
Copyright © 1999 RSA Security Inc. License to copy this document is granted provided that it is identified
as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.
DRAFT

PKCS #15 v1.1: Cryptographic Token Information Syntax
Standard (draft)

RSA Laboratories

Draft 1 – December 21, 1999

Editor’s note: This is the 1st draft of PKCS #15 v1.1, which is available for a 30-day
public review period. Please send comments and suggestions, both technical and editorial,
to pkcs-editor@rsasecurity.com or pkcs-tng@rsasecurity.com.

Table of Contents
1 INTRODUCTION ... 4

1.1 BACKGROUND ... 4
1.2 INFORMATION ACCESS MODEL... 5

2 TERMS AND DEFINITIONS.. 6

3 SYMBOLS, ABBREVIATED TERMS AND DOCUMENT CONVENTIONS............................. 9
3.1 SYMBOLS... 9
3.2 ABBREVIATED TERMS.. 9
3.3 DOCUMENT CONVENTIONS .. 9

4 OVERVIEW .. 10
4.1 OBJECT MODEL.. 10

4.1.1 Object classes.. 10
4.1.2 Attribute types ... 10
4.1.3 Access methods ... 10

5 IC CARD FILE FORMAT ... 11
5.1 OVERVIEW... 11
5.2 IC CARD REQUIREMENTS... 11
5.3 CARD FILE STRUCTURE .. 11
5.4 MF DIRECTORY CONTENTS.. 12

5.4.1 EF(DIR) .. 12
5.5 PKCS #15 APPLICATION DIRECTORY CONTENTS ... 13

5.5.1 EF(ODF)... 13
5.5.2 Private Key Directory Files (PrKDFs) ... 13
5.5.3 Public Key Directory Files (PuKDFs) .. 14
5.5.4 Secret Key Directory Files (SKDFs) ... 15
5.5.5 Certificate Directory Files (CDFs) ... 15
5.5.6 Data Object Directory Files (DODFs) ... 16
5.5.7 Authentication Object Directory Files (AODFs) .. 16
5.5.8 EF(TokenInfo)... 17
5.5.9 EF(UnusedSpace) ... 17
5.5.10 Other elementary files in the PKCS #15 directory.. 17

5.6 FILE IDENTIFIERS ... 17
5.7 THE PKCS #15 APPLICATION .. 18

5.7.1 PKCS #15 application selection ... 18
5.7.2 AID for the PKCS #15 application ... 18

5.8 OBJECT MANAGEMENT .. 19

mailto:pkcs-editor@rsa.com
mailto:pkcs-tng@rsa.com

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 2

Copyright © 1991-1999 RSA Laboratories.

5.8.1 Adding (Creating) new objects.. 19
5.8.2 Removing objects .. 20
5.8.3 Modifying objects.. 21

6 INFORMATION SYNTAX IN ASN.1... 21
6.1 BASIC ASN.1 DEFINED TYPES.. 21

6.1.1 Identifier.. 21
6.1.2 Reference... 21
6.1.3 Label ... 21
6.1.4 CredentialIdentifier... 21
6.1.5 ReferencedValue and Path.. 22
6.1.6 ObjectValue... 23
6.1.7 PathOrObjects .. 24
6.1.8 CommonObjectAttributes.. 24
6.1.9 CommonKeyAttributes .. 25
6.1.10 CommonPrivateKeyAttributes... 27
6.1.11 CommonPublicKeyAttributes.. 27
6.1.12 CommonSecretKeyAttributes .. 28
6.1.13 KeyInfo.. 28
6.1.14 CommonCertificateAttributes.. 28
6.1.15 CommonDataObjectAttributes.. 29
6.1.16 CommonAuthenticationObjectAttributes .. 29
6.1.17 PKCS15Object .. 30

6.2 THE PKCS15OBJECTS TYPE.. 30
6.3 PRIVATE KEYS ... 31

6.3.1 The PrivateKeys type .. 31
6.3.2 Private RSA key objects .. 32
6.3.3 Private Elliptic Curve key objects... 33
6.3.4 Private Diffie-Hellman key objects ... 33
6.3.5 Private Digital Signature Algorithm key objects .. 34
6.3.6 Private KEA key objects.. 34

6.4 PUBLIC KEYS ... 35
6.4.1 The PublicKeys type.. 35
6.4.2 Public RSA key objects.. 35
6.4.3 Public Elliptic Curve key objects .. 36
6.4.4 Public Diffie-Hellman key objects .. 36
6.4.5 Public Digital Signature Algorithm objects .. 37
6.4.6 Public KEA key objects ... 37

6.5 SECRET KEYS... 38
6.5.1 The SecretKeys type .. 38
6.5.2 Generic secret key objects... 39
6.5.3 Tagged key objects.. 39
6.5.4 The PKCS15OtherKey type... 39

6.6 CERTIFICATES.. 39
6.6.1 The Certificates type ... 39
6.6.2 X.509 certificate objects.. 40
6.6.3 X.509 attribute certificate objects ... 40
6.6.4 SPKI (Simple Public Key Infrastructure) certificate objects... 41
6.6.5 PGP (Pretty Good Privacy) certificate objects ... 41
6.6.6 WTLS certificate objects ... 41
6.6.7 ANSI X9.68 lightweight certificate objects ... 42
6.6.8 Card Verifiable Certificate objects ... 42

6.7 DATA OBJECTS .. 42
6.7.1 The DataObjects type.. 42
6.7.2 Opaque data objects ... 43

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 3

Copyright © 1991-1999 RSA Laboratories.

6.7.3 External data objects .. 43
6.7.4 Data objects identified by OBJECT IDENTIFIERS.. 43

6.8 AUTHENTICATION OBJECTS ... 44
6.8.1 The AuthenticationObject type.. 44
6.8.2 Pin objects... 44
6.8.3 Biometrical reference data objects ... 47
6.8.4 External authentication methods .. 48

6.9 THE CRYPTOGRAPHIC TOKEN INFORMATION FILE, EF(TOKENINFO) .. 49

7 SOFTWARE (VIRTUAL CARD) FORMAT ... 51
7.1 INTRODUCTION.. 51
7.2 USEFUL TYPES ... 51

7.2.1 The EnvelopedData type ... 51
7.2.2 The EncryptedContentInfo type .. 51

7.3 THE PKCS15TOKEN TYPE... 52
7.4 PERMITTED ALGORITHMS .. 52

7.4.1 Key derivation algorithms... 52
7.4.2 Other algorithms... 53

A. ASN.1 MODULE... 54

B. FILE ACCESS CONDITIONS... 54
B.1 SCOPE.. 54
B.2 BACKGROUND ... 54
B.3 READ-ONLY AND READ-WRITE CARDS ... 54

C. AN ELECTRONIC IDENTIFICATION PROFILE OF PKCS #15 ... 57
C.1 SCOPE.. 57
C.2 PKCS #15 OBJECTS... 57
C.3 OTHER FILES.. 58
C.4 CONSTRAINTS ON ASN.1 TYPES .. 58
C.5 FILE RELATIONSHIPS IN THE IC CARD CASE.. 59
C.6 ACCESS CONTROL RULES... 59

D. EXAMPLE PKCS #15 TOPOLOGIES ... 61

E. SYNTAX EXAMPLES.. 62
E.1 EXAMPLE OF EF(DIR)... 62
E.2 EXAMPLE OF A WHOLE PKCS15 APPLICATION .. 62
E.2.1 EF(TOKENINFO) ... 62
E.2.2 EF(ODF) .. 63
E.2.3 EF(PRKDF).. 63
E.2.4 EF(CDF) .. 64
E.2.5 EF(AODF) ... 65
E.2.6 EF(DODF) ... 65
E.3 EXAMPLE OF CONTENTS FOR A “DIGITAL SIGNATURE CARD” .. 66
E.3.1 EF(DIR) (OPTIONAL).. 66
E.3.2 CONTENTS OF DF(PKCS15)... 66
E.4 A PKCS15TOKEN EXAMPLE ... 72

F. USING PKCS #15 SOFTWARE TOKENS... 73
F.1 CONSTRUCTING A PKCS#15 TOKEN IN SOFTWARE.. 73
F.1.1 SCOPE... 73
F.1.2 CONSTRUCTING PASSWORD-PROTECTED VALUES OF TYPE ‘ENVELOPED DATA’ 73
F.1.3 INTEGRITY-PROTECTION ... 73

G. INTELLECTUAL PROPERTY CONSIDERATIONS.. 74

H. REVISION HISTORY.. 75

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 4

Copyright © 1991-1999 RSA Laboratories.

I. REFERENCES .. 75

J. ABOUT PKCS ... 77

1 Introduction

1.1 Background
Cryptographic tokens, such as Integrated Circuit Cards (or IC cards) are intrinsically
secure computing platforms ideally suited to providing enhanced security and privacy
functionality to applications. They can handle authentication information such as digital
certificates and capabilities, authorizations and cryptographic keys. Furthermore, they are
capable of providing secure storage and computational facilities for sensitive information
such as:

− private keys and key fragments;

− account numbers and stored value;

− passwords and shared secrets; and

− authorizations and permissions.

At the same time, many of these tokens provides an isolated processing facility capable of
using this information without exposing it within the host environment where it is at
potential risk from hostile code (viruses, Trojan horses, and so on). This becomes
critically important for certain operations such as:

− generation of digital signatures, using private keys, for personal identification;

− network authentication based on shared secrets;

− maintenance of electronic representations of value; and

− portable permissions for use in off-line situations.

Unfortunately, the use of these tokens for authentication and authorization purposes has
been hampered by the lack of interoperability at several levels. First, the industry lacks
standards for storing a common format of digital credentials (keys, certificates, etc.) on
them. This has made it difficult to create applications that can work with credentials from
a variety of technology providers. Attempts to solve this problem in the application
domain invariably increase costs for both development and maintenance. They also create
a significant problem for the end-user since credentials are tied to a particular application
running against a particular application-programming interface to a particular hardware
configuration.

Second, mechanisms to allow multiple applications to effectively share digital credentials
have not yet reached maturity. While this problem is not unique to cryptographic cards - it
is already apparent in the use of certificates with World Wide Web browsers, for example
- the limited room on many cards together with the consumer expectation of universal
acceptance will force credential sharing on credential providers. Without agreed-upon
standards for credential sharing, acceptance and use of them both by application
developers and by consumers will be limited.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 5

Copyright © 1991-1999 RSA Laboratories.

To optimize the benefit to both the industry and end-users, it is important that solutions to
these issues be developed in a manner that supports a variety of operating environments,
application programming interfaces, and a broad base of applications. Only through this
approach can the needs of constituencies be supported and the development of
credentials-activated applications encouraged, as a cost-effective solution to meeting
requirements in a very diverse set of markets.

The objectives of this document are therefore to:

− enable interoperability among components running on various platforms (platform
neutral);

− enable applications to take advantage of products and components from multiple
manufacturers (vendor neutral);

− enable the use of advances in technology without rewriting application-level
software (application neutral); and

− maintain consistency with existing, related standards while expanding upon them
only where necessary and practical.

As a practical example, the holder of an IC card containing a digital certificate should be
able to present the card to any application running on any host and successfully use the
card to present the contained certificate to the application.

As a first step to achieve these objectives, this document specifies a file and directory
format for storing security-related information on cryptographic tokens. It has the
following characteristics:

− dynamic structure enables implementations on a wide variety of media, including
stored value cards;

− allows multiple applications to reside on the card (even multiple EID applications);

− supports storage of any type of objects (keys, certificates and data); and

− support for multiple PINs whenever the token supports it

In general, an attempt has been made to be flexible enough to allow for many different
token types, while still preserving the requirements for interoperability. A key factor for
this in the case of IC cards is the notion of “Directory Files” (See Section 5.5) which
provides a layer of indirection between objects on the card and the actual format of these
objects.

This document supersedes PKCS #15 v1.0 [25], but is backward compatible.

1.2 Information access model
The PKCS #15 token information may be read when a token is presented containing this
information, and is used by a PKCS #15 interpreter which is part of the software
environment, e.g. as shown in the figure below.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 6

Copyright © 1991-1999 RSA Laboratories.

Figure 1 – Embedding of a PKCS #15 interpreter (example)

2 Terms and definitions
For the purposes of this document, the following definitions apply:

application the data structure, data elements and program
modules needed for a specific functionality to be
satisfied ([12])

application identifier data element that identifies an application in a
card

NOTE – Adapted from [9]

application protocol data unit message between the card and the interface
device, e.g. host computer

NOTE – Adapted from [8]

application provider entity that provides an application

NOTE – Adapted from [9]

authentication object directory file optional elementary file contaning information
about authentication objects known to the PKCS
#15 application

binary coded decimal Number representation where a number is
expressed as a sequence of decimal digits and then
each decimal digit is encoded as a four bit binary
number

Card Terminal-
Interface

Card
independent
Application
Driver

PKCS#15
Interpreter

Application

PKCS#11-
Interface

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 7

Copyright © 1991-1999 RSA Laboratories.

Example – Decimal 92 would be encoded as the
eight bit sequence 1001 0010.

cardholder person for whom the card was issued

card issuer organization or entity that issues smart cards and
card applications

certificate directory file optional elementary file containing information
about certificate known to the PKCS #15
application

command message that initiates an action and solicits a
response from the card

data object directory file optional elementary file containing information
about data objects known to the PKCS #15
application

dedicated file file containing file control information, and,
optionally, memory available for allocation, and
which may be the parent of elementary files and/or
other dedicated files

NOTE – Adapted from [8]

directory (DIR) file optional elementary file containing a list of
applications supported by the card and optional
related data elements

NOTE – Adapted from [9]

elementary file set of data units or records that share the same file
identifier, and which cannot be a parent of another
file

NOTE – Adapted from [8]

file identifier 2-byte binary value used to address a file on a
smart card

NOTE – Adapted from [8]

function process accomplished by one or more commands
and resultant actions that are used to perform all or
part of a transaction

master file mandatory unique dedicated file representing the
root of the structure [8]

NOTE – The MF typically has the file identifier
3F0016.

message string of bytes transmitted by the interface device

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 8

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 9

Copyright © 1991-1999 RSA Laboratories.

give a logical grouping of data objects ([10])

token portable device capable of storing persistent data

3 Symbols, abbreviated terms and document conventions

3.1 Symbols
DF(x) Dedicated file x

EF(x) Elementary file x

3.2 Abbreviated terms
For the purposes of this document, the following abbreviations apply:

AID application provider identifier

AODF authentication object directory file

APDU application protocol data unit

BCD binary-coded decimal

CDF certificate directory file

DF dedicated File

DODF data object directory file

EF elementary file

IFD interface device (e.g. reader)

MF master file

ODF object directory file

PIN personal identification number

PrKDF private key directory file

PuKDF public key directory file

RID registered application provider identifier

SKDF secret key directory file

URL uniform resource locator

3.3 Document conventions
This document presents ASN.1 ([14], [15], [16], and [17]) notation in the bold Helvetica
typeface. When ASN.1 types and values are referenced in normal text, they are
differentiated from normal text by presenting them in the bold Helvetica typeface. The
names of commands, typically referenced when specifying information exchanges
between cards and IFDs, are differentiated from normal text by displaying them in the
Courier typeface.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 10

Copyright © 1991-1999 RSA Laboratories.

4 Overview

4.1 Object model

4.1.1 Object classes
This document defines four general classes of objects: Keys, Certificates, Authentication
Objects and Data Objects. All these object classes have sub-classes, e.g. Private Keys,
Secret Keys and Public Keys, whose instantiations become objects actually stored on
cards. The following is a figure of the object hierarchy:

NOTE – instances of abstract object classes does not exist on cards

Figure 2 – PKCS #15 Object hierarchy

4.1.2 Attribute types
All objects have a number of attributes. Objects “inherits” attribute types from their
parent classes (in particular, every object inherit attributes from the abstract PKCS #15
“Common” or “Top” object). Attributes are defined in detail in Section 6.

4.1.3 Access methods
Objects can be private, meaning that they are protected against unauthorized access, or
public. In the IC card case, access (read, write, etc) to private objects is defined by
Authentication Objects (which also includes Authentication Procedures). Conditional
access (from a cardholder’s perspective) is achieved with knowledge-based or biometric
user information. In other cases, such as when PKCS #15 is implemented in software,
private objects may be protected against unauthorized access by cryptographic means.

Private Key

(structural)

Secret Key

(structural)

Public Key

(structural)

X.509
Certificate

(structural)

Other
Certificates

(structural)

External data
objects

(structural)

PIN Object

(structural)

Biometric
Template

(structural)

Key Object

(abstract)

Certificate
Object

(abstract)

Data Object

(abstract)

Authen-
tication Object

(abstract)

PKCS#15 Key
Top Object
(abstract)

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 11

Copyright © 1991-1999 RSA Laboratories.

Public objects are not protected from read-access. Whether they are protected against
modifications or not depends on the particular implementation.

5 IC card file format

5.1 Overview
In general, an IC card file format specifies how certain abstract, higher level elements
such as keys and certificates are to be represented in terms of more lower level elements
such as IC card files and directory structures. The format may also suggest how and under
which circumstances these higher level objects may be accessed by external sources and
how these access rules are to be implemented in the underlying representation (i.e. the
card’s operating system). However, since it is anticipated that this document will be used
in many types of applications, this latter task has been left to application providers’
discretion. Some general suggestions can be found in Appendix A, though, and specific
requirements for an Electronic Identity Profile of this specification can be found in
Appendix B.

NOTE – The words “format” and “contents” shall be interpreted to mean “The way the
information appears to a host side application making use of a predefined set of commands
(selected from [8] and possibly [11] and [12]) to access this data.” It may well be that a
particular card is able to store the information described here in a more compact or efficient
way than another card, however the “card-edge” representation of the information shall be
the same in both cases. This document is therefore a “card-edge” specification.

5.2 IC card requirements
This section of this document requires that compliant cards have necessary support for
ISO/IEC 7816-4, ISO/IEC 7816-5 and ISO/IEC 7816-6 (hierarchic logical file system,
direct or indirect application selection, access control mechanisms and read operations).

5.3 Card file structure
A typical card supporting this specification will have the following layout:

Figure 3 – Typical PKCS #15 Card Layout

Other DFs/EFs

NOTE – For the purpose of this document, EF(DIR) is only needed on IC
cards which do not support direct application selection as defined in ISO/IEC
7816-5 or when multiple PKCS #15 applications reside on a single card.

MF

DF(PKCS #15) EF(DIR)

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 12

Copyright © 1991-1999 RSA Laboratories.

The general file structure is shown above. The contents of the PKCS #15 Application
Directory is somewhat dependent on the type of IC card and its intended use, but the
following file structure is believed to be the most common:

Figure 4 – Contents of DF(PKCS15) (Example).

Other possible topologies are discussed in Annex D. The contents and purpose of each
file and directory is described below.

