

107

 8 Natural Language Processing in Prolog

Chapter

Objectives
Natural language processing representations were presented
 Semantic relationships
 Conceptual graphs
 Verb-based case frames
Prolog was used to build a series of parsers
 Context free parsers
 Deterministic
 Probabilistic Parsers
 Probabilistic measures for sentence structures and words
 Lexicalized probabilistic parsers capture word combination
 plausibility
 Context sensitive parsers
 Deterministic
Recursive descent semantic net parsers
 Enforce word-based case frame constraints

Chapter
Contents

8.1 Natural Language Understanding in Prolog
8.2 Prolog-Based Semantic Representations
8.3 A Context-Free Parser in Prolog
8.4 Probabilistic Parsers in Prolog
8.5 A Context-Sensitive Parser in Prolog
8.6 A Recursive Descent Semantic Net Parser

 8.1 Natural Language Understanding in Prolog

 Because of its declarative semantics, built-in search, and pattern matching,
Prolog provides an important tool for programs that process natural
language. Indeed, natural language understanding was one of Prolog’s
earliest applications. As we will see with many examples in this chapter, we
can write natural language grammars directly in Prolog, for example,
context-free, context-sensitive, recursive descent semantic network, as well
as stochastic parsers. Semantic representations are also easy to create in
Prolog, as we see for conceptual graphs and case frames in Section 8.2.
Semantic relationships may be captured either using the first-order
predicate calculus or by a meta-interpreter for another representation, as
suggested by semantic networks (Section 2.4.1) or frames (Sections 2.4.2
and 8.1). This not only simplifies programming, but also keeps a close
connection between theories and their implementation.

In Section 8.3 we present a context-free parser and later add context
sensitivity to the parse Section 8.5. We accomplish many of the same
justifications for context sensitivity in parsing, e.g., noun-verb agreement,
with the various probabilistic parsers of Section 8.4. Finally, semantic

108 Part II: Programming in Prolog

inference, using graph techniques including join, restrict, and
inheritance in conceptual graphs, can be done directly in Prolog as
we see in Section 8.5.

Many of the approaches to parsing presented in this chapter have been
suggested by several generations of colleagues and students.

 8.2 Prolog-Based Semantic Representations

 Following on the early work in AI developing representational schemes such
as semantic networks, scripts, and frames (Luger 2009, Section 7.1) a number
of network languages were developed to model the semantics of natural language
and other domains. In this section, we examine a particular formalism to show
how, in this situation, the problems of representing meaning were addressed.
John Sowa’s conceptual graphs (Sowa 1984) is an example of a network
representation language. We briefly introduce conceptual graphs and show
how they may be implemented in Prolog. A more complete introduction to
this representational formalism may be found in Sowa (1984) and Luger (2009,
Section 7.2).

A conceptual graph is a finite, connected, bipartite graph. The nodes of the
graph are either concepts or conceptual relations. Conceptual graphs do not use
labeled arcs; instead the conceptual relation nodes represent relations
between concepts. Because conceptual graphs are bipartite, concepts only
have arcs to relations, and vice versa. In Figure 8.1 dog and brown are
concept nodes and color a conceptual relation. To distinguish these
types of nodes, we represent concepts as boxes and conceptual relations as
ellipses.

Figure 8.1. Conceptual graph relations with different arities.
In conceptual graphs, concept nodes represent either concrete or abstract
objects in the world of discourse. Concrete concepts, such as a cat,
telephone, or restaurant, are characterized by our ability to form an image
of them in our minds. Note that concrete concepts include generic
concepts such as cat or restaurant along with concepts of specific cats and
restaurants. We can still form an image of a generic cat. Abstract concepts

 Chapter 8 Natural Language Processing 109

include things such as love, beauty, and loyalty that do not correspond to
images in our minds.

Conceptual relation nodes indicate a relation involving one or more
concepts. One advantage of formulating conceptual graphs as bipartite
graphs rather than using labeled arcs is that it simplifies the representation
of relations of any number of arcs (arity). A relation of arity n is
represented by a conceptual relation node having n arcs, as shown in
Figure 8.1.

