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Abstract 

Unlike forward contact tracing, backward contact tracing identifies the source of newly detected cases. 

This approach is particularly valuable when there is high individual-level variation in the number of 

secondary transmissions. By using a simple branching process model, we explored the potential of 

combining backward contact tracing with more conventional forward contact tracing for control of 

COVID-19. 

 

Main text 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.01.20166595doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:akira.endo@lshtm.ac.uk
https://doi.org/10.1101/2020.08.01.20166595
http://creativecommons.org/licenses/by/4.0/


Isolation of symptomatic cases and tracing and quarantine of their contacts is a staple public 

health control measure, and has the potential to prevent the need for stringent physical distancing policies 

that result in detrimental impacts on the society (e.g., civil lockdowns) [1,2]. By identifying and 

quarantining those who have been recently in contact with infected individuals, epidemic control may be 

achieved without broad restrictions on the general population. Because there is evidence that the number of 

secondary transmissions of SARS-CoV-2 per case exhibits substantial individual-level heterogeneity (i.e. 

overdispersion), often resulting in so-called superspreading events [3–5], a large proportion of infections 

may be linked to a small proportion of original clusters. As a result, finding and targeting originating 

clusters as well as onwards infection will substantially enhance the effectiveness of tracing methods [6,7]. 

Here we explore the incremental effectiveness of combining ‘backward’ tracing with conventional 

‘forward’ tracing in the presence of overdispersion in SARS-CoV-2 transmission, using a simple 

branching process model. 

Forward and backward contact tracing 

Contact tracing is typically triggered by a confirmed index case identified via symptom-based 

surveillance. Contacts of this index case are identified via interviews by public health officials (manual 

contact tracing) or by tracking proximity records on digital devices (digital contact tracing), and asked to 

quarantine in order to prevent further transmissions. Contact tracing often targets ‘downstream’ 

individuals, who may have been infected by the index case (‘forward tracing’); i.e. those who have been in 

contact with the index case after the index case likely became infectious (often assumed as 2 days before 

illness onset for COVID-19 [8,9]). However, ‘backward tracing’ can also be used to identify the upstream 

primary case who infected the index case (or a setting or event at which the index case was infected) by 

retracing history of contact to the likely point of exposure, i.e. up to 14 days prior to symptom onset [10]. 

If this primary case  is identified, a larger fraction of the transmission chain can be detected by forward 

tracing each of the contacts of this primary case (Figure 1). 
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Figure 1. Schematic illustration of forward and backward contact tracing. Two cases (index cases #1 and 

#2) from a transmission tree originating from an (initially) undetected primary case are assumed to be 

detected by surveillance. Possible results of contact tracing are shown where (A) only forward tracing is 

performed; (B) both forward and backward tracing are performed. Some cases may remain undetected 

because contact tracing can miss cases. 

Overdispersion and the coverage of contact tracing 

Unlike forward tracing, backward tracing is more effective when the number of onward 

transmissions is highly variable, because index cases are disproportionately more likely to have been 

generated by primary cases who also infected others (an example of the “friendship paradox” [11,12]). We 

used a branching process model to compare the performance of forward and backward contact tracing 

triggered by an index case found by symptom-based surveillance. We enumerate generations of 

transmission chains linked to the index case so that the index case belongs to generation-1 (G1). Backward 

tracing first identifies the primary case (G0) that infected the index case and then applies forward tracing to 

those infected by the primary case (G1). We represent the transmission chains of COVID-19 by a 

branching process where p(x) denotes the offspring distribution, i.e. the probability mass function of the 

number of secondary transmissions caused by a single case. If an individual is identified as a primary case, 

they are more likely to have generated more cases than any random case because the probability that a 

primary case is identified is proportional to the number of cases it generates. Therefore, the number of 
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offspring of the identified primary case follows 𝑝(𝑥|G0) =
𝑥𝑝(𝑥)

𝔼(𝑥) 
, where 𝔼(𝑥) = ∑ 𝑥𝑝(𝑥)∞

𝑥=0 . The mean 

number of G1 cases able to be identified by backward tracing (including the index case) is 𝔼(𝑥|G0) =

∑ 𝑥
𝑥𝑝(𝑥)

𝔼(𝑥)
∞
𝑥=0  =

𝔼(𝑥2)

𝔼(𝑥)
= 𝑅(1 + 𝑣2), where 𝔼(𝑥) = 𝑅 is the reproduction number and v is the coefficient of 

variation (the standard deviation of x divided by its mean). With a high overdispersion (large v), backward 

tracing of the index case can substantially increase the number of G1 cases to trace. Conversely, the mean 

number of cases that can be identified by forward tracing is R regardless of the degree of overdispersion. 

