as [the, man, bites, the, dog]. We add these constraints in 
the following section. 

               8.6 A Recursive Descent Semantic Net Parser 

 We next extend the set of context-sensitive grammar rules to include some 
possibilities of semantic consistency. We do this by matching case frames, 
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Section 8.1, for the verbs of sentences to semantic descriptions of subjects 
and objects. After each match, we constrain these semantic net subgraphs 
to be consistent with each other. We do this by performing graph 
operations, such as join and restrict, to each piece of the graph as it 
is returned up the parse tree. 

We first present the grammar rules where the top-level utterance, 
returns not just a sentence but also a Sentence_graph. Each 
component of the grammar, e.g., nounphrase and verbphrase, call 
join to merge together the constraints of their respective graphs. 

utterance(X, Sentence_graph) :- 

     sentence(X, [ ], Sentence_graph). 

sentence(Start, End, Sentence_graph) :- 

     nounphrase(Start, Rest, Subject_graph), 

     verbphrase(Rest, End, Predicate_graph), 

     join([agent(Subject_graph)], Predicate_graph,  
          Sentence_graph). 

nounphrase([Noun | End], End, Noun_phrase_graph) :- 

     noun(Noun, Noun_phrase_graph). 

nounphrase([Article, Noun | End], End,  
          Noun_phrase_graph) :- 
     article(Article),  
     noun(Noun, Noun_phrase_graph). 

   verbphrase([Verb | End], End, Verb_phrase_graph) :- 

        verb(Verb, Verb_phrase_graph). 

   verbphrase([Verb | Rest], End, Verb_phrase_graph) :- 

        verb(Verb, Verb_graph), 

        nounphrase(Rest, End, Noun_phrase_graph), 

        join([object(Noun_phrase_graph)], Verb_graph,  
          Verb_phrase_graph). 

We next present the graph join and restriction operations. These 
are meta-predicates since their domain is other Prolog structures. These 
utilities propagate constraints across pieces of semantic nets they combine. 

join(X, X, X). 

join(A, B, C) :- 

     isframe(A), isframe(B), !, 

     join_frames(A, B, C, not_joined). 

join(A, B, C) :- 

     isframe(A), is_slot((B), !, 

     join_slot_to_frame(B, A, C). 

join(A, B, C) :- 

     isframe(B), is_slot(A), !, 

     join_slot_to_frame(A, B, C). 

join(A, B, C) :- 

     is_slot(A), is_slot(B), !, 

     join_slots(A, B, C). 
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join_frames recursively matches each slot (property) of the first frame 
to matching slots of the second frame. join_slot_to_frame takes a 
slot and a frame and searches the frame for matching slots. 
join_slots, once slots are matched, unites the two slots, taking the 
type hierarchy into account: 

join_frames([A | B], C, D, OK) :- 

     join_slot_to_frame(A, C, E) , !, 

     join_frames(B, E, D, ok). 

join_frames([ A | B], C, [A | D], OK) :- 

     join_frames(B, C, D, OK), !. 

join_frames([], A, A, ok). 

join_slot_to_frame(A, [B | C], [D | C]) :- 

     join_slots(A, B, D). 

join_slot_to_frame(A, [B | C], [B | D]) :- 

     join_slot_to_frame(A, C, D). 

join_slots(A, B, D) :- 

     functor(A, FA, _), functor(B, FB, _), 

     match_with_inheritance(FA, FB, FN), 

     arg(1, A, Value_a), arg(1, B, Value_b), 

     join(Value_a, Value_b, New_value), 

     D =.. [FN | [New_value]]. 

isframe([_ | _]). 

isframe([ ]). 

   is_slot(A) :- functor(A, _, 1). 

Finally, we create dictionary entries, the inheritance hierarchy, and verb 
case frames. In this example, we use a simple hierarchy that lists all valid 
specializations; the third argument to match_with_inheritance is 
the common specialization of the first two. A more realistic approach 
might maintain a graph of the hierarchies and search it for common 
specializations. Implementation of this is left as an exercise. 

match_with_inheritance(X, X, X). 

match_with_inheritance(dog, animate, dog). 

match_with_inheritance(animate, dog, dog). 

match_with_inheritance(man, animate, man). 

match_with_inheritance(animate, man, man). 

article(a). 

article(the). 

noun(fido, [dog(fido)]). 

noun(man, [man(X)]). 

noun(dog, [dog(X)]). 

verb(likes, [action([liking(X)]),  
         agent([animate(X)]), object(animate(Y)])]). 

verb(bites, [action([biting(Y)]),  
         agent([dog(X)]), object(animate(Z)])]).   
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We now parse several sentences and print out their Sentence_graph: 

?- utterance([the, man, likes, the, dog], X). 