5.4 MF directory contents

5.4.1 EF(DIR)
This optional file shall, if present, contain one or several application templates as defined
in ISO/IEC 7816-5. The application template (tag ‘61’H) for a PKCS15 application shall at
least contain the following DOs:

− Application Identifier (tag ‘4F’H), value defined in this document

− Path (tag ‘51’H), value supplied by application issuer

Other tags from ISO/IEC 7816-5 may, at the application issuer’s discretion, be present as
well. In particular, it is recommended that application issuers include both the
“Discretionary ASN.1 data objects” data object (tag ‘73’H) and the “Application label”
data object (tag ‘50’H). The application label shall contain an UTF-8 encoded label for the
application, chosen by the card issuer. The “Discretionary ASN.1 data objects” data
object shall, if present, contain a DER-encoded ([18]) value of the ASN.1 type DDO:
DDO ::= SEQUENCE {

oid OBJECT IDENTIFIER,
odfPath Path OPTIONAL,
tokenInfoPath [0] Path OPTIONAL,
unusedPath [1] Path OPTIONAL,
... -- For future extensions
}

The oid field shall contain an object identifier uniquely identifying the card issuer’s
implementation. The odfPath, tokenInfoPath and unusedPath fields shall, if present, contain
paths to elementary files EF(ODF), EF(TokenInfo) or EF(UnusedSpace) respectively (see

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 13

Copyright © 1991-1999 RSA Laboratories.

applications reside on one card. To summarize, each (logical) record in EF(DIR) must be
of the following ASN.1 type, conformant with ISO/IEC 7816-5:
DIRRecord ::= [APPLICATION 1] SEQUENCE {

aid [APPLICATION 15] OCTET STRING,
label [APPLICATION 16] UTF8String OPTIONAL,
path [APPLICATION 17] OCTET STRING,
ddo [APPLICATION 19] DDO OPTIONAL
}

The use of a DIR files will simplify application selection when several PKCS #15
applications reside on one card. An example of EF(DIR) contents may be found in Annex
E.

5.5 PKCS #15 application directory contents

5.5.1 EF(ODF)
The mandatory Object Directory File (ODF) is an elementary file, which contains
pointers to other EFs (PrKDFs, PuKDFs, SKDFs, CDFs, DODFs and AODFs), each one
containing a directory over PKCS #15 objects of a particular class. The ASN.1 syntax for
the contents of EF(ODF) is described in Section 6.2.

Figure 5 – EF(ODF) points to other EFs. Dashed arrows indicate cross-references

5.5.2 Private Key Directory Files (PrKDFs)
These elementary files can be regarded as directories of private keys known to the PKCS
#15 application. They are optional, but at least one PrKDF must be present on an IC card

EF(PrKDF)

EF(AODF)

EF(CDF)

EF(DODF)

EF(ODF)

PuKDF pointer

PrKDF pointer

CDF pointer

AODF pointer

DODF pointer

EF(PuKDF)

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 14

Copyright © 1991-1999 RSA Laboratories.

which contains private keys (or references to private keys) known to the PKCS #15
application. They contain general key attributes such as labels, intended usage, identifiers,
etc. When applicable, they also contain cross-reference pointers to authentication objects
used to protect access to the keys. The rightmost arrow in Figure 4 indicates this.
Furthermore, they contain pointers to the keys themselves. There can be any number of
PrKDFs in a PKCS #15 DF, but it is anticipated that in the normal case there will be at
most one. The keys themselves may reside anywhere on the card. The ASN.1 syntax for
the contents of PrKDFs is described in Section 6.3.

Figure 6 – EF(PrKDF) contains private key attributes and pointers to the keys

5.5.3 Public Key Directory Files (PuKDFs)
These elementary files can be regarded as directories of public keys known to the PKCS
#15 application. They are optional, but at least one PuKDF must be present on an IC card
which contains public keys (or references to public keys) known to the PKCS #15
application. They contain general key attributes such as labels, intended usage, identifiers,
etc. Furthermore, they contain pointers to the keys themselves. When the private key
corresponding to a public key also resides on the card, the keys must share the same
identifier (this is indicated with a dashed-arrow in Figure 4). There can be any number of
PuKDFs in a PKCS #15 DF, but it is anticipated that in the normal case there will be at
most one. The keys themselves may reside anywhere on the card. The ASN.1 syntax for
the contents of PuKDFs is described in Section 6.4.

NOTE – When a certificate object on the card contains the public key, the public key object
and the certificate object shall share the same identifier. This means that in some cases three
objects (a private key, a public key and a certificate) will share the same identifier.

Figure 7 – EF(PuKDF) contains public key attributes and pointers to the keys

Information about
public key #1

Information about
public key #2

Information about
public key #n

Public key #2

Public key #1

Information about
private key #1

Information about
private key #2

Information about
private key #n

Private key #2

Private key #1

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 15

Copyright © 1991-1999 RSA Laboratories.

5.5.4 Secret Key Directory Files (SKDFs)
These elementary files can be regarded as directories of secret keys known to the PKCS
#15 application. They are optional, but at least one SKDF must be present on an IC card
which contains secret keys (or references to secret keys) known to the PKCS #15
application. They contain general key attributes such as labels, intended usage, identifiers,
etc. When applicable, they also contain cross-reference pointers to authentication objects
used to protect access to the keys. Furthermore, they contain pointers to the keys
themselves. There can be any number of SKDFs in a PKCS #15 DF, but it is anticipated
that in the normal case there will be at most one. The keys themselves may reside
anywhere on the card. The ASN.1 syntax for the contents of SKDFs is described in
Section 6.5.

Figure 8 – EF(SKDF) contains secret key attributes and pointers to the keys

5.5.5 Certificate Directory Files (CDFs)
These elementary files can be regarded as directories of certificates known to the PKCS
#15 application. They are optional, but at least one CDF must be present on an IC card
which contains certificates (or references to certificates) known to the PKCS #15
application. They contain general certificate attributes such as labels, identifiers, etc.
When a certificate contains a public key whose private key also resides on the card, the
certificate and the private key must share the same identifier (this is indicated with a
dashed-arrow in Figure 4). Furthermore, certificate directory files contain pointers to the
certificates themselves. There can be any number of CDFs in a PKCS #15 DF, but it is
anticipated that in the normal case there will only be one or two (one for trusted
certificates and one which the cardholder may update). The certificates themselves may
reside anywhere on the card (or even outside the card, see Section 8). The ASN.1 syntax
for the contents of CDFs is described in Section 6.6.

Figure 9 – EF(CDF) contains certificate attributes and pointers to the certificates

Information about
secret key #1

Information about
secret key #2

Information about
secret key #n

Secret key #2

Secrect key #1

Information about
certificate #1

Information about
certificate #2

Information about
certificate #n

Certificate #2

Certificate #1

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 16

Copyright © 1991-1999 RSA Laboratories.

5.5.6 Data Object Directory Files (DODFs)
These files can be regarded as directories of data objects (other than keys or certificates)
known to the PKCS #15 application. They are optional, but at least one DODF must be
present on an IC card which contains such data objects (or references to such data
objects) known to the PKCS #15 application. They contain general data object attributes
such as identifiers of the application to which the data object belongs, whether it is a
private or public object, etc. Furthermore, they contain pointers to the data objects
themselves. There can be any number of DODFs in a PKCS #15 DF, but it is anticipated
that in the normal case there will be at most one. The data objects themselves may reside
anywhere on the card. The ASN.1 syntax for the contents of DODFs is described in
Section 6.7.

Figure 10 – EF(DODF) contains data object attributes and pointers to the data objects

5.5.7 Authentication Object Directory Files (AODFs)
These elementary files can be regarded as directories of authentication objects (e.g. PINs,
passwords, biometric data) known to the PKCS #15 application. They are optional, but at
least one AODF must be present on an IC card, which contains authentication objects
restricting access to PKCS #15 objects. They contain generic authentication object
attributes such as (in the case of PINs) allowed characters, PIN length, PIN padding
character, etc. Furthermore, they contain pointers to the authentication objects themselves
(e.g. in the case of PINs, pointers to the DF in which the PIN file resides). Authentication
objects are used to control access to other objects such as keys. Information about which
authentication object that protects a particular key is stored in the key’s directory file, e.g.
PrKDF (indicated in Figure 4, the rightmost arrow). There can be any number of AODFs
in a PKCS #15 DF, but it is anticipated that in most cases there will only be one or two.
The authentication objects themselves may reside anywhere on the card. The ASN.1
syntax for the contents of the AODFs is described in Section 6.8.

Information about
data object #1

Information about
data object #2

Information about
data object #n

Data object
#2

Data object
#1

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 17

Copyright © 1991-1999 RSA Laboratories.

Figure 11 – EF(AODF) contains authentication object attributes and pointers to the authentication
objects

5.5.8 EF(TokenInfo)
The mandatory TokenInfo elementary file with transparent structure shall contain generic
information about the card as such and it’s capabilities, as seen by the PKCS15
application. This information includes the card serial number, supported file types,
algorithms implemented on the card, etc. The ASN.1 syntax for the contents of the
TokenInfo file is described in detail in Section 6.9.

5.5.9 EF(UnusedSpace)
The optional UnusedSpace elementary file with transparent structure is used to keep track
of unused space in already created elementary files. When present, it must initially
contain at least one record pointing to an empty space in a file that is possible to update
by the cardholder. The use of this file is described in more detail in Section 5.8. The file
shall consist of DER-encoded records each with the following ASN.1 syntax:
UnusedSpace ::= SEQUENCE {

path Path (WITH COMPONENTS {..., index PRESENT, length PRESENT}),
authId Identifier OPTIONAL

}

The path field points to an area (both index, i.e. offset, and length shall be present) that is
unused and may be used when adding new objects to the card.

The authID component, described in more detail in Section 6.1.8, signals that the unused
space is in a file modification-protected by a certain authentication object.

5.5.10 Other elementary files in the PKCS #15 directory
These (optional) files will contain the actual values of objects (such as private keys,
public keys, secret keys, certificates and application specific data) referenced from within
PrKDFs, SKDFs, PuKDFs, CDFs or DODFs. The ASN.1 format for the contents of these
files follows from the ASN.1 descriptions in Section 6.

5.6 File identifiers
The following file identifiers are defined for the PKCS15 files. Note that the RID (see
ISO/IEC 7816-5) is A0 00 00 00 63.

Information about
auth. object #1

Information about
auth. object #2

Information about
auth. object #n

Authentication
object #2

Authentication
object #1

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 18

Copyright © 1991-1999 RSA Laboratories.

Table 1 – File Identifiers

File DF File Identifier (relative to nearest DF)

MF X 3F0016 (ISO/IEC 7816-4)

DIR 2F0016 (ISO/IEC 7816-4)

PKCS15 X Decided by application issuer (AID is RID || “PKCS-15”)

ODF 503116 by default (but see also Section 6.4.1)

TokenInfo 503216 by default (but see also Section 6.4.1)

UnusedSpace 503316 by default (but see also Section 6.4.1)

AODFs Decided by application issuer

PrKDFs Decided by application issuer

PuKDFs Decided by application issuer

SKDFs Decided by application issuer

CDFs Decided by application issuer

DODFs Decided by application issuer

Other EFs Decided by application issuer

- (Reserved) 503416 - 510016 (Reserved for future use)

5.7 The PKCS #15 application

5.7.1 PKCS #15 application selection
PKCS #15 compliant IC cards should support direct application selection as defined in
ISO/IEC 7816-4 Section 9 and ISO/IEC 7816-5, Section 6 (the full AID is to be used as
parameter for a ‘SELECT FILE’ command). If direct application selection is not
supported, or several PKCS #15 applications reside on the card, an EF(DIR) file with
contents as specified in Section 5.4.1 must be used.

The operating system of the card must keep track of the currently selected application and
only allow the commands applicable to that particular application while it is selected.

When several PKCS #15 applications resides on one card, they shall be distinguished by
their object identifier in their application template in EF(DIR). It is recommended that the
application label (tag ‘50’H) also be present to simplify the man-machine interface (e.g.
vendor name in short form). See also Section 5.4.1.

5.7.2 AID for the PKCS #15 application
The Application Identifier (AID) data element consists of 12 bytes and its contents is
defined below. The AID is used as the filename for DF(PKCS15) in order to facilitate
direct selection of the PKCS #15 application on multi-application cards with only one
PKCS #15 application present.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 19

Copyright © 1991-1999 RSA Laboratories.

The AID is composed of RID || PIX, where ‘||’ denotes concatenation. RID is the 5 byte
globally “Registered Application Provider Identifier” as specified in ISO/IEC 7816-5.
The RID shall be set to A0 00 00 00 63 for the purposes of this specification. This RID
has been registered with ISO. PIX (Proprietary application Identifier eXtension) should be
set to “PKCS-15”.

The full AID for the current version of this document is thus A0 00 00 00 63 50 4B 43 53
2D 31 35.

5.8 Object management

5.8.1 Adding (Creating) new objects
The UnusedSpace file may be used to find suitable unused space on a card. After free
space has been found, and assuming sufficient privileges to a suitable object directory file
(e.g. a CDF in the case of a new certificate), the value of the new object is written to the
area pointed to from EF(UnusedSpace). After this, the used record in EF(UnusedSpace)
shall be updated to point to the first free byte after the newly written object. Finally, a
new record is added to the object directory file. If the object directory file (e.g. CDF) is a
true linear record file this will be a simple ISO/IEC 7816-4 command (‘APPEND
RECORD’). In the case of a transparent object directory file, an ‘UPDATE BINARY’
command is suggested.

If no suitable free space can be found, garbage collection may be necessary, rewriting
object directory files as the objects they point to moves around, and updating
EF(UnusedSpace) in accordance.

If EF(UnusedSpace) is not being used, the application may have to create a new
elementary file and write the value of the new object to this file before updating a suitable
object directory file.

In the case of replacing a previous object, space can be conserved in the object directory
file by updating the bytes previously used to hold information about that object. The
space can be found by searching for a record with a ‘00’ tag in the linear record file case,
or a “logical” such record in the transparent file case. Since all records shall consist of
DER-encoded values, these “empty” areas will be easy to find (‘00’ is not a valid ASN.1
tag). This method is also consistent with ISO/IEC 7816-4 annex D.

Figure 12 – Before adding a new certificate

EF(UnusedSpace)
Elementary file

EF(CDF)

Free space #1

Free space #n Certificate 1

Empty area

Cert1 Info

‘00’

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 20

Copyright © 1991-1999 RSA Laboratories.

Figure 13 – After adding a new certificate

5.8.2 Removing objects
Once again, sufficient privileges are assumed. In particular, the object in question must be
“modifiable” (see Section 6.1.8), and if it is a “private” object (again, see Section 6.1.8),
authorization requirements must be met (e.g. a correct PIN must have been presented
prior to the operation).

Removing a record from an object directory file is done by the ‘WRITE RECORD’ or
‘UPDATE RECORD’ command in the linear record file case, and by the ‘WRITE
BINARY’ or ‘UPDATE BINARY’ command in the transparent file case. Records shall be
erased be either replacing the outermost tag with a ‘00’ byte or by re-writing the whole
file with its new information content. Just overwriting the tag but preserving the length
bytes allows for easy traversal of the file later on.

The following two figures shows an example in which a certificate is removed from the
PKCS #15 application and EF(UnusedSpace) is used to keep track of unused space.

Figure 14 – Before removing certificate 2

Figure 15 – After removing certificate 2

Free space #1

Free space #n…

Cert 1

Cert 2

Empty area

Cert1 Info

Cert2 Info

‘00’

EF(UnusedSpace) EF(CDF)

Free space #1

Cert 1

Cert 2

Cert 3

Cert 1 Info

Cert 2 Info

Cert 3 Info

EF(UnusedSpace)
Elementary file

EF(CDF)

Elementary file

Free space #1

Free space #2

Cert 1

Cert 2

Cert 1 Info

‘00’ L ...

Cert 3 Info

EF(UnusedSpace) EF(CDF)

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 21

Copyright © 1991-1999 RSA Laboratories.

After having marked the entry in the object directory file as unused (‘00’), a new record is
added to EF(UnusedSpace), pointing to the area that the object directory file used to point
to.

5.8.3 Modifying objects
Once again, sufficient privileges as in the previous subsection are assumed. In the linear
record file case, the affected object directory file (e.g. EF(CDF), EF(DODF), etc) record
is simply updated (‘UPDATE RECORD’). In the transparent file case, if the encoding of
the new information does not require more space than the previous information did, the
(logical) record may be updated. Alternatively, the whole file may be re-written, but this
may prove to be more costly.

6 Information syntax in ASN.1
NOTE – If nothing else is mentioned, DER-encoding of values is assumed.

6.1 Basic ASN.1 defined types

6.1.1 Identifier
Identifier ::= OCTET STRING (SIZE (0..pkcs15-ub-identifier))

The Identifier type is a constrained version of PKCS #11’s CKA_ID. It is a card-internal
identifier. For cross-reference purposes, two or more objects may have the same Identifier
value. One example of this is a private key and one or more corresponding certificates.

6.1.2 Reference
Reference ::= INTEGER (0..pkcs15-ub-reference)

This type is used for generic reference purposes.

6.1.3 Label
Label ::= UTF8String (SIZE(0..pkcs15-ub-label))

This type is used for all labels (i.e. user assigned object names).

6.1.4 CredentialIdentifier
CredentialIdentifier {KEY-IDENTIFIER : IdentifierSet} ::= SEQUENCE {

idType KEY-IDENTIFIER.&id ({IdentifierSet}),
idValue KEY-IDENTIFIER.&Value ({IdentifierSet}{@idType})
}

PrivateKeyIdentifiers KEY-IDENTIFIER ::= {
issuerAndSerialNumber|
issuerAndSerialNumberHash|
subjectKeyIdentifier|
subjectKeyHash,
...
}

CertificateIdentifiers KEY-IDENTIFIER ::= {
issuerKeyHash,

mailto:{PKCS15KeyIdentifiers}{@idType}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 22

Copyright © 1991-1999 RSA Laboratories.

issuerNameHash,
subjectNameHash
}

KEY-IDENTIFIER ::= CLASS {
&id INTEGER UNIQUE,
&Value
} WITH SYNTAX {
SYNTAX &Value IDENTIFIED BY &id
}

The CredentialIdentifier type is used to identify a particular private key or certificate. There
are currently four members in the set of identifiers for private keys, PrivateKeyIdentifiers:

− issuerAndSerialNumber: The value of this type shall be a sequence of the issuer’s
distinguished name and the serial number of a certificate which contains the public
key associated with the private key.

− issuerAndSerialNumberHash: As for issuerAndSerialNumber, but the value is an OCTET
STRING which contains a SHA-1 hash value of this information in order to preserve
space.

− subjectKeyIdentifier: The value of this type must be an OCTET STRING with the same
value as the corresponding certificate extension in a X.509v3 certificate which
contains the public key associated with the private key.

− subjectPublicKeyHash: A hash for the public key associated with the private key. In the
RSA case, the modulus of the public key shall be used, and the hash is to be done on
the (network-order or big-endian) integer representation of it. The hash-algorithm
shall be SHA-1. In the case of Elliptic Curves, it is recommended that the hash be
calculated on the x-coordinate of the public key’s ECPoint OCTET STRING. As an
alternative, the hash can also be used as the CommonKeyAttributes.iD.