 When we assume p(x) follows a negative-binomial distribution [4,13] with an overdispersion 

parameter k, backward tracing on average identifies 𝔼(𝑥|G0) = 𝑅(1 + 𝑣2) = 1 + 𝑅 (1 +
1

𝑘
) G1 cases. 

Existing studies suggest k for SARS-CoV-2 transmission is small and likely to lie within the range of 0.1-

0.5 [4,14,15]. A small k indicates that the primary case identified through backward tracing typically 

generates more secondary cases than does a randomely selected case (𝔼(𝑥) = 𝑅) (Table 1). 

Table 1. Characteristics of transmissions from a primary case identified by backward contact tracing for 

different combinations of the reproduction number (R) and overdispersion parameter (k). 

Reproduction 

number (R) 

Overdispersion 

parameter (k) 

Mean number of 

transmissions from 

primary case 

(𝔼(𝑥|G0)) 

Probability 

(x ≥ 5 | G0) 

Probability 

(x ≥ 10 | G0) 

Probability 

(x ≥ 25 | G0) 

0.8 

0.1 9.8 67% 39% 7% 

0.2 5.8 49% 18% 0.7% 

0.3 4.5 38% 9% 0.1% 

0.4 3.8 30% 5% 0.02% 

0.5 3.4 25% 3% 0.003% 

1.2 

0.1 14.2 77% 53% 17% 

0.2 8.2 62% 32% 4% 

0.3 6.2 53% 20% 0.9% 

0.4 5.2 45% 13% 0.2% 

0.5 4.6 40% 9% 0.07% 

2.5 

0.1 28.5 88% 74% 43% 

0.2 16.0 81% 59% 21% 

0.3 11.8 75% 48% 11% 

0.4 9.8 71% 40% 6% 
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0.5 8.5 67% 34% 3% 

𝔼(𝑥|G0): the mean number of offspring generated by a primary case case identified by backward tracing 

(G0 case). Note that this is larger than the mean number of offspring of a random case. 

Probability (x ≥ n | G0): the probability that the number of offspring generated by a G0 case is n or greater.  

Simulation of the effectiveness of forward and backward contact tracing 

Using our simple branching process model with a negative-binomial offspring distribution, we 

assessed the potential effectiveness of forward and backward contact tracing. We assumed that contact 

tracing is triggered by the detection of an index case whose primary case is initially unknown so that our 

simulation would guide decision making at the operational level (i.e. whether it is worthwhile to 

implement contact tracing when a case is found). We compared two scenarios: forward tracing only and 

the combination of forward and backward tracing (Figure 1). In the forward only scenario, G2 cases 

resulting from an index case are potentially traced and quarantined; in the combined scenario, more G1 

cases can be identified through backward tracing of the primary infection and thus a larger number of G2 

cases can be traced and quarantined. As the infectious period of G1 cases is likely to have already passed 

when they are identified by contact tracing because tracing only starts after the index case is confirmed, we 

assumed that secondary transmissions caused by G1 cases would not be prevented and that only G2 cases 

successfully traced could be put in quarantine (which confers a relative reduction c in infectiousness). To 

account for potential limitations in the effectiveness of contact tracing, we assumed that the primary case is 

identified with probability b and that each offspring of identified cases are traced with probability q. G1 

cases not traced may be independently found by symptom-based surveillance; we accounted for such 

independent case finding with a detection probability d (although we excluded backward tracing triggered 

by these cases from analysis), which is expected to be low due to frequent subclinical infections [16]. We 

estimated the expected number of G3 cases averted and defined the effectiveness of contact tracing by the 

relative reduction in the total number of G3 cases. All parameters are listed in Table 2. Detailed methods, 

the replication code and supplementary figures are reposited on Github (https://github.com/akira-

endo/COVID19_backwardtracing). 

In the forward only scenario, Rq(1+Rd(1+1/k)) G2 cases are traced on average and thus the 

estimated number of G3 cases averted is R2qc(1+Rd(1+1/k)). In forward + backward scenario, (1-(1-d)(1-
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bq))R(1+1/k) G1 cases are identified on average in addition to the index case, leading to tracing of 

Rq(1+(1-(1-d)(1-bq))R(1+1/k)) G2 cases. R2qc(1+(1-(1-d)(1-bq))R(1+1/k)) G3 cases are expected to be 

averted. Across plausible parameter values, we found that introducing backward tracing in addition to 

forward tracing increased the effectiveness of contact tracing by a factor of 2-3 (Figures 2, S1 and S2). A 

higher degree of overdispersion (i.e. small k) resulted in a larger absolute number of cases averted by 

backward tracing (Figures S3 and S4).  