X = [action([liking(_54)]), agent([man(_23)]),  
         object([dog(_52)])]. 

?- utterance([fido, likes, the, man], X). 

X = [action([liking(_62)]), agent([dog(fido)]),  
         object([man(_70)])]. 

?- utterance([the, man, bites, fido], Z). 

no 

The first sentence states that some man, with name unknown, likes an 
unnamed dog. The last sentence, although it was syntactically correct, did 
not meet the semantic constraints, where a dog had to be the agent of 
bites. In the second sentence, a particular dog, Fido, likes an unnamed 
man. Next we ask whether Fido can bite an unnamed man: 

?- utterance([fido, bites, the, man], X). 

X = [action([biting(_12)]), agent([dog(fido)]),  
         object([man(_17)])]. 

This parser may be extended in many interesting directions, for instance, 
by adding adjectives, adverbs, and prepositional phrases, or by allowing 
compound sentences. These additions must be both matched and 
constrained as they are merged into the sentence graph for the full 
sentence. Each dictionary item may also have multiple meanings that are 
only accepted as they meet the general requirements of the sentence. In the 
next chapter we present the Earley parser for language structures.  

 Exercises 

 1. Create a predicate calculus and a Prolog representation for the 
Conceptual Graph presented in Figure 8.2, “Mary gave John the book.” 
Take this same example and create a general Prolog rule, “X gave Y the Z” 
along with a number of constraints, such as “object(Z).” Also create a 
number of Prolog facts, such as “object(book)” and show how this 
conceptual graph can be constrained by using the Prolog interpreter on 
your simple program. 

2.  Figure 8.3 presents case frames for the verbs like and bite. Write 
Prolog specifications that captures the constraints of these representations. 
Add other related fact and rules in Prolog and then use the Prolog 
interpreter to instantiate the constraints that are implicit in these two verb 
case frames. 

3. Create a predicate calculus and a Prolog representation for the two 
Conceptual Graphs presented in Figure 8.5.  

4. Describe an algorithm that could be used to impose graph constraints 
across the structures of Figure 8.5. You will have to address the nesting 
issue to handle sentences like “Mary believes that John does not like soup.” 

5. Create Prolog case frames, similar to those of Section 8.1 for five other 
verbs, including like, trade, and pardon. 
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6.  Write the Prolog code for a subset of English grammar rules, as in the 
context-free and context-sensitive parsers in Sections 8.2 and 8.4, adding: 

Adjectives and adverbs that modify verbs and nouns, respectively. 

Prepositional phrases. (Can you do this with a recursive call?) 

Compound sentences (two sentences joined by a conjunction). 

7. Extend the stochastic context-free parser of Section 8.3 to include 
probabilities for the new sentence structures of Exercise 8. Explore 
obtaining probabilities for these sentence structures from a treebank for 
natural language processing. Examples may be found on the www. 

8. Add probabilities for more word pair relationships as in the lexicalized 
context-free parser of Section 8.3.2. Explore the possibility of obtaining 
the probabilistic bigram values for the noun–verb, verb–object, and other 
word pairs from actual corpus linguistics. These may be found on the www. 

9. Many of the simple natural language parsers presented in Chapter 8 will 
accept grammatically correct sentences that may not have a commonsense 
meaning, such as “the man bites the dog.” These sentences may be 
eliminated from the grammar by augmenting the parser to include some 
notion of what is semantically plausible. Design a small “semantic 
network” (Section 2.4.1) in Prolog to allow you to reason about some 
aspect of the possible interpretations of the English grammar rules, such as 
when it is reasonable for the man to bite a dog.  

10. Rework the semantic net parser of Section 14.3.2 to support richer class 
hierarchies. Specifically, rewrite match_with_inheritance so that 
instead of enumerating the common specializations of two items, it 
computes this by searching a type hierarchy. 

 
Figure 8.5. Conceptual Graphs to be translated into predicate calculus and 

into Prolog. 

 