NOTE – This is different from the hash method used e.g. in IETF RFC 2459 ([26]), but
it serves the purpose of being independent of certificate format – alternative certificate
formats not DER-encoding the public key has been proposed

The members of the CertificateIdentifiers set are:

− issuerKeyHash: A hash of the public key used to sign the requested certificate. This
value can also, in the case of X.509 v3 certificates, be present in the
authorityKeyIdentifier extension in the user’s certificate, and the subjectKeyIdentifier
extension in the issuer’s certificate.

− issuerNameHash: A hash of the issuer’s name as it appears in the certificate.

− subjectNameHash: A hash of the subject’s name as it appears in the certificate.

6.1.5 ReferencedValue and Path
ReferencedValue {Type} ::= CHOICE {

path Path,
url URL
} (CONSTRAINED BY {-- ’path’ or ’url’ shall point to an object of type – Type})

URL ::= CHOICE {

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 23

Copyright © 1991-1999 RSA Laboratories.

url PrintableString,
urlWithDigest [3] SEQUENCE {

url IA5String,
digest Digest
},

... -- For future extensions
}

Digest ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier {{DigestAlgorithms}} DEFAULT alg-id-sha1,
digest OCTET STRING (SIZE(8..128))
}

Path ::= SEQUENCE {
path OCTET STRING,
index INTEGER (0..pkcs15-ub-index) OPTIONAL,
length INTEGER (0..pkcs15-ub-index) OPTIONAL
}(WITH COMPONENTS {..., index PRESENT, length PRESENT}|
WITH COMPONENTS {..., index ABSENT, length ABSENT})

A ReferencedValue is a reference to a PKCS15 object value of some kind. This can either
be some external reference (captured by the url choice) or a reference to a file on the card
(the path identifier). In the Path case, identifiers index and length may specify a specific
location within the file. If the file in question is a linear record file, index shall be the
record number (in the ISO/IEC 7816-4 definition) and length can be set to 0 (if the card’s
operating system allows an Le parameter equal to ‘0’ in a ‘READ RECORD’ command).
Lengths of fixed records may be found in the TokenInfo file as well (see Section 6.9). In
the url case, the URL may either be a simple URL or a URL in combination with a
cryptographic hash of the object stored at the given location. Assuming that the PKCS
#15 token is integrity-protected, the digest will protect the externally protected object as
well.

If the file is a transparent file, then index can be used to specify an offset within the file,
and length the length of the segment (index would then become parameter P1 and/or P2
and length the parameter Le in a ‘READ BINARY’ command). By using index and length,
several objects may be stored within the same transparent file.

NOTE – On some IC cards which supports having several keys in one EF, keys are
referenced by an identifier when used, but updating the EF requires knowledge of an offset
and/or length of the data. In these cases, the CommonKeyAttributes.keyReference field shall be
used for access to the key, and the presence of the Path.index and Path.length depends on the
card issuer’s discretion (they are not needed for card usage purposes, but may be used for
modification purposes).

If path is two bytes long, it references a file by its file identifier. If path is longer than two
bytes, it references a file either by an absolute or relative path (i.e. concatenation of file
identifiers).

In the url case, the given URL must be in accordance with [2].

6.1.6 ObjectValue
ObjectValue { Type } ::= CHOICE {

indirect ReferencedValue {Type},

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 24

Copyright © 1991-1999 RSA Laboratories.

direct [0] Type,
...,
indirect-protected [1] ReferencedValue {EnvelopedData {Type}}
direct-protected [2] EnvelopedData {Type},
}(CONSTRAINED BY {-- if indirection is being used, then it is expected that the reference
-- points either to a (possibly enveloped) object of type -- Type -- or (key case) to a card-
-- specific key file --})

The ObjectValue type is intended to catch the choice which can be made between storing a
particular PKCS #15 object (key, certificate, etc) “in-line” (but possibly “enveloped”, see
Section 7) or by indirect reference (i.e. by pointing to another location where the value
resides (possibly enveloped)). On tokens supporting the ISO/IEC 7816-4 logical file
organization (i.e. EFs and DFs), the indirect alternative shall always be used. In other
cases, any of the CHOICE alternatives may be used. Tokens not capable of protecting
private objects by other means shall use the indirect-protected or the direct-protected choice.

6.1.7 PathOrObjects
PathOrObjects {ObjectType} ::= CHOICE {

path Path,
objects [0] SEQUENCE OF ObjectType,
...,
indirect-protected [1] ReferencedValue {EnvelopedData {SEQUENCE OF ObjectType}}
direct-protected [2] EnvelopedData {SEQUENCE OF ObjectType},
}

The PathOrObjects type is used to reference sequences of objects either residing within the
ODF or externally. If the path alternative is used, then it is expected that the file pointed
to by path contain the value part of an object of type SEQUENCE OF ObjectType (that is, the
‘SEQUENCE OF’ tag and length shall not be present in the file). On tokens supporting the
ISO/IEC 7816-4 logical file organization (i.e. EFs and DFs), the path alternative is
strongly recommended. In other cases, any of the CHOICE alternatives may be used. The
‘indirect-protected’ and ‘direct-protected’ choices are intended for tokens not capable of
protecting private objects by themselves, see Section 7.

6.1.8 CommonObjectAttributes

NOTE – This type is a container for attributes common to all PKCS #15 objects.
CommonObjectAttributes ::= SEQUENCE {

label Label OPTIONAL,
flags CommonObjectFlags OPTIONAL,
authId Identifier OPTIONAL,
...,
userConsent INTEGER (1..pkcs15-ub-userConsent) OPTIONAL,
accessControlRules SEQUENCE OF AccessControlRules
} (WITH COMPONENTS {…, flags PRESENT, authID PRESENT, accessControlInfo ABSENT} |
WITH COMPONENTS {…, flags ABSENT, authID ABSENT, accessControlInfo PRESENT})
(CONSTRAINED BY {-- authId should be present in the IC card case if flags.private is set. It
-- must equal an authID in one AuthRecord in the AODF -- })

CommonObjectFlags ::= BIT STRING {
private (0),
modifiable (1)
}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 25

Copyright © 1991-1999 RSA Laboratories.

AccessControlRules ::= SEQUENCE {
accessMode AccessMode,
securityCondition SecurityCondition
… -- For future extensions
}

AccessMode ::= BIT STRING {
read (0),
update (1),
execute (2)
}

SecurityCondition ::= CHOICE {
authId Identifier,
not [0] SecurityCondition,
and [1] SEQUENCE SIZE (2..pkcs15-ub-securityConditions) OF SecurityCondition,
or [2] SEQUENCE SIZE (2..pkcs15-ub-securityConditions) OF SecurityCondition,
... -- For future extensions
}

The label is the equivalent of the CKA_LABEL present in PKCS #11 ([24]), and is purely
for display purposes (man-machine interface), for example when a user have several
certificates for one key pair (e.g. “My bank certificate”, “My S/MIME certificate”).

The flags field indicates whether the particular object is private or not, and whether it is of
type read-only or not. As in PKCS #11, a private object may only be accessed after proper
authentication (e.g. PIN verification). If an object is marked as modifiable, it should be
possible to update the value of the object. If an object is both private and modifiable,
updating is only allowed after successful authentication, however. Since properties such
as private and modifiable can be deduced by other means on IC cards, e.g. by studying EFs
FCI, this field is optional and not necessary when these circumstances applies.

The authId field gives, in the case of a private object, a cross-reference back to the
authentication object used to protect this object (For a description of authentication
objects, see Section 5.5.7).

The userConsent field gives, in the case of a private object, the number of times an
application may access the object without explicit consent from the user (e.g. a value of 3
indicates that a new authentication will be required before the first, the 4th, the 7th, etc.
access).

The accessControlRules field gives an alternative, and more fine-grained, way to inform a
host-side applications about security conditions for various methods of accessing the
object in question. Any Boolean expression in available authentication methods is
allowed. This field cannot be combined with the flags and authId field.

6.1.9 CommonKeyAttributes
CommonKeyAttributes ::= SEQUENCE {

iD Identifier,
usage KeyUsageFlags,
native BOOLEAN DEFAULT TRUE,
accessFlags KeyAccessFlags OPTIONAL,
keyReference Reference OPTIONAL,
startDate GeneralizedTime OPTIONAL,
endDate [0] GeneralizedTime OPTIONAL,

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 26

Copyright © 1991-1999 RSA Laboratories.

... -- For future extensions
}

KeyUsageFlags ::= BIT STRING {
encrypt (0),
decrypt (1),
sign (2),
signRecover (3),
wrap (4),
unwrap (5),
verify (6),
verifyRecover (7),
derive (8),
nonRepudiation (9)
}

KeyAccessFlags ::= BIT STRING {
sensitive (0),
extractable (1),
alwaysSensitive (2),
neverExtractable (3),
local (4)
}

The iD field must be unique for each key stored in the card, except when a public key
object and the corresponding private key object are stored on the card. In this case, the
keys must share the same identifier (which may also be shared with a certificate object,
see Section 6.1.14).

The usage field (encrypt, decrypt, sign, signRecover, wrap, unwrap, verify, verifyRecover, derive
and nonRepudiation) signals the intended usage of the key as defined in PKCS #11. To
map between X.509 ([21]) keyUsage flags for public keys, PKCS #15 flags for public
keys, and PKCS #15 flags for private keys, use the following table:

Table 2 – Mapping between PKCS #15 key usage flags and X.509 keyUsage extension flags

Key usage flags for public keys in
X.509 public key certificates

Corresponding PKCS #15
key usage flags for public
keys

Corresponding PKCS
#15 key usage flags for
private keys

DataEncipherment Encrypt Decrypt

DigitalSignature, keyCertSign, cRLSign Verify Sign

DigitalSignature, keyCertSign, cRLSign VerifyRecover SignRecover

KeyAgreement Derive Derive

KeyEncipherment Wrap Unwrap

NonRepudiation NonRepudiation NonRepudiation

NOTE – Implementations should verify that usage of key usage flags on a card is sound, i.e. that all key usage flags for a
particular key pair is consistent with Table 2

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 27

Copyright © 1991-1999 RSA Laboratories.

The native field identifies whether the card is able to use the key for hardware
computations or not (e.g. this field is by default true for all RSA keys stored in special
RSA key files on an RSA capable IC card).

The semantics of the accessFlags field’s sensitive, extractable, alwaysSensitive,
neverExtractable and local identifiers is the same as in PKCS #11. This field is not required
to be present in cases where its value can be deduced by other means.

The keyReference field is only applicable for IC cards with cryptographic capabilities. If
present, it contains a card-specific reference to the key in question (usually a small
integer, for further information see ISO/IEC 7816-4 and ISO/IEC 7816-8 [11]).

The startDate and endDate fields have the same semantics as in PKCS #11.

6.1.10 CommonPrivateKeyAttributes
CommonPrivateKeyAttributes ::= SEQUENCE {

subjectName Name OPTIONAL,
keyIdentifiers [0] SEQUENCE OF CredentialIdentifier {{PrivateKeyIdentifiers}} OPTIONAL,
... -- For future extensions
}

KeyIdentifier ::= SEQUENCE {
idType KEY-IDENTIFIER.&id ({KeyIdentifiers}),
idValue KEY-IDENTIFIER.&Value ({KeyIdentifiers}{@idType})
}

The semantics for the fields of the CommonPrivateKeyAttributes type above is as follows:

The subjectName field, when present, shall contain the distinguished name of the owner of
the private key, as specified in a certificate containing the public key corresponding to
this private key.

The keyIdentifiers field: When receiving for example an enveloped message together with
information about the public key used for encrypting the message’s session key, the
application needs to deduce which (if any) of the private keys present on the card that
should be used for decrypting the session key. In messages based on the PKCS #7 ([23])
format, the issuerAndSerialNumber construct may be used, in other schemes other types
may be used. This version of this document defines a number of possible ways to
identifying a key (see Section 6.1.4).

6.1.11 CommonPublicKeyAttributes
CommonPublicKeyAttributes ::= SEQUENCE {

subjectName Name OPTIONAL,
...,
trusted BOOLEAN DEFAULT FALSE
}

The semantics for the fields of the CommonPublicKeyAttributes type above is as follows:

The subjectName field, when present, shall contain the distinguished name of the owner of
the public key as it appears in a certificate containing the public key.

The trusted field, which has no meaning in IC card cases (use the trustedKeys alternative
instead; Section 6.2), indicates whether the card-holder trusts the public key in question.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 28

Copyright © 1991-1999 RSA Laboratories.

NOTE – The exact semantics of this “trust” is outside the scope of this document.

6.1.12 CommonSecretKeyAttributes
This type contains all attributes common to PKCS #15 secret keys, except for
CommonKeyAttributes and PKCSCommonObjectAttributes.
CommonSecretKeyAttributes ::= SEQUENCE {

keyLen INTEGER OPTIONAL, -- keylength (in bits)
... -- For future extensions
}

The semantics for the fields of the CommonSecretKeyAttributes type above is as follows:

The optional keyLen field signals the key length used, in those cases where a particular
algorithm can have a varying key length.

6.1.13 KeyInfo
This type, which is an optional part of each private and public key type, contains either
(IC card case) a reference to a particular entry in the EF(TokenInfo) file, or explicit
information about the key in question (parameters and operations supported by the card).
The supportedOperations field is optional and can be absent on cards, which do not support
any operations with the key. Note the distinction between KeyUsageFlags and
KeyInfo.paramsAndOps.supportedOperations: The former indicates the intended usage of the
key, the latter indicates the operations (if any) the card can perform with the key.
KeyInfo {ParameterType, OperationsType} ::= CHOICE {

reference Reference,
paramsAndOps SEQUENCE {

parameters ParameterType,
supportedOperations OperationsType OPTIONAL

}
}

6.1.14 CommonCertificateAttributes
CommonCertificateAttributes ::= SEQUENCE {

iD Identifier,
authority BOOLEAN DEFAULT FALSE,
certtIdentifiers CHOICE {

identifier CredentialIdentifier {{CertificateIdentifiers}},
identifiers SEQUENCE OF CredentialIdentifier {{CertificateIdentifiers}}
} OPTIONAL,

certHash [0] OOBCertHash OPTIONAL,
...,
trusted [1] BOOLEAN DEFAULT FALSE
}

The iD field is only present for X.509 certificates in PKCS #11, but has for generality
reasons been “promoted” to a common certificate attribute in this document. When a
public key in the certificate in question corresponds to a private key also known to the
PKCS #15 application, they must share the same value for the iD field. This requirement
will simplify searches for a private key corresponding to a particular certificate and vice
versa.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 29

Copyright © 1991-1999 RSA Laboratories.

The authority field indicates whether the certificate is for an authority (i.e. CA or AA) or
not.

The certIdentifiers field simplifies the search of a particular certificate, when the requester
knows (and conveys) some distinguishing information about the requested certificate.
This can be used, for example, when a user certificate has to be chosen and sent to a
server as part of a user authentication, and the server provides the client with
distinguishing information for a particular certificate. Use of the subjectNameHash and
issuerNameHash alternatives may also facilitate fast chain building.

Editor’s note – The reason for the unorthodox CHOICE here is backwards-compatibility
with PKCS #15 v1.0. Suggestions for improvements are welcome.

The certHash field is useful from a security perspective when the certificate in question is
stored external to the card (the url choice of ReferencedValue), since it enables a user to
verify that no one has tampered with the certificate.

NOTE – To find a token-holder certificate for a specific usage, use the
commonKeyAttributes.usage field, and follow the cross-reference (commonKeyAttributes.iD) to
an appropriate certificate.

The trusted field, which has no meaning in IC card cases (use the trustedCertificates
alternative instead; Section 6.2), indicates whether the token-holder trusts the certificate
in question or not.

NOTE – The exact semantics of this “trust” is outside the scope of this document.

6.1.15 CommonDataObjectAttributes
CommonDataObjectAttributes ::= SEQUENCE {

applicationName Label OPTIONAL,
applicationOID OBJECT IDENTIFIER OPTIONAL,
... -- For future extensions
} (WITH COMPONENTS {..., applicationName PRESENT}|
WITH COMPONENTS {..., applicationOID PRESENT})

The applicationName field is intended to contain the name or the registered object identifier
for the application to which the data object in question “belongs”. In order to avoid
application name collisions, at least the applicationOID alternative is recommended. As
indicated in ASN.1, at least one of the components has to be present in a value of type
CommonDataObjectAttributes.

6.1.16 CommonAuthenticationObjectAttributes
CommonAuthenticationObjectAttributes ::= SEQUENCE {

authId Identifier,
... –- For future extensions
}

The authId must be a unique identifier. It is used for cross-reference purposes from private
PKCS #15 objects.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 30

Copyright © 1991-1999 RSA Laboratories.

6.1.17 PKCS15Object
This type is a template for all kinds of PKCS #15 objects. It is parameterized with object
class attributes, object subclass attributes and object type attributes.
PKCS15Object {ClassAttributes, SubClassAttributes, TypeAttributes} ::= SEQUENCE {

commonObjectAttributes CommonObjectAttributes,
classAttributes ClassAttributes,
subClassAttributes [0] SubClassAttributes OPTIONAL,
typeAttributes [1] TypeAttributes
}

6.2 The PKCS15Objects type
PKCS15Objects ::= CHOICE {

privateKeys [0] PrivateKeys,
publicKeys [1] PublicKeys,
trustedPublicKeys [2] PublicKeys,
secretKeys [3] SecretKeys,
certificates [4] Certificates,
trustedCertificates [5] Certificates,
usefulCertificates [6] Certificates,
dataObjects [7] DataObjects,
authObjects [8] AuthObjects,
... -- For future extensions
}

PrivateKeys ::= PathOrObjects {PrivateKey}

SecretKeys ::= PathOrObjects {SecretKey}

PublicKeys ::= PathOrObjects {PublicKey}

Certificates ::= PathOrObjects {Certificate}

DataObjects ::= PathOrObjects {Data}

AuthObjects ::= PathOrObjects {Authentication}

In the IC card case, the intention is that EF(ODF) shall consist of a number of data objects
(records) of type Objects, representing different object types. Each data object should in
the normal case reference a file containing a directory of objects of the particular type.
Since the path alternative of the PathOrObject type is recommended, this will result in a
record-oriented ODF, which simplifies updating.

NOTE – When it is known in advance that it will not be possible for the cardholder to
modify e.g. EF(PrKDF) and EF(AODF), an application may store these files with the direct
option of PathOrObjects

The trustedPublicKeys field is intended for implementations on IC cards supporting the
ISO/IEC 7816-4 logical file organization. In these cases, the card issuer might want to
include a number of trusted public keys on the card (and make sure that they are not
modified or replaced later on by an application). The PuKDF pointed to from this field
should therefore be protected from cardholder modifications, as should the public keys
pointed to from that PuKDF itself. Trusted public keys are most likely root CA keys that
can be used as trust chain origins.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 31

Copyright © 1991-1999 RSA Laboratories.

The certificates field shall, in the case of IC cards supporting the ISO/IEC 7816-4 logical
file organization, point to certificates issued to the cardholder. They may or may not be
possible to modify by the cardholder.