Each conceptual graph represents a single proposition. A typical
knowledge base will contain a number of such graphs. Graphs may be
arbitrarily complex but must be finite. For example, one graph in Figure
8.1 represents the proposition “A dog has a color of brown.” Figure 8.2 is
a graph of somewhat greater complexity that represents the sentence
“Mary gave John the book.” This graph uses conceptual relations to
represent the cases of the verb “to give” and indicates the way in which
conceptual graphs are used to model the semantics of natural language.

Figure 8.2. Conceptual graph of “Mary gave John the book.”

Conceptual graphs can be translated directly into predicate calculus and
hence into Prolog. The conceptual relation nodes become the predicate
name, and the arity of the relation indicates the number of arguments of
the predicate. Each Prolog predicate, as with each conceptual graph,
represents a single proposition.

The conceptual graphs of Figure 8.1 may be rendered in Prolog as:
bird(X), flies(X).
dog(X), color (X, Y), brown(Y).
child(X), parents(X, Y, Z), father(Y), mother(Z).

where X, Y, and Z are bound to the appropriate individuals. Type
information can be added to parameters as indicated in Section 5.2. We can
also define the type hierarchy through a variation of isa predicates.

In addition to concepts, we define the relations to be used in conceptual
graphs. For this example, we use the following concepts:

agent links an act with a concept of type animate. agent defines the
relation between an action and the animate object causing the action.

experiencer links a state with a concept of type animate. It defines the
relation between a mental state and its experiencer.

instrument links an act with an entity and defines the instrument used
in an action.

110 Part II: Programming in Prolog

object links an event or state with an entity and represents the verb–
object relation.

part links concepts of type physobj and defines the relation between
whole and part.

The verb plays a particularly important role in building an interpretation, as it
defines the relationships between the subject, object, and other components of
the sentence. We can represent each verb using a case frame that specifies:

The linguistic relationships (agent, object, instrument, and so on) appropriate
to that particular verb. Transitive verbs, for example, can have a direct object;
intransitive verbs do not.

Constraints on the values that may be assigned to any component of the case
frame. For example, in the case frame for the verb bites, we have asserted that
the agent of biting must be of the type dog. This causes “Man bites dog” to be
rejected as semantically incorrect.

Default values on components of the case frame. In the “bites” frame, we
have a default value of teeth for the concept linked to the instrument relation.

The case frames for the verbs like and bite appear in Figure 8.3.

Figure 8.3. Case frames for the verbs “like” and “bite.”

These verb-based case frames are also easily built in Prolog. Each verb is
paired with a list of the semantic relations assumed to be part of the verb.
These may include agents, instruments, and objects. We next offer
examples of the verbs give and bite from Figure 8.3. For example, the verb
give requires a subject, object, and indirect object. In the English sentence
“John gives Mary the book,” this structure takes on the obvious
assignments. We can define defaults in a case frame by binding the
appropriate variable values. For example, we could give bite a default
instrument of teeth, and, indeed indicate that the instrument for biting,
teeth, belong to the agent! Case frames for these two verbs might be:

 Chapter 8 Natural Language Processing 111

verb(give,
 [human (Subject),
 agent (Subject, give),
 act_of_giving (give),
 object (Object, give),
 inanimate (Object),
 recipient (Ind_obj, give),
 human (Ind_obj)]).

verb(bite,
 [animate (Subject),
 agent (Subject, Action),
 act_of_biting (Action),
 object (Object, Action),
 animate (Object),
 instrument (teeth, Action),
 part_of (teeth, Subject)]).

Logic programming also offers a powerful medium for building
grammars as well as representations for semantic meanings. We next
build recursive descent parsers in Prolog, and then add syntactic and
semantic constraints to these parsers.

 8.3 A Context-Free Parser in Prolog

 Consider the subset of English grammar rules below. These rules are
“declarative” in the sense that they simply define relationships among parts
of speech. With this subset of rules a large number of simple sentences can
be judged as well formed or not. The “<−>” indicate that the symbol on
the left hand side can be replaced by the symbol or symbols on the right.
For example, a Sentence can be replaced by a NounPhrase followed
by a VerbPhrase.