Table 2. Parameter notations and values assumed in simulation 

Parameter Notation Assumed value in Figures 2, S1 

and S2 

Reproduction number R 1.2, 2.5 

Overdispersion parameter k 0.2, 0.5 

Relative reduction in infectiousness due to 

quarantine 

c 0.2 – 1.0 

Probability of identifying the primary (G0) 

case by backward tracing 

b 0.5, 0.8 

Probability of identifying each offspring of an 

already identified case 

q 0.0– 1.0 

Probability of a G1 case identified by 

surveillance independently of contact tracing 

d 0.1, 0.2 
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Figure 2. The estimated effectiveness of forward and backward contact tracing for different parameter 

values. R: the reproduction number; k: overdispersion parameter; b: probability of successful identification 

of the primary case; d: probability of detection of G2 cases independent of contact tracing. Left panels (A, 

D, G): the effectiveness (the proportion of G3 cases averted) of forward tracing alone; middle panels (B, E, 

H): the effectiveness of a combination of forward and backward tracing; right panels (C, F, I): incremental 

effectiveness by combining backward tracing with forward tracing. Colours represent the relative reduction 

in infectiousness of G2 cases if traced and put in quarantine. 

 

Discussion 
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Using a simple branching process model, we showed that backward contact tracing has the 

potential to identify a large proportion of infections because of the observed overdispersion in COVID-19 

transmission. For each index caes detected, forward tracing alone can, on average, identify at most the 

mean number of secondary infections (i.e. R). In contrast, backward tracing increases this maximum 

number of traceable individuals by a factor of 2-3, as index cases are more likely to come from clusters 

than a case is to generate a cluster. Furthermore, backward tracing contributes to epidemiological 

understanding of high-risk settings because transmission events with a common source are more likely to 

be identified. While standard tracing mostly focuses on forward tracing [8,9], there has been increasing 

interest in a possible combination of forward and backward tracing to control COVID-19 [7,17]. Our 

results provide further evidence for this approach by quantifying the possible benefit of backward tracing, 

especially when the offspring distribution is highly variable, as is the case with SARS-CoV-2. 

There are a number of operational challenges to implementing such contact tracing approaches. 

Since the number of contacts that lead to transmission is likely to be only a fraction of total contacts 

experienced by detected cases, expanding the coverage of contact tracing may involve a substantial 

logistical burden [18,19]. With a longer timeline of contact history to be interviewed, recall bias may affect 

the success rate of backward tracing. In practice, interviewed cases might be asked not only for specific 

individuals they know to have contacted but also for a history of locations or events visited, as happens 

during outbreak investigations so that those who were present can be notified and/or tested. Backward 

tracing can in effect be viewed as an outbreak investigation process in which new cases and their contacts 

can be routinely linked via their shared exposure events, supported by linkage across epidemiological, 

diagnostic and quarantine datasets, with additionally identified infections triggering further tracing. Due to 

the difficulty in determining the direction of transmission, backward tracing may find a cluster of cases 

linked to an index case rather than a single primary case. However, our results still apply as long as 

subsequent forward tracing is conducted for the identified cases. 

Our model makes some simplifying assumptions. Delays in confirmation and tracing were such 

that only generation-2 (G2) cases were assumed to be traced and quarantined before becoming infectious. 

In reality, cases are identified at different points in time and the reduction in infectiousness may be partial 

if cases are quarantined after becoming infectious (which can be a concern for backward tracing with an 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.01.20166595doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.01.20166595
http://creativecommons.org/licenses/by/4.0/


additional generation to trace). To allow intuitive comparison, the effectiveness of tracing was measured 

by the proportion of G3 cases averted given an index case detected by surveillance, and long-term 

dynamics were not considered. 

With these limitations, our results should be considered as a rough estimate suggesting a possible 

benefit to backward tracing, which should be balanced against finite resources. Because backward tracing 

is operationally a set of forward tracing measures targeting multiple G1 cases in parallel, additional 

effectiveness requires a proportional amount of effort, in addition to the ‘overhead’ investigation effort to 

identify other G1 cases. Cost-effectiveness analysis combined with finer-scale dynamic modelling would 

help further identify the conditions under which backward tracing is most efficient and feasible. 
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