The trustedCertificates field is intended for implementations on IC cards supporting the
ISO/IEC 7816-4 logical file organization. As for trustedPublicKeys, the card issuer might
want to include a number of trusted certificates on the card (and make sure that they are
not modified or replaced later on by an application), while still allowing the cardholder to
add other certificates issued to himself/herself. The CDF pointed to from this field should
therefore be protected from cardholder modifications, as should the certificates pointed to
from that CDF itself. It is, however, conceivable that the card issuer can modify the
contents of this file (and the files it points to). Trusted certificates are most likely root CA
certificates, but does not have to be. Since the intention is that it should be impossible for
a cardholder to modify them, they can be regarded as trusted by the cardholder, and can
therefore be used as trust chain origins.

The usefulCertificates field is also intended for implementations on IC cards supporting the
ISO/IEC 7816-4 logical file organization. The intention is that the cardholder may use
this entry to store other end-entity or CA certificates that may be useful, e.g. signing
certificates for colleagues, in order to simplify certificate path validation.

NOTE – In case of tokens not supporting the ISO/IEC 7816-4 logical file organization,
implementers are recommended to use the certificates choice for all certificates (and the
publicKeys choice for all public keys), and use the trusted attribute (see Section 6.1.11 and
Section 6.1.14) to indicate which objects the tokenholder trusts.

6.3 Private keys

6.3.1 The PrivateKeys type
This type contains information pertaining to private key objects stored in the card. Since,
in the ISO/IEC 7816-4 IC card case, the path alternative of the PathOrObjects type is to be
chosen, PrivateKeys entries (records) in EF(ODF) points to elementary files that can be
regarded as directories of private keys, “Private Key Directory Files” (PrKDFs). The
contents of an EF(PrKDF) must be the value of the DER encoding of a SEQUENCE OF
PrivateKey (i.e. excluding the outermost tag and length bytes). This gives the PrKDFs the
same, simple structure as the ODF, namely a number of TLV records.

In the case of cards not supporting the ISO/IEC 7816-4 logical file organization, any of
the CHOICE alternatives of PathOrObjects may be used.
PrivateKey ::= CHOICE {

privateRSAKey PrivateKeyObject {PrivateRSAKeyAttributes},
privateECKey [0] PrivateKeyObject {PrivateECKeyAttributes},
privateDHKey [1] PrivateKeyObject {PrivateDHKeyAttributes},
privateDSAKey [2] PrivateKeyObject {PrivateDSAKeyAttributes},
privateKEAKey [3] PrivateKeyObject {PrivateKEAKeyAttributes},
... -- For future extensions
}

PrivateKeyObject {KeyAttributes} ::= PKCS15Object {
CommonKeyAttributes, CommonPrivateKeyAttributes, KeyAttributes}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 32

Copyright © 1991-1999 RSA Laboratories.

In other words, in the IC card case, each EF(PrKDF) shall consist of a number of context-
tagged elements representing different private keys. Each private key element shall
consist of a number of common object attributes (CommonObjectAttributes,
CommonKeyAttributes and CommonPrivateKeyAttributes) and, in addition the particular key
type’s attributes.

6.3.2 Private RSA key objects
PrivateRSAKeyAttributes ::= SEQUENCE {

value ObjectValue {RSAPrivateKey},
modulusLength INTEGER, -- modulus length in bits, e.g. 1024
keyInfo KeyInfo {RSAParameters, PublicKeyOperations} OPTIONAL,
... -- For future extensions
}

RSAPrivateKey ::= SEQUENCE {
modulus [0] INTEGER OPTIONAL, -- n
publicExponent [1] INTEGER OPTIONAL, -- e
privateExponent [2] INTEGER OPTIONAL, -- d
prime1 [3] INTEGER OPTIONAL, -- p
prime2 [4] INTEGER OPTIONAL, -- q
exponent1 [5] INTEGER OPTIONAL, -- d mod (p-1)
exponent2 [6] INTEGER OPTIONAL, -- d mod (q-1)
coefficient [7] INTEGER OPTIONAL -- inv(q) mod p
} (CONSTRAINED BY {-- must be possible to reconstruct modulus and privateExponent from

selected fields --})

The semantics of the fields is as follows:

− PrivateRSAKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type RSAPrivateKey or (in the case of a card capable of
performing on-chip RSA encryption) some card specific representation of a private
RSA key. If there is no need to specify a path to a file, the path value may be set to ‘’H,
i.e. the empty path. As mentioned, the capability of on-chip private key operations
will be indicated in the CommonKeyAttributes.native field. In other cases, the application
issuer is free to choose any alternative. Note that, besides the case of RSA capable IC
cards, although the RSAPrivateKey type is very flexible, it is still constrained by the fact
that it must be possible to reconstruct the modulus and the private exponent from
whatever fields present.

NOTE – If the private key is “linked” with a certificate, then it might be enough to
store the private exponent here, since the modulus can be retrieved from the
associated certificate.

− PrivateRSAKeyAttributes.modulusLength: On many cards, one must be able to format data
to be signed prior to sending the data to the card. In order to be able to format the data
in a correct manner the length of the key must be known. The length shall be
expressed in bits, e.g. 1024.

− PrivateRSAKeyAttributes.keyInfo: Information about parameters that applies to this key
(NULL in the case of RSA keys) and operations the card can carry out with this key.
In the IC card case, the reference alternative of a KeyInfo must be used, and the

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 33

Copyright © 1991-1999 RSA Laboratories.

reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is
not needed if the information is available through other means.

6.3.3 Private Elliptic Curve key objects
PrivateECKeyAttributes ::= SEQUENCE {

value ObjectValue {ECPrivateKey},
keyInfo KeyInfo {ECParameters, PublicKeyOperations} OPTIONAL,
 ... -- For future extensions
}

ECPrivateKey ::= INTEGER

The semantics of these types is as follows:

− PrivateECKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type ECPrivateKey or (in the case of a card capable of
performing on-chip EC operations) some card specific representation of a private EC
key. If there is no need to specify a path to a file, the path value may be set to ‘’H, i.e.
the empty path. As mentioned, the capability of on-chip private key encryption will be
indicated in the CommonKeyAttributes.native field. In other cases, the application issuer
is free to choose any alternative.

− PrivateECKeyAttributes.keyInfo: Information about parameters that applies to this key
and operations the card can carry out with this key. In the IC card case, the reference
alternative of a KeyInfo must be used, and the reference shall “point” to a particular
entry in EF(TokenInfo), see below. The field is not needed if the information is
available through other means.

6.3.4 Private Diffie-Hellman key objects
PrivateDHKeyAttributes ::= SEQUENCE {

value ObjectValue {DHPrivateKey},
keyInfo KeyInfo {DHParameters, PublicKeyOperations} OPTIONAL,
... -- For future extensions
}

DHPrivateKey ::= INTEGER –- Diffie-Hellman exponent

The semantics of these types is as follows:

− PrivateDHKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type DHPrivateKey or (in the case of a card capable of
performing on-chip Diffie-Hellman operations) some card specific representation of a
private Diffie-Hellman key. If there is no need to specify a path to a file, the path
value may be set to ‘’H, i.e. the empty path. As mentioned, the capability of on-chip
private key operations will be indicated in the CommonKeyAttributes.native field. In
other cases, the application issuer is free to choose any alternative.

− PrivateDHKeyAttributes.keyInfo: Information about parameters that applies to this key
and operations the card can carry out with this key. In the IC card case, the reference
alternative of a KeyInfo must be used, and the reference shall “point” to a particular
entry in EF(TokenInfo), see below. The field is not needed if the information is
available through other means.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 34

Copyright © 1991-1999 RSA Laboratories.

6.3.5 Private Digital Signature Algorithm key objects
PrivateDSAKeyAttributes ::= SEQUENCE {

value ObjectValue {DSAPrivateKey},
keyInfo KeyInfo {DSAParameters, PublicKeyOperations} OPTIONAL,
... -– For future extensions
}

DSAPrivateKey ::= INTEGER

The semantics of these types is as follows:

− PrivateDSAKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type DSAPrivateKey or (in the case of a card capable of
performing on-chip DSA operations) some card specific representation of a private
DSA key. If there is no need to specify a path to a file, the path value may be set to
‘’H, i.e. the empty path. As mentioned, the capability of on-chip private key operations
will be indicated in the CommonKeyAttributes.native field. In other cases, the application
issuer is free to choose any alternative.

− PrivateDSAKeyAttributes.keyInfo: Information about parameters that applies to this key
and operations the card can carry out with this key. In the IC card case, the reference
alternative of a KeyInfo must be used, and the reference shall “point” to a particular
entry in EF(TokenInfo), see below. The field is not needed if the information is
available through other means.

6.3.6 Private KEA key objects
PrivateKEAKeyAttributes ::= SEQUENCE {

value ObjectValue {KEAPrivateKey},
keyInfo KeyInfo {KEAParameters, PublicKeyOperations} OPTIONAL,
... -- For future extensions
}

KEAPrivateKey ::= INTEGER

The semantics of these types is as follows:

− PrivateKEAKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of the KEAPrivateKey type or (in the case of a card capable of
performing on-chip KEA operations) some card specific representation of a private
KEA key. If there is no need to specify a path to a file, the path value may be set to
‘’H, i.e. the empty path. As mentioned, the capability of on-chip private key operations
will be indicated in the CommonKeyAttributes.native field. In other cases, the application
issuer is free to choose any alternative.

− PrivateKEAKeyAttributes.keyInfo: Information about parameters that applies to this key
and operations the card can carry out with this key. In the IC card case, the reference
alternative of a KeyInfo must be used, and the reference shall “point” to a particular
entry in EF(TokenInfo), see below. The field is not needed if the information is
available through other means.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 35

Copyright © 1991-1999 RSA Laboratories.

6.4 Public keys

6.4.1 The PublicKeys type
This data structure contains information pertaining to public key objects stored in the
card. Since, in the IC card case, the path alternative of the PathOrObjects type is to be
chosen, PublicKeys entries (records) in EF(ODF) points to elementary files that can be
regarded as directories of public keys, “Public Key Directory Files” (PuKDFs). The
contents of an EF(PuKDF) must be the value of the DER encoding of a SEQUENCE OF
PublicKey (i.e. excluding the outermost tag and length bytes). This gives the PuKDFs the
same, simple structure as the ODF, namely a number of TLV records.

In the case of cards not supporting the ISO/IEC 7816-4 logical file organization, any of
the CHOICE alternatives of PathOrObjects may be used.
PublicKey ::= CHOICE {

publicRSAKey PublicKeyObject {PublicRSAKeyAttributes},
publicECKey [0] PublicKeyObject {PublicECKeyAttributes},
publicDHKey [1] PublicKeyObject {PublicDHKeyAttributes},
publicDSAKey [2] PublicKeyObject {PublicDSAKeyAttributes},
publicKEAKey [3] PublicKeyObject {PublicKEAKeyAttributes},
… -- For future extensions
}

PublicKeyObject {KeyAttributes} ::= PKCS15Object {
CommonKeyAttributes, CommonPublicKeyAttributes, KeyAttributes}

In other words, in the IC card case, each EF(PuKDF) shall consist of a number of context-
tagged elements representing different public keys. Each element shall consist of a
number of common object attributes (CommonObjectAttributes, CommonKeyAttributes and
CommonPublicKeyAttributes) and in addition the particular public key type’s attributes.

6.4.2 Public RSA key objects
PublicRSAKeyAttributes ::= SEQUENCE {

value ObjectValue {RSAPublicKeyChoice},
modulusLength INTEGER, -- modulus length in bits, e.g. 1024
keyInfo KeyInfo {RSAParameters, PublicKeyOperations} OPTIONAL,
... -- For future extensions
}

RSAPublicKeyChoice ::= CHOICE
raw RSAPublicKey,
spki [1] SubjectPublicKeyInfo, -- See X.509. Must contain a public RSA key
...
}

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e
},

The semantics of the fields is as follows:

− PublicRSAKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type RSAPublicKey, of type SubjectPublicKeyInfo, or (in the
case of a card capable of performing on-chip RSA public-key encryption) some card

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 36

Copyright © 1991-1999 RSA Laboratories.

specific representation of a public RSA key. As mentioned, this will be indicated in
the CommonKeyAttributes.native field. In other cases, the application issuer is free to
choose any alternative.

− PublicRSAKeyAttributes.modulusLength: On many cards, one must be able to format data
to be encrypted prior to sending the data to the card. In order to be able to format the
data in a correct manner the length of the key must be known. The length shall be
expressed in bits, e.g. 1024.

− PublicRSAKeyAttributes.keyInfo: Information about parameters that applies to this key
(NULL in the case of RSA keys) and operations the card can carry out with this key. In
the IC card case, the reference alternative of a KeyInfo must be used, and the reference
shall “point” to a particular entry in EF(TokenInfo), see below. The field is not
needed if the information is available through other means.

6.4.3 Public Elliptic Curve key objects
PublicECKeyAttributes ::= SEQUENCE {

value ObjectValue {ECPublicKeyChoice},
keyInfo KeyInfo {ECParameters, PublicKeyOperations} OPTIONAL,
... -- For future extensions
}

ECPublicKeyChoice ::= CHOICE {
raw ECPoint,
spki SubjectPublicKeyInfo, -- See X.509. Must contain a public EC key
...
}

The semantics of these types is as follows:

− PublicECKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type ECPublicKey, of type SubjectPublicKeyInfo, or (in the
case of a card capable of performing on-chip EC public-key operations) some card
specific representation of a public EC key. As mentioned, this will be indicated in the
CommonKeyAttributes.native field. In other cases, the application issuer is free to choose
any alternative.

− PublicECKeyAttributes.keyInfo: Information about parameters that applies to this key and
operations the card can carry out with this key. In the IC card case, the reference
alternative of a KeyInfo must be used, and the reference shall “point” to a particular
entry in EF(TokenInfo), see below. The field is not needed if the information is
available through other means.

6.4.4 Public Diffie-Hellman key objects
PublicDHKeyAttributes ::= SEQUENCE {

value ObjectValue {DHPublicKeyChoice},
keyInfo KeyInfo {DHParameters, PublicKeyOperations} OPTIONAL,
... -- For future extensions
}

DHPublicKeyChoice ::= CHOICE {
raw DiffieHellmanPublicNumber,
spki SubjectPublicKeyInfo, -- See X.509. Must contain a public D-H key

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 37

Copyright © 1991-1999 RSA Laboratories.

...
}

The semantics of these types is as follows:

− PublicDHKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type DHPublicKey, of type SubjectPublicKeyInfo, or (in the
case of a card capable of performing on-chip Diffie-Hellman public-key operations)
some card specific representation of a public Diffie-Hellman key. As mentioned, this
will be indicated in the CommonKeyAttributes.native field. In other cases, the application
issuer is free to choose any alternative.

− PublicDHKeyAttributes.keyInfo: Information about parameters that applies to this key and
operations the card can carry out with this key. In the IC card case, the reference
alternative of a KeyInfo must be used, and the reference shall “point” to a particular
entry in EF(TokenInfo), see below. The field is not needed if the information is
available through other means.

6.4.5 Public Digital Signature Algorithm objects
PublicDSAKeyAttributes ::= SEQUENCE {

value ObjectValue {DSAPublicKeyChoice},
keyInfo KeyInfo {DSAParameters, PublicKeyOperations} OPTIONAL,
... -- For future extensions
}

DSAPublicKeyChoice ::= CHOICE {
raw INTEGER,
spki SubjectPublicKeyInfo, -- See X.509. Must contain a public DSA key.
...
}

The semantics of these types is as follows:

− PublicDSAKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type DSAPublicKey, of type SubjectPublicKeyInfo, or (in the
case of a card capable of performing on-chip DSA public-key operations) some card
specific representation of a public DSA key. As mentioned, this will be indicated in
the CommonKeyAttributes.native field. In other cases, the application issuer is free to
choose any alternative.

− PublicDSAKeyAttributes.keyInfo: Information about parameters that applies to this key
and operations the card can carry out with this key. In the IC card case, the reference
alternative of a KeyInfo must be used, and the reference shall “point” to a particular
entry in EF(TokenInfo), see below. The field is not needed if the information is
available through other means.

6.4.6 Public KEA key objects
PublicKEAKeyAttributes ::= SEQUENCE {

value ObjectValue {KEAPublicKeyChoice},
keyInfo KeyInfo {KEAParameters, PublicKeyOperations} OPTIONAL,
... -- For future extensions
}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 38

Copyright © 1991-1999 RSA Laboratories.

KEAPublicKeyChoice ::= CHOICE {
raw INTEGER,
spki SubjectPublicKeyInfo, -- See X.509. Must contain a public KEA key
...
}

The semantics of these types is as follows:

− PublicKEAKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing either a value of type KEAPublicKey, of type SubjectPublicKeyInfo, or (in the
case of a card capable of performing on-chip KEA public-key operations) some card
specific representation of a public KEA key. As mentioned, this will be indicated in
the CommonKeyAttributes.native field. In other cases, the application issuer is free to
choose any alternative.

− PublicKEAKeyAttributes.keyInfo: Information about parameters that applies to this key
and operations the card can carry out with this key. In the IC card case, the reference
alternative of a KeyInfo must be used, and the reference shall “point” to a particular
entry in EF(TokenInfo), see below. The field is not needed if the information is
available through other means.

6.5 Secret keys

6.5.1 The SecretKeys type
This data structure contains information pertaining to secret keys stored in the card.
Since, in the IC card case, the path alternative of the PathOrObjects type is to be chosen,
SecretKeys entries (records) in EF(ODF) points to elementary files that can be regarded as
directories of secret keys, “Secret Key Directory Files” (SKDFs). The contents of an
EF(SKDF) must be the value of the DER encoding of a SEQUENCE OF SecretKey (i.e.
excluding the outermost tag and length bytes). This gives the SKDFs the same, simple
structure as the ODF, namely a number of TLV records.

In the case of cards not supporting the ISO/IEC 7816-4 logical file organization, any of
the CHOICE alternatives of PathOrObjects may be used.
SecretKey ::= CHOICE {

genericSecretKey SecretKeyObject {GenericSecretKeyAttributes},
rc2key [0] SecretKeyObject {GenericSecretKeyAttributes},
rc4key [1] SecretKeyObject {GenericSecretKeyAttributes},
desKey [2] SecretKeyObject {GenericSecretKeyAttributes},
des2Key [3] SecretKeyObject {GenericSecretKeyAttributes},
des3Key [4] SecretKeyObject {GenericSecretKeyAttributes},
castKey [5] SecretKeyObject {GenericSecretKeyAttributes},
cast3Key [6] SecretKeyObject {GenericSecretKeyAttributes},
cast128Key [7] SecretKeyObject {GenericSecretKeyAttributes},
rc5Key [8] SecretKeyObject {GenericSecretKeyAttributes},
ideaKey [9] SecretKeyObject {GenericSecretKeyAttributes},
skipjackKey [10] SecretKeyObject {GenericSecretKeyAttributes},
batonKey [11] SecretKeyObject {GenericSecretKeyAttributes},
juniperKey [12] SecretKeyObject {GenericSecretKeyAttributes},
rc6Key [13] SecretKeyObject {GenericSecretKeyAttributes},
otherKey [14] OtherKey,
... -- For future extensions
}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 39

Copyright © 1991-1999 RSA Laboratories.