Sentence <−> NounPhrase VerbPhrase

NounPhrase <−> Noun

NounPhrase <−> Article Noun

VerbPhrase <−> Verb

VerbPhrase <−> Verb NounPhrase

Adding some vocabulary to the grammar rules:
Article(a)

Article(the)

Noun(man)

Noun(dog)

Verb(likes)

Verb(bites)

These grammar rules have a natural fit to Prolog, for example, a
sentence is a nounphrase followed by a verbphrase:

sentence(Start, End) :-

 nounphrase(Start, Rest), verbphrase(Rest, End).

112 Part II: Programming in Prolog

This sentence Prolog rule takes two parameters, each a list; the first list,
Start, is a sequence of words. The rule attempts to determine whether
some initial part of this list is a NounPhrase. Any remaining tail of the
NounPhrase list will match the second parameter and be passed to the
first parameter of the verbphrase predicate. Any symbols that remain
after the verbphrase check are passed back as the second argument of
sentence. If the original list is a sentence, the second argument of
sentence must be empty, [].Two alternative Prolog descriptions of
nounphrase and verbphrase parses follow.

Figure 8.4 is the parse tree of “the man bites the dog,” with and
constraints in the grammar reflected by and links in the tree.

Figure 8.4. The and/or parse tree for “The man bites the dog.”

To simplify our Prolog code, we present the sentence as a list: [the,
man, likes, the, dog]. This list is broken up by, and passed to,
the various grammar rules to be examined for syntactic correctness. Note
how the “pattern matching” works on the list in question: pulling off the
head, or the head and second element; passing on what is left over; and so
on. The utterance predicate takes the list to be parsed as its argument
and calls the sentence rule, initializing the second parameter of
sentence to []. The complete grammar is defined:

utterance(X) :- sentence(X, []).

sentence(Start, End) :-

 nounphrase(Start, Rest), verbphrase(Rest, End).

 nounphrase([Noun | End], End) :-

 noun(Noun).

 nounphrase([Article, Noun | End], End) :-

 article(Article), noun(Noun).

 verbphrase([Verb | End], End) :-

 verb(Verb).

 Chapter 8 Natural Language Processing 113

 verbphrase([Verb | Rest], End) :-

 verb(Verb), nounphrase(Rest, End).

article(a).

article(the).

noun(man).

noun(dog).

verb(likes).

verb(bites).

Example sentences may be tested for correctness:
?- utterance([the, man, bites, the, dog]).

Yes

?- utterance([the, man, bites, the]).

no

The interpreter can also fill in possible legitimate words to incomplete
sentences:

?- utterance([the, man, likes, X]).

X = man

;

X = dog

;

no

Finally, the same code may be used to generate the set of all well-formed
sentences using this limited dictionary and set of grammar rules:

?- utterance(X).

[man, likes]

;

[man, bites]

;

[man, likes, man]

;

[man, likes, dog]

etc.

If the user continues asking for more solutions, eventually all possible well-
formed sentences that can be generated from the grammar rules and our
vocabulary are returned as values for X. Note that the Prolog search is left-
to-right and depth-first.

The grammar rules specify a subset of legitimate sentences of English. The
Prolog grammar code represents these specifications. The interpreter is
asked questions about them and the answer is a function of the
specifications and the question asked. Since there are no constraints
enforced across the subtrees that make up the full parse of a sentence, see
Figure 8.4, the parser/generator for this grammar is said to be context free.
In Section 8.3 we use probabilistic measures to add constraints both to
particular word combinations and to the structures of the grammar.

114 Part II: Programming in Prolog

 8.4 Probabilistic Parsers in Prolog

 In this section we extend the context-free grammar of Section 8.2 to
include further syntactic and semantic constraints. For example, we may
want some grammatical structures to be less likely than others, such as a
noun by itself being less likely than an article followed by a noun. Further,
we may want the sentence “The dog bites the widget” to be less likely than
the sentence “The dog bites the man.” Finally, if our vocabulary includes
the verb like (as well as likes), we want “The man likes the dog” to be
acceptable, but “The man like the dog” to fail. The parsers for Sections
8.3.1 and 8.3.2 were suggested by Professor Mark Steedman of the
University of Edinburgh and transformed to the syntax of this book by Dr.
Monique Morin of the University of New Mexico.