SecretKeyObject {KeyAttributes} ::= PKCS15Object {
 CommonKeyAttributes, CommonSecretKeyAttributes, KeyAttributes}

OtherKey ::= SEQUENCE {
keyType OBJECT IDENTIFIER,
keyAttr SecretKeyObject {GenericSecretKeyAttributes}
}

In other words, in the IC card case, each EF(SKDF) shall consist of a number of context-
tagged elements representing different secret keys. Each element shall consist of a
number of common object attributes (CommonObjectAttributes, CommonKeyAttributes and
CommonSecretKeyAttributes) and in addition the particular secret key type’s attributes. All
key types defined in this version correspond to key types defined in PKCS #11, and they
all contain the same attributes, GenericSecretKeyAttributes, defined below.

6.5.2 Generic secret key objects
These objects represent generic keys, available for use in various algorithms, or for
derivation of other secret keys.
GenericSecretKeyAttributes ::= SEQUENCE {

value ObjectValue { OCTET STRING },
... -- For future extensions
}

The semantics of the field is as follows:

− GenericSecretKeyAttributes.value: The value shall, in the IC card case, be a path to a file
containing an OCTET STRING. In other cases, the application issuer is free to choose
any alternative offered by the ObjectValue type.

6.5.3 Tagged key objects
These key objects represent keys of various types. In the case of cards capable of
performing cryptographic computations with keys of certain types, the key representation
is card specific (indicated by the CommonKeyAttributes.native field). Otherwise, the key
shall be stored as an OCTET STRING, as indicated above.

6.5.4 The PKCS15OtherKey type
This choice is intended to be a “catch-all” case, a placeholder for keys for which the
algorithm is not already represented by a defined tag. The OtherKey type shall contain an
object identifier identifying the type of the key and the usual secret key attributes.

6.6 Certificates

6.6.1 The Certificates type
This data structure contains information pertaining to certificate objects stored in the
card. Since, in the IC card case, the path alternative of the PathOrObjects type is to be
chosen, Certificates entries (records) in EF(ODF) points to elementary files that can be
regarded as directories of certificates, “Certificate Directory Files” (CDFs). The contents
of an EF(CDF) must be the value of the DER encoding of a SEQUENCE OF Certificate (i.e.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 40

Copyright © 1991-1999 RSA Laboratories.

excluding the outermost tag and length bytes). This gives the CDFs the same, simple
structure as the ODF, namely a number of TLV records.

In the case of cards not supporting the ISO/IEC 7816-4 logical file organization, any of
the CHOICE alternatives of PathOrObjects may be used.
Certificate ::= CHOICE {

x509Certificate CertificateObject { X509CertificateAttributes},
x509AttributeCertificate [0] CertificateObject {X509AttributeCertificateAttributes},
spkiCertificate [1] CertificateObject {SPKICertificateAttributes},
pgpCertificate [2] CertificateObject {PGPCertificateAttributes},
wtlsCertificate [3] CertificateObject {WTLSCertificateAttributes},
x9-68Certificate [4] CertificateObject {X9-68CertificateAttributes},
...,
cvCertificate [5] CertificateObject {CVCertificateAttributes}
}

CertificateObject {CertAttributes} ::= PKCS15Object {
CommonCertificateAttributes, NULL, CertAttributes}

In other words, in the IC card case, each EF(CDF) shall consist of a number of context-
tagged elements representing different certificate objects. Each element shall consist of a
number of common object attributes (CommonObjectAttributes and
CommonCertificateAttributes) and in addition the particular certificate type’s attributes.

6.6.2 X.509 certificate objects
X509CertificateAttributes ::= SEQUENCE {

value ObjectValue { Certificate },
subject Name OPTIONAL,
issuer [0] Name OPTIONAL,
serialNumber CertificateSerialNumber OPTIONAL,
... -- For future extensions
}

The semantics of the fields is as follows:

− X509CertificateAttributes.value: The value shall, in the IC card case, be a ReferencedValue
either identifying a file containing a DER encoded certificate at the given location, or
a url pointing to some location where the certificate in question can be found. In other
cases, the application issuer is free to choose any alternative.

− X509CertificateAttributes.subject, X509CertificateAttributes.issuer and
X509CertificateAttributes.serialNumber: The semantics of these fields is the same as for
the corresponding fields in PKCS #11. The reason for making them optional is to
provide some space-efficiency, since they already are present in the certificate itself.

6.6.3 X.509 attribute certificate objects
X509AttributeCertificateAttributes ::= SEQUENCE {

value ObjectValue { AttributeCertificate },
issuer GeneralNames OPTIONAL,
serialNumber CertificateSerialNumber OPTIONAL,
attrTypes [0] SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,
... -- For future extensions
}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 41

Copyright © 1991-1999 RSA Laboratories.

The semantics of the fields is as follows:

− X509AttributeCertificateAttributes.value: The value shall, in the IC card case, be a
ReferencedValue identifying either a file containing a DER encoded attribute certificate
at the given location, or a url pointing to some location where the attribute certificate
in question can be found. In other cases, the application issuer is free to choose any
alternative.

− X509AttributeCertificateAttributes.issuer and X509AttributeCertificateAttributes.serialNumber:
The values of these fields should be exactly the same as for the corresponding fields
in the attribute certificate itself. They may be stored explicitly for easier lookup.

− X509AttributeCertificateAttributes.attrTypes: This optional field shall, when present,
contain a list of object identifiers for the attributes that are present in this attribute
certificate. This offers an opportunity for applications to search for a particular
attribute certificate without downloading and parsing the certificate itself.

6.6.4 SPKI (Simple Public Key Infrastructure) certificate objects

NOTE – SPKI Certificates are defined in IETF RFC 2693 ([4]).
SPKICertificateAttributes ::= SEQUENCE {

value ObjectValue { PKCS15PKCS15-OPAQUE.&Type },
... -- For future extensions
}

The semantics of the field is as follows:

− SPKICertificateAttributes.value: The value shall, in the IC card case, be a ReferencedValue
identifying either a file containing a SPKI certificate at the given location, or a url
pointing to some location where the certificate can be found. In other cases, the
application issuer is free to choose any alternative.

6.6.5 PGP (Pretty Good Privacy) certificate objects

NOTE – PGP Certificates are defined in IETF RFC 2440 ([3]).
PGPCertificateAttributes ::= SEQUENCE {

value ObjectValue { PKCS15-OPAQUE.&Type },
... -- For future extensions
}

The semantics of the field is as follows:

− PGPCertificateAttributes.value: The value shall, in the IC card case, be a ReferencedValue
identifying either a file containing a PGP certificate at the given location, or a url
pointing to some location where the certificate can be found. In other cases, the
application issuer is free to choose any alternative.

6.6.6 WTLS certificate objects

NOTE – WTLS Certificates are defined in the “Wireless Transport Layer Security Protocol”
specification ([27]).
WTLSCertificateAttributes ::= SEQUENCE {

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 42

Copyright © 1991-1999 RSA Laboratories.

value ObjectValue { PKCS15-OPAQUE.&Type },
... -- For future extensions
}

The semantics of the field is as follows:

− WTLSCertificateAttributes.value: The value shall, in the IC card case, be a ReferencedValue
identifying either a file containing a WTLS encoded certificate at the given location,
or a url pointing to some location where the certificate in question can be found. In
other cases, the application issuer is free to choose any alternative.

6.6.7 ANSI X9.68 lightweight certificate objects

NOTE – X9.68 certificates are currently being defined by ANSI X9F1.
X9-68CertificateAttributes ::= SEQUENCE {

value ObjectValue { PKCS15-OPAQUE.&Type },
... -- For future extensions
}

The semantics of the field is as follows:

− X9-68CertificateAttributes.value: The value shall, in the IC card case, be a ReferencedValue
identifying either a file containing a DER or PER ([19]) encoded ANSI X9.68
certificate at the given location, or a url pointing to some location where the
certificate in question can be found. In other cases, the application issuer is free to
choose any alternative.

6.6.8 Card Verifiable Certificate objects

NOTE – Card Verifiable Certificates are defined in ISO/IEC 7816-8.
CVCertificateAttributes ::= SEQUENCE {

value ObjectValue { PKCS15-OPAQUE.&Type},
… -- For future extensions
}

The semantics of the field is as follows:

− CVCertificateAttributes.value: The value shall, in the IC card case, be a ReferencedValue
identifying either a file containing an ISO/IEC 7816-8 Card Verifiable Certificate at
the given location, or a URL pointing to some location where the certificate in
question can be found. In other cases, the application issuer is free to choose any
alternative.

6.7 Data objects

6.7.1 The DataObjects type
This data structure contains information pertaining to data objects stored in the card.
Since, in the IC card case, the path alternative of the PathOrObjects type is to be chosen,
DataObjects entries (records) in EF(ODF) points to elementary files that can be regarded as
directories of data objects, “Data Object Directory Files” (DODFs). The contents of an
EF(DODF) must be the value of the DER encoding of a SEQUENCE OF Data (i.e. excluding

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 43

Copyright © 1991-1999 RSA Laboratories.

the outermost tag and length bytes). This gives the DODFs the same, simple structure as
the ODF, namely a number of TLV records.

In the case of cards not supporting the ISO/IEC 7816-4 logical file organization, any of
the CHOICE alternatives of PathOrObjects may be used.
Data ::= CHOICE {

opaqueDO DataObject {Opaque},
externalIDO [0] DataObject {ExternalIDO},
oidDO [1] DataObject {OidDO},
... -- For future extensions
}

DataObject {DataObjectAttributes} ::= Object {
CommonDataObjectAttributes, NULL, DataObjectAttributes}

In other words, in the IC card case, DODFs shall consist of a number of context-tagged
elements representing different data objects. Each element shall consist of a number of
common object attributes (CommonObjectAttributes and CommonDataObjectAttributes) and in
addition the particular data object type’s attributes.

6.7.2 Opaque data objects
Opaque data objects are the least specified data objects. PKCS #15 makes no
interpretation of these objects at all; it is completely left to applications accessing these
objects.
Opaque ::= ObjectValue {PKCS15-OPAQUE.&Type}

6.7.3 External data objects
As an alternative, the DODF may contain information about one or several externally
defined inter-industry data objects. These objects must follow a compatible tag allocation
scheme as defined in Section 4.4 of ISO/IEC 7816-6.
ExternalIDO ::= ObjectValue {PKCS15-OPAQUE.&Type}

(CONSTRAINED BY {-- All data objects must be defined in accordance with ISO/IEC 7816-6 --})

In the IC card case, each externalIDO entry in EF(DODF) will therefore point to a file
which must conform to ISO/IEC 7816-6. By using these data objects, applications
enhance interoperability.

6.7.4 Data objects identified by OBJECT IDENTIFIERS
This type provides a way to store, search and retrieve data objects with assigned object
identifiers. An example of this type of information is any ASN.1 ATTRIBUTE.
OidDO ::= SEQUENCE {

id OBJECT IDENTIFIER,
value ObjectValue {PKCS15-OPAQUE.&Type}
}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 44

Copyright © 1991-1999 RSA Laboratories.

6.8 Authentication objects

6.8.1 The AuthenticationObject type
This data structure, only relevant to cards capable of authenticating card-holders, contains
information about how the card-holder authentication shall be carried out. Since, in the IC
card case, the path alternative of the PathOrObjects type is to be chosen,
AuthenticationObjects entries (records) in EF(ODF) points to elementary files that can be
regarded as directories of authentication objects, “Authentication Object Directory Files”
(AODFs). The contents of an EF(AODF) must be the value of the DER encoding of a
SEQUENCE OF AuthenticationMethod (i.e. excluding the outermost tag and length bytes).
This gives the AODFs the same, simple structure as the ODF, namely a number of TLV
records.
AuthenticationMethod ::= CHOICE {

pinAuthenticationObject { PinAttributes },
...,
biometricTemplate AuthenticationObject{ BioMetricAttributes},
authKey AuthenticationObject {AuthKeyAttributes}
external AuthenticationObject {ExternalMethodAttributes}
}

AuthenticationObject {AuthObjectAttributes} ::= PKCS15Object {
CommonAuthenticationObjectAttributes, NULL, AuthObjectAttributes}

In other words, in the IC card case, each EF(AODF) shall consist of a number of context-
tagged elements representing different authentication objects. Each element shall consist
of a number of common object attributes (CommonObjectAttributes and
CommonAuthenticationObjectAttributes) and in addition the particular authentication object
type’s attributes. Each authentication object must have a distinct
CommonAuthenticationObjectAttributes.authID, enabling unambiguous authentication object
lookup for private objects.

6.8.2 Pin objects
PinAttributes ::= SEQUENCE {

pinFlags PinFlags,
pinType PinType,
minLength INTEGER (pkcs15-lb-minPinLength..pkcs15-ub-minPinLength),
storedLength INTEGER (pkcs15-lb-minPinLength..pkcs15-ub-storedPinLength),
maxLength INTEGER OPTIONAL,
pinReference [0] Reference DEFAULT 0,
padChar OCTET STRING (SIZE(1)) OPTIONAL,
lastPinChange GeneralizedTime OPTIONAL,
path Path OPTIONAL,
... -- For future extensions
}

PinFlags ::= BIT STRING {
case-sensitive (0),
local (1),
change-disabled (2),
unblock-disabled (3),
initialized (4),
needs-padding (5),
unblockingPin (6),

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 45

Copyright © 1991-1999 RSA Laboratories.

soPin (7),
disable-allowed (8),
integrity-protected (9),
confidentiality-protected (10)
} (CONSTRAINED BY { -- ‘unblockingPin’ and ‘soPIN’ cannot both be set -- })

PinType ::= ENUMERATED {bcd, ascii-numeric, utf8, ..., half-nibble-bcd}

The semantics of these fields is as follows:

− PinAttributes.pinFlags: This field signals whether the PIN:

− is case-sensitive, meaning that a user-given PIN shall not be converted to all-
uppercase before presented to the card (see below);

− is local, meaning that the PIN is local to the PKCS #15 application;

NOTE – A pin, which is not “local,” is considered “global”. A local PIN may only
be used to protect data within the PKCS #15 application. For a local PIN the
lifetime of verification is not guaranteed and it may have to be re-verified on each
use. In contrast to this, a successful verification of a global PIN means that the
verification remains in effect until the card has been removed or reset, or until a new
verification of the same PIN fails. An application, which has verified a global PIN,
can assume that the PIN remains valid, even if other applications verify their own,
local PINs, select other DFs, etc.

− is change-disabled, meaning that it is not possible to change the PIN;

− is unblock-disabled, meaning that it is not possible to unblock the PIN;

− is initialized, meaning that the PIN has been initialized;

− needs-padding, meaning that, depending on the length of the given PIN and the
stored length, the PIN may need to be padded before being presented to the card;

− is an unblockingPin (ISO/IEC 7816-8: resetting code), meaning that this PIN may
be used for unblocking purposes, i.e. to reset the retry counter of the related
authentication object to its initial value;

− is a soPin, meaning that the PIN is a Security Officer PIN (in the PKCS #11
sense);

NOTE – Since PINs are PKCS #15 objects they may be protected by other
authentication objects. This gives a way to specify the PIN that can be used to
unblock another PIN - let the authID of a PIN point to an unblocking PIN

− is disable-allowed, meaning that the PIN might be disabled;

− shall be presented to the card with secure messaging (integrity-protected); or

− shall be presented to the card encrypted (confidentiality-protected).

− PinAttributes.pinType: This field determines the type of PIN:

− bcd (Binary Coded Decimal, each nibble of a byte shall contain one digit of the
PIN);

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 46

Copyright © 1991-1999 RSA Laboratories.

− ascii-numeric (Each byte of the PIN contain an ASCII [1] encoded digit); or

− utf8 (Each character is encoded in accordance with UTF8 [28]).

− half-nibble-bcd (lower nibble of a byte shall contain one digit of the PIN, upper
nibble shall contain ‘F’H.

− PinAttributes.minLength: Minimum length (in characters) of new PINs (if allowed to
change).

− PinAttributes.storedLength: Stored length on card (in bytes). Used to deduce the number
of padding characters needed.

− PinAttributes.maxLength: On some cards, PINs are not padded, and there is therefore a
need to know the maximum PIN length (in characters) allowed.

− PinAttributes.pinReference: This field is a card-specific reference to the PIN in question.
It is anticipated that it can be used as a ‘P2’ parameter in the ISO/IEC 7816-4
‘VERIFY’ command, when applicable. If not present, it defaults to the value 0.

− PinAttributes.padChar: Padding character to use (usually ‘FF16’ or ‘0016’). Not needed
if pinFlags indicates that padding is not needed for this card. If the PinAttributes.pinType
is of type bcd, then padChar should consist of two nibbles of the same value, any
nibble could be used as the “padding nibble”. E.g., ‘5516’ is allowed, meaning
padding with ‘01012’, but ‘3416’ is illegal.

− PinAttributes.lastPinChange: This field is intended to be used in applications that
requires knowledge of the date the PIN last was changed (e.g. to enforce PIN
expiration policies). When the PIN is not set (or never has been changed) the value
shall be (using the value-notation defined in ISO/IEC 8824-1) ‘000000000000Z’. As
another example, a PIN changed on January 6, 1999 at 1934 (7 34 PM) UTC would
have a lastPinChange value of ‘19990106193400Z’.

− PinAttributes.path: Path to the DF in which the PIN resides. The path shall be selected
by a host application before doing a PIN operation, in order to enable a suitable
authentication context for the PIN operation. If not present, a card-holder verification
must always be possible to perform without a prior ‘SELECT’ operation.

6.8.2.1 Transforming a supplied PIN

The steps taken by a host-side application to transform a user-supplied PIN to something
presented to the card shall be as follows:

1. Convert the PIN in accordance with the PIN type:

a. If the PIN is a utf8 PIN, transform it to UTF8: x = UTF8(PIN). Then, if the case-
sensitive bit is off, convert x to uppercase: x = NLSUPPERCASE(x)
(NLSUPPERCASE = locale dependent uppercase)

b. If the PIN is a bcd PIN, verify that each character is a digit and encode the
characters as BCD (see Section 2) digits: x = BCD(PIN)

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 47

Copyright © 1991-1999 RSA Laboratories.

c. If the PIN is an ascii-numeric PIN, verify that each character is a digit in the
current code-page and –if needed– encode the characters as ASCII (ANSI X3.4)
digits: x = ASCII(PIN)

d. If the PIN is a half-nibble-bcd PIN, verify that each character is a digit and encode
the characters as BCD in the lower half of each byte, setting each upper nibble to
‘F16’: x = Half-BCD(PIN)

2. If indicated in the pinFlags field, pad x to the right with the padding character,
padChar, to stored length storedLength: x = PAD(x, padChar, storedLength).

3. If the pinFlags.integrity-protected or pinFlags.confidentiality-protected bits are set, apply the
appropriate algorithms to the converted and formatted PIN.

4. Present the PIN to the card.

EXAMPLE – (ascii-) Numeric PIN ‘123410’, stored length 8 bytes, and padding character
‘FF16’ gives that the value presented to the card will be ‘31323334FFFFFFFF16’

6.8.3 Biometrical reference data objects

This type, only relevant to cards capable of authenticating card-holders by comparing a
stored biometric template with a provided biometric reading, contains information about the
stored biometric template.
BiometricAttributes ::= SEQUENCE {

bioFlags BiometricFlags,
templateId OBJECT IDENTIFIER,
bioType BiometricType,
bioReference Reference DEFAULT 0
lastChange GeneralizedTime OPTIONAL,
path Path OPTIONAL,
... -- For future extensions
}

BioMetricFlags ::= BIT STRING {
local (1),
change-disabled (2),
unblock-disabled (3),
initialized (4)
disable-allowed (8),
integrity-protected (9),
confidentiality-protected (10)
} -- Note: bits 0, 5, 6, and 7 are reserved for future use

BiometricType ::= CHOICE {
fingerPrint FingerPrint,
-- Possible extensions:
-- voiceRecording VoiceRecording,
-- irisScan IrisScan,
-- faceScan FaceScan,
-- retinaScan Retinascan,
-- handGeometry HandGeometry,
-- writeDynamics WriteDynamics,
-- keyStrokeDynamics KeyStrokeDynamics,
-- lipDynamics LipDynamics,
... -- For future extensions
}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 48

Copyright © 1991-1999 RSA Laboratories.

FingerPrint ::= SEQUENCE {
hand ENUMERATED {left, right},
finger ENUMERATED {thumb, pointerFinger, middleFinger, ringFinger, littleFinger}
}

The semantics of these fields is as follows:

− BiometricAttributes.bioFlags: Same as for PINAttributes.pinFlags, but replace “PIN” with
“biometrical reference data.”

− BiometricAttributes.templateId: This field identifies the data structure that has to be sent
to the card. It is anticipated that data structures will be registered with some
international organization, by using OBJECT IDENTIFIERs.

− BiometricAttributes.bioType: This field determines the type of biometrical information
stored in the card, e.g. the right pointer finger.

− BiometricAttributes.bioReference, BiometricAttributes.lastChange, and
BiometricAttributes.path: As for corresponding fields in PINAttributes, but replace “PIN”
with “biometrical reference data.”

6.8.4 External authentication methods
ExternalAuthMethodAttributes ::= CHOICE {

authKeyAttributes AuthKeyAttributes,
certBasedAttributes CertBasedAuthenticationAttributes,
... -- For future extensions
}

AuthKeyAttributes ::= SEQUENCE {
derivedKey BOOLEAN DEFAULT TRUE,
authKeyId Identifier,
... -- For future extensions
}

CertBasedAuthenticationAttributes ::= SEQUENCE {
cha OCTET STRING,
...
}

The semantics of these fields is as follows:

− AuthKeyAttributes.derivedKey: This field specifies whether the authentication key stored
in the token is a derived key (i.e. an individual key), a group key, or a master key,
used for deriving individual keys.

− AuthKeyAttributes.authKeyId: This field specifies the identifier (CommonKeyAttribute.iD)
of the authentication key as described in an EF(SKDF).

− CertBasedAuthenticationAttributes.cha: This field specifies the certificate holder
authorization as presented in a card-verifiable certificate (see ISO/IEC 7816-8 and –
9). If a card-verifiable certificate containing this value is verified, and the
authentication procedure with the corresponding key pair has been successfully
completed, then the cha is set as valid, and access to private objects protected within
this cerificate-holder’s authorization granted.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 49

Copyright © 1991-1999 RSA Laboratories.

6.9 The cryptographic token information file, EF(TokenInfo)
This file contains general information about the PKCS #15 application and the card it
resides on. It’s data structure is defined as follows:
TokenInfo ::= SEQUENCE {

version INTEGER {v1(0)} (v1,...),
serialNumber OCTET STRING,
manufacturerID Label OPTIONAL,
label [0] Label OPTIONAL,
tokenflags TokenFlags,
seInfo SEQUENCE OF SecurityEnvironmentInfo OPTIONAL,
recordInfo [1] RecordInfo OPTIONAL,
supportedAlgorithms[2] SEQUENCE OF AlgorithmInfo OPTIONAL,
...,
issuerId [3] Label OPTIONAL,
holderId [4] Label OPTIONAL,
lastChange GeneralizedTime OPTIONAL
} (CONSTRAINED BY { -- Each AlgorithmInfo.reference value must be unique --})

TokenFlags ::= BIT STRING {
readonly (0),
loginRequired (1),
prnGeneration (2),
eidCompliant (3)
}

SecurityEnvironmentInfo ::= SEQUENCE {
se INTEGER (0..127),
owner OBJECT IDENTIFIER,
... -- For future extensions
}

RecordInfo ::= SEQUENCE {
oDFRecordLength [0] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,
prKDFRecordLength [1] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,
puKDFRecordLength [2] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,
sKDFRecordLength [3] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,
cDFRecordLength [4] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,
dODFRecordLength [5] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,
aODFRecordLength [6] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL
}

AlgorithmInfo ::= SEQUENCE {
reference Reference,
algorithm PKCS15PKCS15-ALGORITHM.&id({AlgorithmSet}),
parameters PKCS15-ALGORITHM.&Parameters({AlgorithmSet}{@algorithm}),
supportedOperationsPKCS15-ALGORITHM.&Operations({AlgorithmSet}{@algorithm})
}

The interpretation of these fields shall be as follows:

− TokenInfo.version: This field contains the number of the particular version of this
specification the card application is based upon. For this version of this document, the
value of version shall be 0 (v1).

− TokenInfo.serialNumber: This field shall contain the card’s unique serial number, for IC
card issued in accordance with ISO/IEC 7812-1 ([7]) and coded in accordance with
ISO/IEC 8583 ([13]).

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 50

Copyright © 1991-1999 RSA Laboratories.

− TokenInfo.manufacturerID: This optional field shall, when present, contain identifying
information about the token manufacturer (e.g. the card manufacturer), UTF8-
encoded.

− TokenInfo.label: This optional field shall, when present, contain identifying information
about the application.

− TokenInfo.cardflags: This field contains information about the card per se. Flags
include: If the whole PKCS #15 application is read-only, if login (i.e. authentication)
is required before accessing any data, if the card supports pseudo-random number
generation and if the card conforms to the electronic identification profile of this
specification, specified in Annex C.

− PKCS15TokenInfo.seInfo: This optional field is intended to convey information about
pre-set security environments on the card, and the owner of these environments. The
definition of these environments is currently out of scope for this document.

− PKCS15TokenInfo.recordInfo: This optional field has two purposes:

− to indicate whether the elementary files ODF, PrKDF, PuKDF, SKDF, CDF,
DODF and AODF are linear record files or transparent files (if the field is present,
they shall be linear record files, otherwise they shall be transparent files); and

− if they are linear record files, whether they are of fixed-length or not (if they are of
fixed length, corresponding values in RecordInfo are present and not equal to zero
and indicates the record length. If some files are linear record files but not of fixed
length, then corresponding values in RecordInfo can either be absent or set to zero.

− TokenInfo.supportedAlgorithms: The intent of this optional field is to indicate
cryptographic algorithms, associated parameters and operations supported by the card.
The reference field of AlgorithmInfo is a unique reference that is used for cross-
reference purposes from PrKDFs and PuKDFs. Values of the supportedOperations field
(compute-checksum, compute-signature, verify-checksum, verify-signature, encipher,
decipher, hash and derive-key) identifies operations the card can perform with a
particular algorithm.

− TokenInfo.issuerId: This optional field shall, when present, contain identifying
information about the token issuer (e.g. the card issuer).

− TokenInfo.holderId: This optional field shall, when present, contain identifying
information about the token holder (e.g. the cardholder).

− TokenInfo.lastUpdate: This optional field shall, when present, contain the date of the
last update of files in the PKCS #15 application. The presence of this field, together
with the TokenInfo.serialNumber field, will enable host-side applications to quickly find
out whether they have to read EF(ODF), EF(CDF), etc., or if they can used cached
copies (if available).

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 51

Copyright © 1991-1999 RSA Laboratories.

7 Software (Virtual card) format

7.1 Introduction
This section describes considerations to be made when implementing PKCS#15 on
tokens not capable of protecting the integrity and confidentiality of PKCS#15 objects
themselves. The typical case is when PKCS#15 is being implemented in software (so-
called “virtual smart cards”). The format described in this section is an application of
PKCS #7 v1.5 and IETF RFC 2630 ([6]).

Both private and public objects needs to be protected from unauthorized access. The
solution chosen for PKCS#15 is a combination of integrity-protection and encryption.
Private objects are to be encrypted, and after combining (encrypted) private and public
objects in one data structure, the whole structure is optionally authenticated. Content
encryption keys shall be session-keys (one-time use) and the session keys themselves
shall be encrypted by long-term key-encryption keys and stored within the structure.
Message authentication keys are also session-keys, encrypted with long-term key-
encryption keys. Key-encryption keys shall be derived from user passwords.

7.2 Useful types

7.2.1 The EnvelopedData type
This type is equivalent to the EnvelopedData type defined in PKCS #7 v1.5 and IETF RFC
2630, but has been parameterized here for better type checking.
EnvelopedData {Type} ::= SEQUENCE {

version INTEGER {v0(0), v1(1), v2(2), v3(3), v4(4)}(v1,v2,…),
originatorInfo [0] OriginatorInfo OPTIONAL
recipientInfos RecipientInfos,
encryptedContentInfo EncryptedContentInfo{Type},
unprotectedAttrs [1] SET SIZE (1..MAX) OF Attribute
}

version is the syntax version number. If any of the RecipientInfo structures included have a
version other than 0 (see RFC 2630), then the version shall be v2, otherwise version shall
be v0.

OriginatorInfo, recipientInfos, and unprotectedAttrs are as in IETF RFC 2630.

EncryptedContentInfo is described below.

7.2.2 The EncryptedContentInfo type
This type is equivalent to the EncryptedContentInfo type defined in PKCS #7 v1.5 and IETF
RFC 2630, but has been parameterized here for better type checking.
EncryptedContentInfo {Type} ::= SEQUENCE {

contentType OBJECT IDENTIFIER,
contentEncryptionAlgorithm AlgorithmIdentifier {{ContentEncryptionAlgorithms}},
encryptedContent [0] OCTET STRING
}(CONSTRAINED BY {-- ’encryptedContent’ shall be the result of encrypting DER-encoded
-- value of type – Type})

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 52

Copyright © 1991-1999 RSA Laboratories.

contentType shall always be set to id-data, since the type will always be known from the
context in which the EnvelopedData occurs.

EncryptedContent shall be the result of encrypting a DER-encoded value of type Type.

7.3 The PKCS15Token type
PKCS15Token ::= SEQUENCE {

COMPONENTS OF TokenInfo,
keyManagementInfo KeyManagementInfo,
pkcs15Objects SEQUENCE OF PKCS15Objects
}

KeyManagementInfo ::= SEQUENCE OF SEQUENCE {
keyId Identifier,
keyInfo CHOICE {

recipientInfo RecipientIInfo,
passwordInfo [0] PasswordInfo
}

} (CONSTRAINED BY {-- Each keyID must be unique --})

PasswordInfo ::= SEQUENCE {
hint Label OPTIONAL,
algId AlgorithmIdentifier {{KeyDerivationAlgorithms}},
} (CONSTRAINED BY {--keyID shall point to a KEKRecipientInfo--})

The intent is to collect all PKCS15Objects (whether “enveloped” or not) in a structure of
type PKCS15Token. Enveloped objects may, in their recipientInfos field, use the
KEKRecipientInfo choice (see IETF RFC 2630) to refer back to a key in the
KeyManagementInfo “table.” In the table, each entry has a unique keyId. The PasswordInfo
choice contains an optional hint, e.g. (“My bank key password”), and an algorithm
identifier for a key derivation algorithm. Given the user’s password, the key derivation
algorithm is applied and the resulting key is used to decrypt the encrypted content-
encryption key in the object’s KEKRecipientInfo. This allows for protecting several objects
with different content-encryption keys but the same password.

If a PKCS15Token is stored in an environment in which its integrity cannot be guaranteed,
it should be integrity-protected by wrapping it in a AuthenticatedData or SignedData
structure (see IETF RFC 2630). In those cases, the EncapsulatedContentInfo.eContentType
shall be set to {pkcs15-ct 1}. The AuthenticatedData.recipientInfos (or SignedData.recipientInfos)
field may or may not refer to a keyId in the wrapped PKCS15Token.keyManagementInfo table.

NOTE – If stored within a directory, the pKCS15Token attribute, defined in PKCS #9 v2.0,
may be used to represent the resulting type. PKCS #9 v2.0 also defines an object class,
pkcsEntity, capable of carrying this attribute.

7.4 Permitted algorithms

7.4.1 Key derivation algorithms
Allowed key derivation functions (algorithms used to derive a key-encryption key from a
user password) are defined in PKS#5 v2.0 ([22]). The set of allowed algorithms is thus:
PKCS15KeyDerivationAlgorithms ALGORITHM-IDENTIFIER ::= {

PBES1Algorithms |

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 53

Copyright © 1991-1999 RSA Laboratories.

PBES2Algorithms,
... -- For future extensions
}

7.4.2 Other algorithms
IETF RFC 2630 defines algorithms for encryption of session keys (“Symmetric Key-
Encryption Algorithms”), for authenticity of information (“Message Authentication Code
Algorithms”), for cryptographic hashing of data (“Digest Algorithms”), and for
encryption of data (“Content Encryption Algorithms”). These algorithms are adapted for
the same use in this specification. In addition, algorithms defined in PKCS #5 v2.0 for
encryption of data are included in the ContentEncryptionAlgorithms set. The set of allowed
algorithms is thus:
KeyEncryptionAlgorithms ALGORITHM-IDENTIFIER ::= {

{SYNTAX NULL IDENTIFIED BY id-alg-3DESwrap} |
{SYNTAX INTEGER IDENTIFIED BY id-algRC2wrap},
... -- For future extensions
}

ContentEncryptionAlgorithms ALGORITHM-IDENTIFIER ::= {
SupportingAlgorithms EXCEPT {NULL IDENTIFIED BY id-hmacWithSHA1},
-- SupportingAlgorithms are defined in PKCS #5 v2
... -- For future extensions
}

PKCS15MACAlgorithms ALGORITHM-IDENTIFIER ::= {
{NULL IDENTIFIED BY hMAC-SHA1},
... – For future extensions
}

PKCS15DigestAlgorithms ALGORITHM-IDENTIFIER ::= {
{SYNTAX NULL IDENTIFIED BY sha-1},
... -- For future extensions
}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 54

Copyright © 1991-1999 RSA Laboratories.

A. ASN.1 module
This section includes all ASN.1 type, value and information object class definitions
contained in this document, in the form of the ASN.1 module PKCS-15.
PKCS-15 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-15(15) modules(1) pkcs-15(1)}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- TBS

END

B. File access conditions

B.1 Scope
This appendix is only applicable to IC card implementations.

B.2 Background
Since this document is intended to be independent of particular IC card brands and
models, we define “generic” IC card access methods which should be straightforward to
map to actual IC card operating system-native commands (assuming the card is an
ISO/IEC 7816-4 compliant IC card).

B.3 Read-Only and Read-Write cards
Access conditions for files in the PKCS15 application can be set up differently depending
on if the application is to be read-only or read-write. A read-only card might be desired
for high-security purposes, for example when it has been issued using a secure issuing
process, and it is to be certain that it can not be manipulated afterwards.

The following is a table of different possible access methods, which is a superset of the
Operations type. These are generic methods which should be possible to map to all
different IC card types (sometimes the mapping might turn out to be a “No-Op”, because
the card does not support any similar operation). The exact access methods, and their
meaning, varies for each IC card type. In the table, a ‘*’ indicates that the access method
is only relevant for files containing keys. These methods are abbreviated to ‘CRYPT’ in
Table 5.

Table 3 – File access methods

File type Access
method

Meaning

DF Create Allows new files, both EFs and DFs to be created in the DF.

Delete Allows files in the DF to be deleted. Relevant only for cards
which support deletion.

EF Read It is allowed to read the file’s contents.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 55

Copyright © 1991-1999 RSA Laboratories.

Update It is allowed to update the file’s contents.

Append It is allowed to append information to the file (usually only
applicable to linear record files).

Compute
checksum

* The contents of the file can be used when computing a
checksum

Compute
Signature

* The contents of the file can be used when computing a
signature

Verify
checksum

* The contents of the file can be used when verifying a
checksum

Verify
signature

* The contents of the file can be used when verifying a
signature

Encipher * The contents of the file can be used in an enciphering
operation

Decipher * The contents of the file can be used in a deciphering
operation

NOTE – It is the directory’s access methods, and not the files’, which decide if files in the
directory are allowed to be created or deleted.

Each access method can have the following conditions. These are also generic and should
be possible to implement on all card types.

Table 4 – Possible access conditions

Type Meaning
NEV The operation is never allowed, not even after cardholder verification.

ALW The operation is always allowed, without cardholder verification.

CHV The operation is allowed after a successful card holder verification.

SYS The operation is allowed after a system key presentation, typically available only to the card
issuer (The Security Officer case), e.g. ‘EXTERNAL AUTHENTICATE’

The following access conditions are recommended for files related to the PKCS #15
application:

Table 5 -Recommended file access conditions

File DF R/O card R/W card
MF X Create: SYS

Delete: NEV

Create: SYS

Delete: SYS

DIR Read: ALW

Update: SYS

Append: SYS

Read: ALW

Update: SYS

Append: SYS

PIN files Read: NEV

Update: NEV

Append: NEV

Read: NEV

Update: CHV

Append: NEV

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 56

Copyright © 1991-1999 RSA Laboratories.

PKCS15 X Create: SYS

Delete: NEV

Create: CHV | SYS

Delete: CHV | SYS

TokenInfo Read: ALW

Update: NEV

Append: NEV

Read: ALW

Update: NEV

Append: NEV

ODF Read: ALW

Update: NEV

Append: SYS | NEV

Read: ALW

Update: SYS | NEV

Append: SYS | NEV

AODFs Read: ALW

Update: NEV

Append: NEV

Read: ALW

Update: CHV | SYS | NEV

Append: CHV | SYS | NEV

PrKDFs,
PuKDFs,
SKDFs,
CDFs and
DODFs

Read: ALW | CHV

Update: NEV

Append: SYS | NEV

Read: ALW | CHV

Update: CHV

Append: CHV

Trusted
CDFs
Trusted
PuKDFs

Read: ALW | CHV

Update: NEV

Append: SYS | NEV

Read: ALW | CHV

Update: SYS | NEV

Append: SYS | NEV

Key files Read: NEV

Update: NEV

Append: NEV

Crypt: CHV

Read: NEV

Update: CHV | SYS | NEV

Append: CHV | SYS | NEV

Crypt: CHV

Other EFs Read: ALW | CHV

Update: NEV

Append: SYS | NEV

Read: ALW | CHV

Update: CHV

Append: CHV

NOTE 1 – “Key files” means “Files containing private or secret keys and the card supports crypto-related
commands for these files”

NOTE 2 – A “|” in the table stands for “or”, i.e. the card issuer may choose any Boolean expression of
available options. E.g. UPDATE of an EF(ODF) on a R/W card may be permitted only after correct
cardholder verification (‘CHV’) AND an external authentication (‘SYS’).