We next create two probabilistic parsers in Prolog, first a context free
parser and second, a lexicalized context free parser.

Probabilistic
Context-Free

Parser

Our first extension is to build a probabilistic context-free parser. To do this, we
add a probabilistic parameter, Prob, to each grammar rule. Note that the
probability that a sentence will be a noun phrase followed by a verb phrase
is 1.0, while the probability that a noun phrase is simply a noun is less than
the probability of it being an article followed by a noun. These probabilities
are reflected in pr facts that are related to each grammar rule, r1, r2, …,
r5.

The full probability of a particular sentence, Prob, however, is calculated
by combining a number of probabilities: that of the rule itself together with
the probabilities of each of its constituents. Thus, the full probability Prob
of r1 is a product of the probabilities that a particular noun phrase is
combined with a particular verb phrase. Further, the probability for the
third rule, r3, will be the product of that type noun phrase occurring (r3)
times the probabilities of the particular article and noun that make up the
noun phrase. These noun/article probabilities are given in the two
argument dictionary “fact” predicates. These probabilities for particular
words might be determined by sampling some corpus of collected
sentences. In the examples that follow we simply made-up these
probabilistic measures.

utterance(Prob, X) :- sentence(Prob, X, []).

sentence(Prob, Start, End) :-

 nounphrase(P1, Start, Rest),

 verbphrase(P2, Rest, End),

 pr(r1, P), Prob is P*P1*P2.

 nounphrase(Prob, [Noun | End], End) :-

 noun(P1, Noun), pr(r2, P), Prob is P*P1.

 nounphrase(Prob, [Article, Noun | End], End) :-

 article(P1, Article), noun(P2,Noun), pr(r3, P),

 Prob is P*P1*P2.

 verbphrase(Prob, [Verb | End], End) :-

 verb(P1, Verb), pr(r4, P), Prob is P*P1.

 Chapter 8 Natural Language Processing 115

 verbphrase(Prob, [Verb | Rest], End) :-

 verb(P1, Verb),

 nounphrase(P2, Rest, End), pr(r5, P),

 Prob is P*P1*P2.

 pr(r1, 1.0).

 pr(r2, 0.3).

 pr(r3, 0.7).

 pr(r4, 0.2).

 pr(r5, 0.8).

 article(0.25, a).

 article(0.75, the).

 noun(0.65, man).

 noun(0.35, dog).

 verb(0.9, likes).

 verb(0.1, bites).

We now run several example sentences as well as offer general patterns of
sentences, i.e., sentences beginning with specific patterns of words such as
“The dog bites…” Finally, we ask for all possible sentences that can be
generated under these constraints.

?- utterance(Prob, [the, man, likes, the, dog]).

Prob = 0.0451474

Yes

?- utterance(Prob, [bites, dog])

No

?- utterance(Prob, [the, man, dog]).

No

?- utterance(Prob, [the, dog, bites, X]).

Prob = 0.0028665

X = man

;

Prob = 0.0015435

X = dog

;

No

?- utterance(Prob, [the, dog, bites, XY]).

Prob = 0.0028665

X = man

Y = []

;

Prob = 0.0015435

X = dog

Y = []

;

116 Part II: Programming in Prolog

Prob = 0.00167212

X = a

Y = [man] ;

etc.

?- utterance(Prob, X).

Prob = 0.0351

X = [man, likes]

;

Prob = 0.0039

X = [man, bites]

;

Prob = 0.027378

X = [man, likes, man]

;

Prob = 0.014742

X = [man, likes, dog]

etc.

A Probabilistic
Lexicalized

Context Free
Parser

We next demonstrate a probabilistic lexicalized context-free parser. This is a
much more constrained system in which the probabilities, besides giving
measures for the various grammatical structures and individual words as in
the previous section, also describe the possible combinations of words
(thus, it is a probabilistic lexicalized parser). For example, we now measure
the likelihood of both noun-verb and verb-object word combinations.
Constraining noun-verb combinations gives us much of the power of the
context-sensitive parsing that we see next in Section 8.4, where noun-verb
agreement is enforced by the constraints across the subtrees of the parse.

There are a number of goals here, including “measuring” the “quality” of
utterances in the language by determining a probabilistic measure for their
occurring. Thus, we can determine that a possible sentence fails for
syntactic or semantic reasons by seeing that it produces a very low or zero
probability measure, rather than by the interpreter simply saying “no.”

In the following grammar we have hard coded the probabilities of various
structure and word combinations. In a real system, lexical information
could be better obtained by sampling appropriate corpora with noun-verb
or verb-object bigrams. We discuss the n-gram approach to language analysis
in Luger (2009, Section 15.4) where the probability of word combinations
was described (two words—bigrams, three words—trigrams, etc.). These
probabilities are usually determined by sampling over a large collection of
sentences, called a corpus. The result was the ability to assess the likelihood
of these word combinations, e.g., to determine the probability of the verb
“bite” following the noun “dogs.”

In the following examples the Prob value is made up of the probabilities
of the particular sentence structure, the probabilities of the verb-noun and
verb-object combinations, and the probabilities of individual words.

 Chapter 8 Natural Language Processing 117

utterance(Prob, X) :-

 sentence(Prob, Verb, Noun, X, []).

sentence(Prob, Verb, Noun, Start, End) :-

 nounphrase(P1, Noun, Start, Rest),

 verbphrase(P2, Verb, Rest, End),

 pr(r1, P), % Probability of this structure

 pr([r1, Verb, Noun], PrDep),
 % Probability of this noun/verb combo

 pr(shead, Verb, Pshead),
 % Probability this verb heads the sentence

 Prob is Pshead*P*PrDep*P1*P2.

nounphrase(Prob, Noun, [Noun | End], End) :-

 noun(P1, Noun), pr(r2, P), Prob is P*P1.

nounphrase(Prob, Noun, [Article,Noun | End], End) :-

 article(P1, Article), noun(P2,Noun), pr(r3, P),

 pr([r3, Noun, Article], PrDep),
 % Probability of art/noun combo

 Prob is P*PrDep*P1*P2.

verbphrase(Prob, Verb, [Verb | End], End) :-

 verb(P1, Verb), pr(r4, P), Prob is P*P1.

verbphrase(Prob, Verb, [Verb,Object | Rest], End) :-

 verb(P1, Verb), nounphrase(P2, Object,
 Rest, End).

 pr([r5, Verb, Object], PrDep),
 % Probability of verb/object combo

 pr(r5, P), Prob is P*PrDep*P1*P2.

pr(r1, 1.0).

pr(r2, 0.3).

pr(r3, 0.7).

pr(r4, 0.2).

pr(r5, 0.8).
article(1.0, a).

article(1.0, the).

article(1.0, these).

noun(1.0, man).

noun(1.0, dogs).

verb(1.0, likes).

verb(1.0, bite).

pr(shead, likes, 0.5).

pr(shead, bite, 0.5).

pr([r1, likes, man], 1.0).

pr([r1, likes, dogs], 0.0).

pr([r1, bite, man], 0.0).

pr([r1, bite, dogs], 1.0).

118 Part II: Programming in Prolog

pr([r3, man, a], 0.5).

pr([r3, man, the], 0.5).

pr([r3, man, these], 0.0).

pr([r3, dogs, a], 0.0).

pr([r3, dogs, the], 0.6).

pr([r3, dogs, these], 0.4).

pr([r5, likes, man], 0.2).

pr([r5, likes, dogs], 0.8).

pr([r5, bite, man], 0.8).

pr([r5, bite, dogs], 0.2).

The Prob measure gives the likelihood of the utterance; words that aren’t
sentences return No.

?- utterance(Prob, [a, man, likes, these, dogs]).

Prob = 0.03136

?- utterance(Prob, [a, man, likes, a, man]).