The difference between a read-only and a read-write (R-W) card is basically as follows.
For an R-W card, new files can be created (to allow addition of new objects) and some
EFs (e. g. CDFs only containing references to public objects) are allowed to be updated
(to allow adding info about new objects) after correct cardholder verification. It is also
possible to replace files on an R-W card.

It is recommended that all cards be personalized with the read-write access control
settings, unless they are issued for an environment with high security requirements.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 57

Copyright © 1991-1999 RSA Laboratories.

C. An electronic identification profile of PKCS #15

C.1 Scope
This section describes a profile of PKCS #15 suitable for electronic identification (EID)
purposes and requirements for it. Implementations may claim compliance with this
profile. The profile includes requirements both for cards and for host-side applications
making use of EID cards.

C.2 PKCS #15 objects

− Private Keys: A PKCS #15 card issued for EID purposes should contain at least two
private keys, of which one should be used for digital signature purposes only. At least
one of the other keys should have the value decrypt set in its key usage flags.
Authentication objects or encryption must protect all private keys. On cards
supporting on-chip digital signature operations, it is recommended that the signature-
only key be protected from modifications. It must be protected from read-access.
Usage of the signature-only key should furthermore require cardholder verification
with an authentication object used only for this key. The key length must be sufficient
for intended purposes (e.g. 1024 bits or more in the RSA case and 160 bits or more in
the EC case, assuming all other parameters has been chosen in a secure manner).

Allowed private key types for this profile are:

− RSA keys

− Elliptic Curve keys (This profile places no restrictions on the domain parameters
other than the ones mentioned above)

− DSA keys

Host-side applications claiming full conformance to this profile must recognize all
these key types and be able to use them. Cards must contain keys of at least one of
these types.

− Secret Keys: No requirements. Objects of this type may or may not be present on the
card, depending on the application issuer’s discretion. There is no requirement for
host-side applications to handle these keys.

− Public Keys: No requirements. Objects of this type may or may not be present on the
card, depending on the application issuer’s discretion. There is no requirement for
host-side applications to handle these keys.

− Certificates: For each private key at least one corresponding certificate should be
stored in the card. The certificates must be of type X509Certificate. If an application
issuer stores CA certificates on a card which supports the ISO/IEC 7816-4 logical file
organization, and which has suitable file access mechanisms, then it is recommended
that they are stored in a protected file. This file shall be pointed to by a CDF file
which is only modifiable by the card issuer (or not modifiable at all). This implies
usage of the trustedCertificates choice in the Objects type. User certificates for which
private keys exist on the card should be profiled in accordance with IETF RFC 2459.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 58

Copyright © 1991-1999 RSA Laboratories.

Host-side applications are required to recognize and be able to use the X509Certificate
type.

− Data objects: No requirements. Objects of this type may or may not be present on the
card, depending on the application issuer’s discretion.

− Authentication objects: As follows from the description above, in the case of an IC
card capable of protecting files with authentication objects, at least one authentication
object must be present on the card, protecting private objects. As stated above, a
separate authentication object should be used for the signature-only key, if such a key
exist. Any use of the signature-only private key shall require a new user
authentication, if technically possible. In the case of PIN codes, any positive
verification of one PIN code shall not enable the use of security services associated
with another PIN code. Consecutive and incorrect verifications of a certain user PIN
code shall block all security services associated with that PIN code. It is left to the
application issuers to decide the number of consecutive incorrect verifications that
triggers a blocking of the card.

NOTE – Future versions of this profile may also include support for biometric
authentication methods

PINs must be at least 4 characters (BCD, UTF8 or ASCII) long.

When a PIN is blocked through after consecutive incorrect PIN verifications, the PIN
may only be unblocked through a special unblocking procedure, defined by the
application issuer.

C.3 Other files
Use of an EF(UnusedSpace) is recommended if the cardholder is allowed to update the
contents of the PKCS #15 application.

C.4 Constraints on ASN.1 types
Unless otherwise mentioned, conforming applications are required to recognize and parse
all OPTIONAL fields. The following constraints applies for cards and applications claiming
conformance to this EID profile:

NOTE – “recognize” means “being able to proceed also when the field is present, but not
necessarily being able to interpret the field’s contents.”

− CommonObjectAttributes.label must be present for all certificate objects.

− CommonKeyAttributes.startDate must not be present.

− CommonKeyAttributes.endDate must not be present.

− CommonPrivateKeyAttributes.subjectName must not be present.

− CommonPrivateKeyAttributes.keyIdentifiers must be recognized by host-side applications
but need not be interpreted.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 59

Copyright © 1991-1999 RSA Laboratories.

− CommonCertificateAttributes.requestID must be recognized by host-side applications but
need not be interpreted.

− X509CertificateAttributes.subject must not be present.

− X509CertificateAttributes.issuer must not be present.

− X509CertificateAttributes.serialNumber must not be present.

− PinAttributes.lastPinChange must be recognized by host-side applications but need not
be interpreted.

C.5 File relationships in the IC card case
The purpose of the following figure is to show the relationship between certain files
(EF(ODF), EF(PrKDF), EF(AODF) and EF(CDF)) in the DF(PKCS15) directory.

NOTE – It is possible for Path pointers in EF(ODF) to point to locations inside the
EF(ODF) itself. For example, if a card issuer intends to “lock” EF(ODF), EF(PrKDF) and
EF(AODF), they can all be stored within the same (physical) EF, EF(ODF). The advantage
of this is that fewer ‘SELECT’ and ‘READ’ operations need to be done in order to read the
contents of these files. There should be no need for host side applications to be modified
due to this fact, however, since ordinary path pointers should be used anyway.

Figure 16 – IC card file relationships in DF(PKCS15). Dashed arrows indicate cross-references.

C.6 Access control rules
Private keys must be private objects, and should be marked as sensitive. Files, which
contain private keys, should be protected against removal and/or overwriting. Using the
definitions in Appendix A, the following access conditions shall be set for files in the
PKCS #15 application directory (as in Appendix A, a “|” in the table stands for “or”, i.e. a
card issuer is free to make any choice, including Boolean expressions of available
options):

Certificate 2

EF(ODF)

EF(PrKDF)

EF(CDF)

EF(AODF)

Certificate 1

AODF

PrKDF

CDF

Private key 1

Private key 2

Key 1 info
Key 2 info

Cert 1 info

Cert 2 info

PIN 1 info

PIN 2 info

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 60

Copyright © 1991-1999 RSA Laboratories.

Table 6 – File access conditions for the EID profile of PKCS #15

File Access Conditions, R-O
card

Access Conditions. R-W card

MF Create: SYS

Delete: NEV

Create: SYS

Delete: SYS

EF(DIR) Read: ALW

Update: SYS

Append: SYS

Read: ALW

Update: SYS

Append: SYS

PIN files Read: NEV

Update: NEV

Append: NEV

Read: NEV

Update: CHV

Append: NEV

DF(PKCS15) Create: SYS

Delete: NEV

Create: CHV | SYS

Delete: SYS

EF(TokenInfo) Read: ALW

Update: NEV

Append: NEV

Read: ALW

Update: NEV

Append: NEV

EF(ODF) Read: ALW

Update: NEV

Append: NEV

Read: ALW

Update: SYS

Append: SYS

AODFs Read: ALW

Update: NEV

Append: NEV

Read: ALW

Update: NEV

Append: CHV | SYS

PrKDFs, PuKDFs,
SKDFs, CDFs and
DODFs

Read: ALW | CHV

Update: NEV

Append: SYS | W

Update: NEV

Update: NEV

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 61

Copyright © 1991-1999 RSA Laboratories.

NOTE – If an application issuer wants to protect an object directory file with an
authentication object, then by default the first authentication object in EF(AODF) shall be
used. Obviously, EF(ODF) and EF(AODF) cannot be protected in this manner.

D. Example PKCS #15 topologies
The following figures show possible implementations of PKCS #15 on multi-application
tokens.

Figure 17 – Example with three applications. “Real” objects (i.e. keys, certificates) are stored outside
the PKCS #15 application

Figure 18 – Example with three applications. Only EF(ODF) and EF(TokenInfo) in DF(PKCS #15)

MF

EF(DIR) DF1DF (PKCS#15)

EF(ODF) EF(PrKDF) EF(CDF) EF(AODF) EF(TokenInfo)

DF2

Real objects

Real objects

MF

EF(DIR)DF(PKCS#15) DF2DF1

EF(ODF) EF(TokenInfo) EF(PrKDF) EF(CDF) EF(AODF) EF(PrKDF) EF(CDF) EF(AODF)

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 62

Copyright © 1991-1999 RSA Laboratories.

E. Syntax Examples
NOTE 1 – “Contents” of card files shall be regarded as a shorthand notation for “the
contents of files as it appears to someone using standard IC card commands in accordance
with ISO/IEC 7816-4 to access them.”

NOTE 2 – All examples are shown both in the formal value notation defined in ISO/IEC
8824-1 and DER encoded.

E.1 Example of EF(DIR)
Example contents for a PKCS #15 application template on an IC card using indirect
application selection. A non-standard file path for EF(UnusedSpace) is defined,
/3F00/5015/4320.
{

aid ‘A000000063504B43532D3135’H,
label “RSA DSI”, -- UTF8 Encoded
path ‘3F005015’H,
ddo {

oid {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-15(15) applications(4)
eid(1)},
-- example OID, not for actual use

unusedPath {
path ‘3F0050154320’H
}

}
}

DER encoding:
61354F0C A0000000 63504B43 532D3135 50075253 41204453 4951043F 00501573
16060A2A 864886F7 0D010F04 01A10804 063F0050 154320

E.2 Example of a whole PKCS15 application
The IC card in this example has on-chip support for RSA and DES-EDE-CBC algorithm
computation in addition to pseudo-random number generation. It is assumed that this
information can be deduced from the card’s ATR string. As a consequence of this, the
TokenInfo file contains no supportedAlgorithms field. The PKCS15 application is profiled
for use in an electronic identification environment, in compliance with Appendix B, and
has two RSA key pairs and two certificates. One private key is for digital signature
purposes only and is protected with a separate authentication object (a PIN). There is also
a private data object belonging to an application named “APP”. The total overhead for
storing the PKCS #15 relevant information is in this case 374 bytes, but without the data
object belonging to the “APP” application it would have been 333 bytes.

E.2.1 EF(TokenInfo)
{

version v1,
serialNumber ‘159752222515401240’H,
manufacturerID “Acme, Inc.”,
tokenflags {prnGeneration, eidCompliant}
}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 63

Copyright © 1991-1999 RSA Laboratories.

DER encoding:
301E0201 00040915 97522225 15401240 0C0A4163 6D652C20 496E632E 03020430

The total size of the data is 32 bytes.

E.2.2 EF(ODF)
{

privateKeys : path : {path ‘4401’H -- Reference by file identifier--},
certificates : path : {path ‘4402’H -- Reference by file identifier--},
dataObjects : path : {path ‘4403’H -- Reference by file identifier--},
authObjects : path : {path ‘4404’H -- Reference by file identifier--}
}

DER encoding (as specified, outermost SEQUENCE OF omitted):
A0063004 04024401 A4063004 04024402 A7063004 04024403 A8063004 04024404

As can be seen, the ODF simply consists of four records, and the total size of the data is
32 bytes.

E.2.3 EF(PrKDF)
{

privateRSAKey : {
commonObjectAttributes {

 label “KEY1”,
 flags {private},
 authId ‘01’H

},
classAttributes {

 iD ‘45’H,
 usage {decrypt, sign, unwrap}, -- By default ‘native’ RSA key

},
subClassAttributes {

 keyIdentifiers {
{

 idType 4, -- Subject key hash
 idValue OCTET STRING : ‘4321567890ABCDEF’H

}
 }

},
typeAttributes {

 value indirect : path : {path ‘4B01’H -- Reference by file identifier},
modulusLength 1024
}

 },
privateRSAKey : {

commonObjectAttributes {
 label “KEY2”,
 flags {private},
 authId ‘02’H

},
classAttributes {

 iD ‘46’H,
 usage {nonRepudiation, sign}, -- By default ‘native’ RSA key

},
subClassAttributes {

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 64

Copyright © 1991-1999 RSA Laboratories.

 keyIdentifiers {
{

 idType 4, -- Subject key hash
 idValue OCTET STRING : ‘1234567890ABCDEF’H

}
 }

},
typeAttributes {

 value indirect : path : {path ‘4B02’H -- Reference by file identifier},
modulusLength 1024
}

 }
}

DER encoding (as specified, outermost SEQUENCE OF omitted):
303B300D 0C044B45 59310302 07800401 01300704 01450302 0264A013 3011A00F
300D0201 04040843 21567890 ABCDEFA1 0C300A30 0404024B 01020204 00303C30
0D0C044B 45593203 02078004 01023008 04014603 03062040 A0133011 A00F300D
02010404 08123456 7890ABCD EFA10C30 0A300404 024B0202 020400

The content of files 3F00/5015/4B01 and 3F00/5015/4B02 is completely card-specific.
Operations possible to perform with keys in these files may either be deduced by looking
at the contents of the TokenInfo file or by external knowledge of the card in question
(ATR). The size of the data is 123 bytes (one record of 61 bytes and one record of 62
bytes).

E.2.4 EF(CDF)
{

x509Certificate : {
commonObjectAttributes {

 label “CERT1”,
 flags {}, -- Not private, read-only

},
classAttributes {

 iD ‘45’H -- By default not an authority
},

typeAttributes {
 value indirect : path : {path ‘4331’H -- Reference by file identifier}

}
 },
 x509Certificate : {

commonObjectAttributes {
 label “CERT2”,
 flags {}, -- Not private, read-only

},
classAttributes {

 iD ‘46’H -- By default not an authority
},

typeAttributes {
 value indirect : path : {path ‘4332’H -- Reference by file identifier}

}
 }
}

DER encoding (as specified, outermost SEQUENCE OF omitted):
301B300A 0C054345 52543103 01003003 040145A1 08300630 04040243 31301B30
0A0C0543 45525432 03010030 03040146 A1083006 30040402 4332

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 65

Copyright © 1991-1999 RSA Laboratories.

Files 3F00/5015/4331 and 3F00/5015/4332 should contain DER-encoded certificate
structures in accordance with ISO/IEC 9594-8. The size of the data is 58 bytes (two
records of 29 bytes each).

E.2.5 EF(AODF)
{

pin : {
commonObjectAttributes {

 label “PIN1”,
 flags {private}

},
classAttributes {

 authId ‘01’H -- Binds to KEY1
},

typeAttributes {
 pinFlags {change-disabled, initialized, needs-padding},
 pinType bcd,
 minLength 4,
 storedLength 8,
 padChar ‘FF’H
 -- path not given, implicitly PIN file in MF

}
 },
 pin : {

commonObjectAttributes {
 label “PIN2”,
 flags {private}

},
classAttributes {

 authId ‘02’H -- Binds to KEY1
},

typeAttributes {
 pinFlags {change-disabled, initialized, needs-padding},
 pinType bcd,
 minLength 4,
 storedLength 8,
 padChar ‘FF’H,
 path {

path ‘3F0050150100’H -- Reference by absolute path
 }

}
 }
}

DER encoding (as specified, outermost SEQUENCE OF omitted):
3025300A 0C045049 4E310302 07803003 040101A1 12301003 02022C0A 01000201
04020108 0401FF30 2F300A0C 0450494E 32030207 80300304 0102A11C 301A0302
022C0A01 00020104 02010804 01FF3008 04063F00 50150100

The content of files 3F00/5015/0100 and 3F00/0000 is card specific and not specified in
PKCS #15. The total size of the data is 88 bytes (one record of length 39 bytes, the other
of length 49 bytes).

E.2.6 EF(DODF)
{

opaqueDO : {

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 66

Copyright © 1991-1999 RSA Laboratories.

commonObjectAttributes {
 label “OBJECT1”,
 flags {private, modifiable},
 authId ‘02’H -- Binds to PIN2

},
classAttributes {

 applicationName “APP”
},

typeAttributes indirect : path : {
 path ‘4431’H, -- Reference by file identifier
 index 64,
 length 48

}
}

}

DER encoding (outermost SEQUENCE OF omitted, as specified):
30273010 0C074F42 4A454354 31030206 C0040102 30050C03 415050A1 0C300A04
02443102 01408001 30

The size of the data is 41 bytes (one record). The data entry in file 3F00/5015/4431 is to
be found 64 bytes from the beginning of the file and is 48 bytes long.

E.3 Example of contents for a “Digital Signature Card”

NOTE – The card application is defined in [5].

E.3.1 EF(DIR) (optional)
{

aid 'A000000063504B532D3135'H,
label "PKCS#15 application",
path '3F005015'H -- path to DF.PKCS#15
},

{
aid 'D27600006601'H, -- AID of the German digital signature application
label "German digital signature application",
path '3F004016' -- path to DF.SIG,'4016'=FID of DF.SIG, example
}

DER encoding: TBS

E.3.2 Contents of DF(PKCS15)

EF(TokenInfo)
{

version v1,
serialNumber 'xx...xx'H, -- ICCSN
manufacterID "XYZ", -- card manufacturer
label "Digital signature card",
tokenflags {prnGeneration},
-- recordInfo is not present, i.e. EF(ODF), EF(PrKDF), EF(PuKDF), EF(CDF), EF(DODF) and
-- EF(AODF) are transparent files.
supportedAlgorithms {

reference 1,
algorithm 13143226, -- OID of SHA-1, example
parameters supportedOperations {hash}

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 67

Copyright © 1991-1999 RSA Laboratories.