Prob = 0.0098

?- utterance(Prob, [a, man, likes, a, man]).

Prob = 0.0098

?- utterance(Prob, [the, dogs, likes, these, man]).

Prob = 0

?- utterance(Prob, [the, dogs]).

No

?- utterance(Prob, [the, dogs, X | Y])

Prob = 0

X = likes Y = []

;

Prob = 0.042

X = bite Y = []

;

Prob = 0

X = likes Y = [man]

;

Prob = 0.04032

X = bite Y = [man]

;

Prob = 0.01008

X = bite Y = [dogs]

;

Prob = 0.04704

X = bite Y = [a, man]

Etc

?- utterance(Prob, X).

 Chapter 8 Natural Language Processing 119

Prob = 0.03

X = [man, likes]

;

Prob = 0

X = [man, bite]

;

Prob = 0.0072

X = [man, likes, man]

;

Prob = 0.0288

X = [man, likes, dogs]

;

Prob = 0.0084

X = [man, likes, a, man]

etc

We next enforce many of the same syntax/semantic relationships seen in
this section by imposing constraints (context sensitivity) across the subtrees
of the parse. Context sensitivity can be used to constrain subtrees to
support relationships within a sentence such as article-noun and noun-verb
number agreement.

 8.5 Introduction: Logic-Based Representation A Context-Sensitive Parser in Prolog

 A context-sensitive parser addresses the issues of the previous section in a
different manner. Suppose we desire to have proper noun–verb agreement
enforced by the grammar rules themselves. In the dictionary entry for each
word its singular or plural form can be noted as such. Then in the grammar
specifications for nounphrase and verbphrase a further parameter
is used to signify the Number of each phrase. This enforces the constraint
that a singular noun has to be associated with a singular verb. Similar
constraints for article–noun combinations can also be enforced. The
technique we are using is constraining sentence components by enforcing
variable bindings across the subtrees of the parse of the sentence (note the
and links in the parse tree of Figure 8.4).

Context sensitivity increases the power of a context-free grammar
considerably. These additions are made by directly extending the Prolog
code of Section 8.2:

utterance(X) :- sentence(X, []).

sentence(Start, End) :-

 nounphrase(Start, Rest, Number),

 verbphrase(Rest, End, Number).

nounphrase([Noun | End], End, Number) :-

 noun(Noun, Number).

nounphrase([Article, Noun | End], End, Number) :-

 noun(Noun, Number), article(Article, Number).

120 Part II: Programming in Prolog

verbphrase([Verb | End], End, Number) :-

 verb(Verb, Number).

verbphrase([Verb | Rest], End, Number) :-

 verb(Verb, Number), nounphrase(Rest, End, _).

 article(a, singular).

 article(these, plural).

 article(the, singular).

 article(the, plural).

 noun(man, singular).

 noun(men, plural).

 noun(dog, singular).

 noun(dogs, plural).

 verb(likes, singular).

 verb(like, plural).

 verb(bites, singular).

 verb(bite, plural).

We next test some sentences. The answer to the second query is no,
because the subject (men) and the verb (likes) do not agree in number.

?- utterance([the, men, like, the, dog]).

Yes

?- utterance([the, men, likes, the, dog]).

no

If we enter the following goal, X returns all verb phrases that complete the
plural “the men …” with all verb phrases with noun–verb number
agreement. The final query returns all sentences with article–noun as well
as noun–verb agreement.

?- utterance([the, men X]).

?- utterance(X).

In the context-sensitive example we use the parameters of dictionary
entries to introduce more information on the meanings of each of the
words that make up the sentence. This approach may be generalized to a
powerful parser for natural language. More and more information may be
included in the dictionary of the word components used in the sentences,
implementing a knowledge base of the meaning of English words. For
example, men are animate and human. Similarly, dogs may be described as
animate and nonhuman. With these descriptions new rules may be added
for parsing, such as “humans do not bite animate nonhumans” to eliminate
sentences such as [the, man, bites, the, dog]. We add these constraints in
the following section.