}

Editor’s note - Possibly seInfo to be integrated

DER encoding: TBS

EF(ODF)

{
privateKeys : path : {

path '6034'H -- path to EF(PrKDF), located under DF.PKCS#15
},

trustedPublicKeys : path : {
path '6035'H -- path to EF(PuKDF), located under DF.PKCS#15
},

trustedCertificates : path : {
path '6036'H -- path to EF(CDF), located under DF.PKCS#15
},

dataObjects: path : {
path '6037'H -- path to EF(DODF), located under DF.PKCS#15
},

authObjects : path : {
path '6038'H -- path to EF(AODF), located under DF.PKCS#15}

}

DER encoding: TBS

EF(PrKDF)
{

privateRSAKey : {
commonObjectAttributes {

label "PrK.CH.DS", -- PrK of cardholder for dig sig
flags_authId {

flags {private}, -- access protected
authId '07'H -- user authentication with PIN no.'07'
}

},
classAttributes {

iD '01'H, -- PKCS#15 identifier for the related key
 usage {nonRepudiation} -- see tab.2

},
subClassAttributes {

subjectName "..." -- DN of PrK owner as specified in the X.509 certificate containing
-- the PuK
},

typeAttributes {
value path : path {

path ''H, -- no FID given
},

modulusLength 1024
}

},
privateRSAKey : {

commonObjectAttributes {
label "PrK.ICC.AUT" -- PrK of ICC for authent.
},

classAttributes {
iD '02'H,

 usage {sign}, -- corresponds to X.509 digitalSignature

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 68

Copyright © 1991-1999 RSA Laboratories.

keyReference '81'H -- Key Id in the card of PrK.ICC.AUT
},

typeAttributes {
value path : path {

path ''H, -- no FID given
},

modulusLength 1024
}

}

DER encoding: TBS

NOTE – The default value of the key attribute ’native’ is TRUE, i.e. the cards performs the
relevant computations

EF(PuKDF)
{

publicRSAKey : {
commonObjectAttributes {

label "PuK.RCA.DS" -- PuK of root CA for DS-Certverific.
},

classAttributes {
iD '03'H,

 usage {verify} -- corresponds to X.509 keyCertSign
},

subClassAttributes {
subjectName "..." -- DN of root CA
},

typeAttributes {
value path :{

path '3F004016B000'H, -- path to EF.PK.RCA.DS
length xxx -- length of PrKInfo in bytes
},

modulusLength 1024
}

},
publicRSAKey : {

commonObjectAttributes {
label "PuK.CA.DS", -- PuK of CA
},

classAttributes {
iD '04'H,
usage {verify},
},

subClassAttributes {
subjectName "..." -- DN of CA
},

typeAttributes {
value path :{

path '3F004016B001'H, -- path to EF.PK.CA.DS
length xxx -- length of PrKInfo in bytes
},

modulusLength 1024
}

},
publicRSAKey : {

commonObjectAttributes {
label "PuK.RCA.CS_AUT"
},

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 69

Copyright © 1991-1999 RSA Laboratories.

classAttributes {
iD '05'H,
usage {verify},
keyReference 'xx..xx'H -- key Ref as used in the cards, i.e. the certificate authority
-- reference, which is taken as authority key id
},

subClassAttributes {
subjectName "..." -- DN of root CA
},

typeAttributes {
value path : path {

path ''H -- PuK for internal use, no FID given
},

modulusLength 1024
}

},
publicRSAKey : {

commonObjectAttributes {
label "PuK.CA.CS_AUT"
},

classAttributes {
iD '06'H,
usage {verify},
keyReference 'xx...xx'H
},

subClassAttributes {
subjectName "..." -- DN of CA
},

typeAttributes {
value path : path {

path ''H -- PuK for internal use, no FID given
},

modulusLength 1024
}

}
}

DER encoding: TBS

EF(CDF)
{

x509Certificate : {
commonObjectAttributes {

label "C.CH.DS",
flags {private},
authId '07'H -- binds to PIN
},

classAttributes {
iD '01'H -- related to private RSA key with id '01'H
},

typeAttributes {
value path :{

path '3F004016C000'H, -- path to EF.C.CH.DS
length xxx -- length of certificate in bytes
}

}
},

x509Certificate : {
commonObjectAttributes {

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 70

Copyright © 1991-1999 RSA Laboratories.

label "C.CA.DS",
},

classAttributes {
iD '03'H,
authority TRUE
},

typeAttributes {
value path :{

path '3F004016C008'H, -- path to EF.C.CA.DS
length xxx -- length of certificate in bytes
}

}
},

cvCertificate : {
commonObjectAttributes {

label "C.ICC.AUT",
},

classAttributes {
iD '02'H -- related to private RSA key with id '02'H
},

typeAttributes {
value path :{

path '3F004016C100'H, -- path to EF.C.ICC.AUT
length xxx -- length of certificate in bytes
}

}
},

cvCertificate : {
commonObjectAttributes {

label "C.CA.AUT"
},

classAttributes {
iD '04'H,
authority TRUE
},

typeAttributes {
value path :{

path '3F004016C108'H, -- path to EF.C.CA.AUT
length xxx -- length of certificate in bytes
}

}
}

}

DER encoding: TBS

EF(DODF)
{

opaqueDO : {
commonObjectAttributes {

label "EF.PROT",
flags {private},
authID '07'H -- binds to PIN
}

classAttributes {
applicationName ”DIN NI-17.4”
}

typeAttributes {
path :{

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 71

Copyright © 1991-1999 RSA Laboratories.

path '3F004016A000'H, -- path to EF.PROT
length 53 -- length of a record in bytes
}

}
},

opaqueDO : {
commonObjectAttributes {

label "EF.GDO"
},

classAttributes {
applicationName ”DIN NI-17.4”
}

typeAttributes
path :{

path '3F002F02'H, -- path to EF.GDO
length xxx -- length of content in bytes
}

}
},

opaqueDO : {
commonObjectAttributes {

label "EF.SSD"
},

classAttributes {
applicationName ”DIN NI-17.4”
}

typeAttributes
path :{

path '3F0040161F00'H, -- path to EF.SSD
length xxx -- length of content in bytes
}

}
},

opaqueDO : {
commonObjectAttributes {

label "EF.DM",
flags {private}, -- readable after entity auth.
authId '09'H -- binds to EXTERNAL AUTHENTICATION with CV certificate
-- containing the certificateholder authorisation
}

classAttributes {
applicationName ”DIN-NI 17.4”
}

typeAttributes {
path :{

path '3F004016D000'H, -- path to EF.DM
length xxx -- length of content in bytes
}

}
}

}

DER encoding: TBS

EF(AODF)
{

pin : {
commonObjectAttributes {

label "PIN",

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 72

Copyright © 1991-1999 RSA Laboratories.

flags {private, modifiable}
},

classAttributes {
iD '07'H
},

typeAttributes {
pinFlags {case-sensitive, -- no conversion to uppercase

 local, -- i.e. DF-specific
 initialized},

pinType {utf8}, -- character coding for PIN/password
minLength 6,
maxLength 8,
pinReference '81'H -- P2 of VERIFY/CHANGE RD command
}

},
pin : {

commonObjectAttributes {
label "Resetting code",
flags {private}
}

classAttributes {
iD '08'H
},

typeAttributes {
pinFlags {local, initialized, unblockingPin},
pinType {ascii-numeric},
minLength 8,
maxLength 8,
pinReference '81'H -- P2 of RESET RETRY COUNTER command
}

},
cha : {

commonObjectAttributes {
label "Certificate-holder authorization"
},

classAttributes {
iD '09'H
},

typeAttributes {
cha 'D2760000660102'H -- AID with role Id 02 as defined for the CV certifcate to be
-- presented as part of the authentication procedure for getting access to the EF
-- containing the display message
}

}
}

DER encoding: TBS

E.4 A PKCS15Token example
(TBD)

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 73

Copyright © 1991-1999 RSA Laboratories.

F. Using PKCS #15 software tokens

F.1 Constructing a PKCS#15 token in software

F.1.1 Scope
This section describes how to generate a password-protected value of type PKCS15Token,
for use, e.g. as a “virtual smart card.” It also applies when PKCS#15 tokens are stored on
other untrusted media, such as stored-value cards without PIN protection.

F.1.2 Constructing password-protected values of type ‘Enveloped Data’
EnvelopedData{} structures is created for password-protected private values as follows
(refer to RFC 2630 for identifier and type definitions):

− EnvelopedData.version must have the value ‘2’

− EnvelopedData.recipientInfos must contain exactly one RecipientInfo, which must be of
type KEKRecipientInfo. In the KEKRecipientInfo, the following restrictions apply:

− KEKRecipientInfo.version must be ‘4’

− KEKRecipientInfo.kekid.keyIdentifier shall be set to the corresponding keyId in
PKCS15Token.keyManagementInfo (see below)

− KEKRecipientInfo.kekid.date need not be present

− KEKRecipientInfo.kekid.other need not be present

− KEKRecipientInfo.keyEncryptionAlgorithm must be chosen from the set of
KeyEncryptionAlgorithms defined above.

− EnvelopedData.encryptedContentInfo.contentType shall have the value id-data (see, e.g.
PKCS #7).

− EnvelopedData.encryptedContentInfo.contentEncryptionAlgorithm must be chosen from the
set of ContentEncryptionAlgorithms defined in Section 7.4

− EnvelopedData.encryptedContentInfo.encryptedContent must contain the result of
encrypting a DER-encoding of the value in question (a ObjectValue or a SEQUENCE OF
PKCS15Objects) with the content-encryption key encrypted in
KEKRecipientInfo.encryptedKey and the algorithm indicated in
EnvelopedData.encryptedContentInfo.contentEncryptionAlgorithm.

− The content-encryption key shall be encrypted with a key-encryption key derived from
the user’s authentication password (see next section) by an algorithm from the
KeyDerivationAlgorithms set.

F.1.3 Integrity-protection
After all private values have been wrapped in EnvelopedData structures, all EnvelopedData{}
structures all sequences of public objects is collected in a value of type PKCS15Token. The
keyManagementInfo field shall contain a SEQUENCE OF KeyManagementInfo values, each one

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 74

Copyright © 1991-1999 RSA Laboratories.

with a unique keyID, corresponding to a keyIdentifier in some EnvelopedData structure. For
PasswordInfos, the KeyDerivationAlgorithm is indicated together with an optional hint about
the password. Finally a value of type AuthenticatedData is optionally constructed as
follows:

− AuthenticatedData.version shall have the value ‘0’

− If the KEKRecipientInfo alternative of RecipientInfos is chosen, the following restrictions
apply:

− KEKRecipientInfo.version must be ‘4’

− KEKRecipientInfo.kekid.keyIdentifier should be set to a keyID present in the enclosed
keyManagementInfo, but may also be set to something else. If a keyID already present
in the enclosed keyManagementInfo is used, then the key-encryption shall be derived
using information from the keyManagementInfo.

− KEKRecipientInfo.keyEncryptionAlgorithm must be chosen from the set of
KeyEncryptionAlgorithms defined in Section 7.4.

− AuthenticatedData.macAlgorithm must be chosen from the set of MACAlgorithms defined
in Section 7.4.

− AuthenticatedData.digestAlgorithm must be present and contain a value from the set of
DigestAlgorithms defined above

− AuthenticatedData.encapContentInfo.contentType shall have the value {pkcs15-ct 1}

− AuthenticatedData.encapContentInfo.content shall contain a DER-encoding of the
PKCS15Token structure. The encoding is wrapped inside an OCTET STRING, as specified
in RFC 2630.

− AuthenticatedData.authenticatedAttributes shall be present, and contain both the id-
contentType attribute and the id-messageDigest attribute, as specified in RFC 2630.

− AuthenticatedData.mac shall contain the message authentication code.

− AuthenticatedData.unauthenticatedAttributes need not be present.

NOTE – For interoperability reasons, it could be wise to restrict users to use just one or two
passwords for all EnvelopedData{} structures (and any optional, enclosing AuthenticatedData
structures).

G. Intellectual property considerations
RSA Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security makes no representations regarding intellectual property claims by other
parties. Such determination is the responsibility of the user.

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 75

Copyright © 1991-1999 RSA Laboratories.

H. Revision history
Version 1.0
Version 1.0 was published in April, 1999.

Version 1.1
This is the first draft of PKCS #15 version 1.1. Major differences between this draft and
PKCS #15 version 1.0 includes:

− Added support for other authentication methods (biometrics, external, cha)

− Added support for more access control information

− Added support for software tokens (virtual smartcards)

− Added support for card-verifiable certificates

I. References
[1] ANSI X3.4:1968, Information Systems – Coded Character Sets – 7-Bit American

National Standard Code for Information Interchange

[2] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers (URI):
Generic Syntax,” IETF RFC 2396, August 1998

[3] J. Callas, L. Donnerhacke, H. Finney, R. Thayer, “OpenPGP Message,” IETF
RFC 2440, November 1998

[4] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen, ”SPKI
Certificate Theory,” IETF RFC 2693, September 1999

[5] DIN NI-17.4, “Specification of chipcard interface with digital signature
application/function acc. to SigG and SigV”, December 1998

[6] R. Housley, “Cryptographic Message Syntax,” IETF RFC 2630, June 1999

[7] ISO/IEC 7812-1:1998, Information Technology – Identification Cards –
Identification of Issuers – Part1: Numbering System

[8] ISO/IEC 7816-4:1995, Information Technology – Identification Cards –
Integrated Circuit(s) cards with contacts – Part 4: Interindustry commands for
interchange

[9] ISO/IEC 7816-5:1994, Information Technology – Identification Cards –
Integrated Circuit(s) cards with contacts – Part 5: Numbering system and
registration procedure for application identifiers

[10] ISO/IEC 7816-6:1996, Information Technology – Identification Cards –
Integrated Circuit(s) cards with contacts – Part 6: Inter-industry data elements

[11] ISO/IEC 7816-8:1999, Information Technology – Identification Cards –
Integrated Circuit(s) cards with contacts – Part 8: Security related interindustry
commands

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 76

Copyright © 1991-1999 RSA Laboratories.

[12] FCD ISO/IEC 7816-9:1999, Information Technology – Identification Cards –
Integrated Circuit(s) cards with contacts – Part 9: Security attributes and
additional interindustry command

[13] ISO/IEC 8583 - TBD

[14] ISO/IEC 8824-1:1998 | ITU-T Recommendation X.680 (1997), Information
technology – Abstract Syntax Notation One (ASN.1): Specification of basic
notation

[15] ISO/IEC 8824-2:1998 | ITU-T Recommendation X.681 (1997), Information
technology – Abstract Syntax Notation One (ASN.1): Information object
specification

[16] ISO/IEC 8824-3:1998 | ITU-T Recommendation X.682 (1997), Information
technology – Abstract Syntax Notation One (ASN.1): Constraint specification

[17] ISO/IEC 8824-4:1998 | ITU-T Recommendation X.683 (1997), Information
technology – Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1
specifications

[18] ISO/IEC 8825-1:1994 | ITU-T Recommendation X.690 (1995), Information
technology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

[19] ISO/IEC 8825-2:1995 | ITU-T Recommendation X.691 (1995), Information
technology – ASN.1 encoding rules: Specification of Packed Encoding Rules
(PER)

[20] ISO/IEC 9594-2:1997 | ITU-T Recommendation X.501 (1997), Information
technology – Open Systems Interconnection – The Directory: Models

[21] ISO/IEC 9594-8:1997 | ITU-T Recommendation X.509 (1997), Information
technology – Open Systems Interconnection – The Directory: Authentication
framework

[22] RSA Laboratories, PKCS #5 v2.0: Password-based Cryptography Standard

[23] RSA Laboratories, PKCS #7 v1.5: Cryptographic Message Syntax Standard

[24] RSA Laboratories, PKCS #11 v2.01: Cryptographic Card Interface Standard

[25] RSA Laboratories, PKCS #15 v1.0: Cryptographic Token Information Format
Standard

[26] D. Solo, R. Housley, W. Ford, T. Polk, “Internet X.509 Public Key Infrastructure
Certificate and CRL Profile,” IETF RFC 2459, January 1999

[27] WAP Forum, Wireless Application Protocol – Wireless Transport Layer Security
Protocol Specification, version 8-Nov-1999

[28] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” IETF RFC 2279,
January 1998

PKCS #15 V1.1: CRYPTOGRAPHIC TOKEN INFORMATION SYNTAX STANDARD (DRAFT) 77

Copyright © 1991-1999 RSA Laboratories.

J. About PKCS
The Public-Key Cryptography Standards are specifications produced by RSA
Laboratories in cooperation with secure systems developers worldwide for the purpose of
accelerating the deployment of public-key cryptography. First published in 1991 as a
result of meetings with a small group of early adopters of public-key technology, the
PKCS documents have become widely referenced and implemented. Contributions from
the PKCS series have become part of many formal and de facto standards, including
ANSI X9 documents, PKIX, SET, S/MIME, and SSL.

Further development of PKCS occurs through mailing list discussions and occasional
workshops, and suggestions for improvement are welcome. For more information,
contact:

PKCS Editor
RSA Laboratories
20 Crosby Drive
Bedford, MA 01730 USA
pkcs-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/pkcs

mailto:pkcs-editor@rsa.com
http://www.rsa.com/rsalabs/pubs/PKCS

	Introduction
	Background
	Information access model

	Terms and definitions
	Symbols, abbreviated terms and document conventions
	Symbols
	Abbreviated terms
	Document conventions

	Overview
	Object model
	Object classes
	Attribute types
	Access methods

	IC card file format
	Overview
	IC card requirements
	Card file structure
	MF directory contents
	EF(DIR)

	PKCS #15 application directory contents
	EF(ODF)
	Private Key Directory Files (PrKDFs)
	Public Key Directory Files (PuKDFs)
	Secret Key Directory Files (SKDFs)
	Certificate Directory Files (CDFs)
	Data Object Directory Files (DODFs)
	Authentication Object Directory Files (AODFs)
	EF(TokenInfo)
	EF(UnusedSpace)
	Other elementary files in the PKCS #15 directory

	File identifiers
	The PKCS #15 application
	PKCS #15 application selection
	AID for the PKCS #15 application

	Object management
	Adding (Creating) new objects
	Removing objects
	Modifying objects

	Information syntax in ASN.1
	Basic ASN.1 defined types
	Identifier
	Reference
	Label
	CredentialIdentifier
	ReferencedValue and Path
	ObjectValue
	PathOrObjects
	CommonObjectAttributes
	CommonKeyAttributes
	CommonPrivateKeyAttributes
	CommonPublicKeyAttributes
	CommonSecretKeyAttributes
	KeyInfo
	CommonCertificateAttributes
	CommonDataObjectAttributes
	CommonAuthenticationObjectAttributes
	PKCS15Object

	The PKCS15Objects type
	Private keys
	The PrivateKeys type
	Private RSA key objects
	Private Elliptic Curve key objects
	Private Diffie-Hellman key objects
	Private Digital Signature Algorithm key objects
	Private KEA key objects

	Public keys
	The PublicKeys type
	Public RSA key objects
	Public Elliptic Curve key objects
	Public Diffie-Hellman key objects
	Public Digital Signature Algorithm objects
	Public KEA key objects

	Secret keys
	The SecretKeys type
	Generic secret key objects
	Tagged key objects
	The PKCS15OtherKey type

	Certificates
	The Certificates type
	X.509 certificate objects
	X.509 attribute certificate objects
	SPKI (Simple Public Key Infrastructure) certificate objects
	PGP (Pretty Good Privacy) certificate objects
	WTLS certificate objects
	ANSI X9.68 lightweight certificate objects
	Card Verifiable Certificate objects

	Data objects
	The DataObjects type
	Opaque data objects
	External data objects
	Data objects identified by OBJECT IDENTIFIERS

	Authentication objects
	The AuthenticationObject type
	Pin objects
	Transforming a supplied PIN

	Biometrical reference data objects
	External authentication methods

	The cryptographic token information file, EF(TokenInfo)

	Software (Virtual card) format
	Introduction
	Useful types
	The EnvelopedData type
	The EncryptedContentInfo type

	The PKCS15Token type
	Permitted algorithms
	Key derivation algorithms
	Other algorithms