 8.6 A Recursive Descent Semantic Net Parser

 We next extend the set of context-sensitive grammar rules to include some
possibilities of semantic consistency. We do this by matching case frames,

 Chapter 8 Natural Language Processing 121

Section 8.1, for the verbs of sentences to semantic descriptions of subjects
and objects. After each match, we constrain these semantic net subgraphs
to be consistent with each other. We do this by performing graph
operations, such as join and restrict, to each piece of the graph as it
is returned up the parse tree.

We first present the grammar rules where the top-level utterance,
returns not just a sentence but also a Sentence_graph. Each
component of the grammar, e.g., nounphrase and verbphrase, call
join to merge together the constraints of their respective graphs.

utterance(X, Sentence_graph) :-

 sentence(X, [], Sentence_graph).

sentence(Start, End, Sentence_graph) :-

 nounphrase(Start, Rest, Subject_graph),

 verbphrase(Rest, End, Predicate_graph),

 join([agent(Subject_graph)], Predicate_graph,
 Sentence_graph).

nounphrase([Noun | End], End, Noun_phrase_graph) :-

 noun(Noun, Noun_phrase_graph).

nounphrase([Article, Noun | End], End,
 Noun_phrase_graph) :-
 article(Article),
 noun(Noun, Noun_phrase_graph).

 verbphrase([Verb | End], End, Verb_phrase_graph) :-

 verb(Verb, Verb_phrase_graph).

 verbphrase([Verb | Rest], End, Verb_phrase_graph) :-

 verb(Verb, Verb_graph),

 nounphrase(Rest, End, Noun_phrase_graph),

 join([object(Noun_phrase_graph)], Verb_graph,
 Verb_phrase_graph).

We next present the graph join and restriction operations. These
are meta-predicates since their domain is other Prolog structures. These
utilities propagate constraints across pieces of semantic nets they combine.

join(X, X, X).

join(A, B, C) :-

 isframe(A), isframe(B), !,

 join_frames(A, B, C, not_joined).

join(A, B, C) :-

 isframe(A), is_slot((B), !,

 join_slot_to_frame(B, A, C).

join(A, B, C) :-

 isframe(B), is_slot(A), !,

 join_slot_to_frame(A, B, C).

join(A, B, C) :-

 is_slot(A), is_slot(B), !,

 join_slots(A, B, C).

122 Part II: Programming in Prolog

join_frames recursively matches each slot (property) of the first frame
to matching slots of the second frame. join_slot_to_frame takes a
slot and a frame and searches the frame for matching slots.
join_slots, once slots are matched, unites the two slots, taking the
type hierarchy into account:

join_frames([A | B], C, D, OK) :-

 join_slot_to_frame(A, C, E) , !,

 join_frames(B, E, D, ok).

join_frames([A | B], C, [A | D], OK) :-

 join_frames(B, C, D, OK), !.

join_frames([], A, A, ok).

join_slot_to_frame(A, [B | C], [D | C]) :-

 join_slots(A, B, D).

join_slot_to_frame(A, [B | C], [B | D]) :-

 join_slot_to_frame(A, C, D).

join_slots(A, B, D) :-

 functor(A, FA, _), functor(B, FB, _),

 match_with_inheritance(FA, FB, FN),

 arg(1, A, Value_a), arg(1, B, Value_b),

 join(Value_a, Value_b, New_value),

 D =.. [FN | [New_value]].

isframe([_ | _]).

isframe([]).

 is_slot(A) :- functor(A, _, 1).

Finally, we create dictionary entries, the inheritance hierarchy, and verb
case frames. In this example, we use a simple hierarchy that lists all valid
specializations; the third argument to match_with_inheritance is
the common specialization of the first two. A more realistic approach
might maintain a graph of the hierarchies and search it for common
specializations. Implementation of this is left as an exercise.

match_with_inheritance(X, X, X).

match_with_inheritance(dog, animate, dog).

match_with_inheritance(animate, dog, dog).

match_with_inheritance(man, animate, man).

match_with_inheritance(animate, man, man).

article(a).

article(the).

noun(fido, [dog(fido)]).

noun(man, [man(X)]).

noun(dog, [dog(X)]).

verb(likes, [action([liking(X)]),
 agent([animate(X)]), object(animate(Y)])]).

verb(bites, [action([biting(Y)]),
 agent([dog(X)]), object(animate(Z)])]).

 Chapter 8 Natural Language Processing 123

We now parse several sentences and print out their Sentence_graph:

?- utterance([the, man, likes, the, dog], X).

X = [action([liking(_54)]), agent([man(_23)]),
 object([dog(_52)])].

?- utterance([fido, likes, the, man], X).

X = [action([liking(_62)]), agent([dog(fido)]),
 object([man(_70)])].

?- utterance([the, man, bites, fido], Z).

no

The first sentence states that some man, with name unknown, likes an
unnamed dog. The last sentence, although it was syntactically correct, did
not meet the semantic constraints, where a dog had to be the agent of
bites. In the second sentence, a particular dog, Fido, likes an unnamed
man. Next we ask whether Fido can bite an unnamed man:

?- utterance([fido, bites, the, man], X).

X = [action([biting(_12)]), agent([dog(fido)]),
 object([man(_17)])].

This parser may be extended in many interesting directions, for instance,
by adding adjectives, adverbs, and prepositional phrases, or by allowing
compound sentences. These additions must be both matched and
constrained as they are merged into the sentence graph for the full
sentence. Each dictionary item may also have multiple meanings that are
only accepted as they meet the general requirements of the sentence. In the
next chapter we present the Earley parser for language structures.

 Exercises

 1. Create a predicate calculus and a Prolog representation for the
Conceptual Graph presented in Figure 8.2, “Mary gave John the book.”
Take this same example and create a general Prolog rule, “X gave Y the Z”
along with a number of constraints, such as “object(Z).” Also create a
number of Prolog facts, such as “object(book)” and show how this
conceptual graph can be constrained by using the Prolog interpreter on
your simple program.

2. Figure 8.3 presents case frames for the verbs like and bite. Write
Prolog specifications that captures the constraints of these representations.
Add other related fact and rules in Prolog and then use the Prolog
interpreter to instantiate the constraints that are implicit in these two verb
case frames.

3. Create a predicate calculus and a Prolog representation for the two
Conceptual Graphs presented in Figure 8.5.

4. Describe an algorithm that could be used to impose graph constraints
across the structures of Figure 8.5. You will have to address the nesting
issue to handle sentences like “Mary believes that John does not like soup.”

5. Create Prolog case frames, similar to those of Section 8.1 for five other
verbs, including like, trade, and pardon.

124 Part II: Programming in Prolog

6. Write the Prolog code for a subset of English grammar rules, as in the
context-free and context-sensitive parsers in Sections 8.2 and 8.4, adding:

Adjectives and adverbs that modify verbs and nouns, respectively.

Prepositional phrases. (Can you do this with a recursive call?)

Compound sentences (two sentences joined by a conjunction).

7. Extend the stochastic context-free parser of Section 8.3 to include
probabilities for the new sentence structures of Exercise 8. Explore
obtaining probabilities for these sentence structures from a treebank for
natural language processing. Examples may be found on the www.

8. Add probabilities for more word pair relationships as in the lexicalized
context-free parser of Section 8.3.2. Explore the possibility of obtaining
the probabilistic bigram values for the noun–verb, verb–object, and other
word pairs from actual corpus linguistics. These may be found on the www.

9. Many of the simple natural language parsers presented in Chapter 8 will
accept grammatically correct sentences that may not have a commonsense
meaning, such as “the man bites the dog.” These sentences may be
eliminated from the grammar by augmenting the parser to include some
notion of what is semantically plausible. Design a small “semantic
network” (Section 2.4.1) in Prolog to allow you to reason about some
aspect of the possible interpretations of the English grammar rules, such as
when it is reasonable for the man to bite a dog.

10. Rework the semantic net parser of Section 14.3.2 to support richer class
hierarchies. Specifically, rewrite match_with_inheritance so that
instead of enumerating the common specializations of two items, it
computes this by searching a type hierarchy.

Figure 8.5. Conceptual Graphs to be translated into predicate calculus and

into Prolog.

