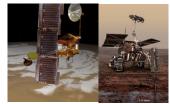


In-Situ Resource Utilization (ISRU) Planning and Update

Presentation to the NAC Technology, Innovation, and Engineering Committee Meeting Dec. 7, 2018

> Gerald (Jerry) Sanders Lead for ISRU System Capability Leadership Team

www.nasa.gov Gerald B. Sanders, NASA/JSC, gerald.b.sanders@nasa.gov



ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create products and services for robotic and human exploration

Resources

- Traditional: Water, atmospheric gases, volatiles, solar wind volatiles, metals, alloys, sunlight, etc.
- Non-traditional: Trash and wastes from crew, spent landers and residuals, etc.

Resource Assessment (Prospecting)

Assessment and mapping of physical, mineral, chemical, and water resources, terrain, geology, and environment

In Situ Manufacturing

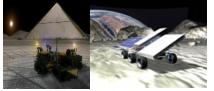
Production of replacement parts, machines, and integrated systems from feedstock derived from one or more processed resources

Resource Acquisition

Atmosphere constituent collection, and material/volatile collection via drilling, excavation, transfer, and/or manipulation before Processing

In Situ Construction

Civil engineering, infrastructure emplacement and structure construction from *in situ* derived materials ➤ Radiation shields, landing pads, roads, berms, habitats, etc.

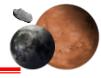

Resource Processing/ Consumable Production

Conversion of acquired resources into products with immediate use or as feedstock for construction & manufacturing

Propellants, life support gases, fuel cell reactants, etc.

In Situ Energy

Generation and storage of electrical, thermal, and chemical energy with *in situ* derived materials


➢ Solar arrays, thermal storage and energy, chemical batteries, etc.

'ISRU' is a capability involving multiple elements to achieve final products
 'ISRU' does not exist on its own. Must connect and tie to users/customers of ISRU products

ISRU Integrated with Exploration Elements

(Mission Consumables)

It Changes How We Explore Space

Increases Mission Performance

- Launch mass savings/Lander size reduction (>7.5 kg saving per 1 kg produced on Moon/Mars surface)
- Longer stays, increased EVA, or increased number of crew over baseline with ISRU consumables
- Increased payload-to-orbit or delta-V for faster rendezvous with fueling of ascent vehicle
- Increased and more efficient surface nighttime and mobile fuel cell power architecture with ISRU

Increases Sustainability and Decreases Life Cycle Costs

- Reuse of landers with in-situ propellants can provide significant cost savings
- Enables in-situ growth capabilities in life support, habitats, powers, etc.
- Enables path for commercial involvement and investment

Reduces Mission and Crew Risk

- Minimizes/eliminates life support consumable delivery from Earth Eliminates cargo delivery failure issues &
 - functional backup to life support system
- Increases crew radiation protection over Earth delivered options In-situ water, plastic, and/or regolith
- Can minimize impact of shortfalls in other system performance Launch vehicles, landers, & life support
- Minimizes/eliminates ascent propellant boiloff leakage issues In-situ refueling
- Minimizes/eliminates landing plume debris damage Civil engineering and construction
- Decreased logistics and spares brought from Earth In situ manufacturing

Increases Science

- Greater surface location and science sample collection access thru in-situ fueled hoppers
- Greater access to subsurface samples thru ISRU drilling, excavation, and trenching capabilities
- Increased science payload per mission by reducing launch payload mass/consumables

ISRU Must Be Considered from the Start or Benefits & Cost Reductions are Minimized

Resources

with Water

Extra Benefits

It Changes How We Explore Space

Increases Mission Performance

Launch mass savings/Lander size reduction (>7.5 kg saving per 1 kg produced on the surface)
 Longer stays, increased EVA, or increased number of crew over baseline with ISRU consumables
 Increased payload-to-orbit or delta-V for faster rendezvous with fueling of ascent vehicle

Increased and more efficient surface nighttime and mobile fuel cell power architecture with ISRU

Increases Sustainability and Decreases Life Cycle Costs

- Reuse of landers with in-situ propellants can provide significant cost savings
- Enables in-situ growth capabilities in life support, habitats, powers, etc.
- Enables path for commercial involvement and investment

Reduces Mission and Crew Risk

Minimizes/eliminates life support consumable delivery from Earth – Eliminates cargo delivery failure issues &

functional backup to life support system

- Increases crew radiation protection over Earth delivered options In-situ water, plastic, and/or regolith
- Can minimize impact of shortfalls in other system performance Launch vehicles, landers, & life support
- Minimizes/eliminates ascent propellant boiloff leakage issues In-situ refueling
- Minimizes/eliminates landing plume debris damage Civil engineering and construction
- Decreased logistics and spares brought from Earth In situ manufacturing

Increases Science

- Greater surface location and science sample collection access thru in-situ fueled hoppers
- Greater access to subsurface samples thru ISRU drilling, excavation, and trenching capabilities
- Increased science payload per mission by reducing launch payload mass/consumables

ISRU Must Be Considered from the Start or Benefits & Cost Reductions are Minimized

Main Natural Space Resources of Interest

	Moon	Mars) Asteroids	Uses
Water	Icy Regolith in Permanently Shadowed Regions (PSR) Solar wind hydrogen with Oxygen	Hydrated Soils/Minerals: Gypsum, Jarosite, Phylosilicates, Polyhdrated Sulfates Subsurface Icy Soils in Mid-latitudes to Poles	Subsurface Regolith on C-type Carbonaceous Chondrites	 Drinking, radiation shielding, plant growth, cleaning & washing Making Oxygen and Hydrogen
Oxygen	Minerals in Lunar Regolith: Ilmenite, Pyroxene, Olivine, Anorthite	Carbon Dioxide in the atmosphere (~96%)	Minerals in Regolith on S-type Ordinary and Enstatite Chondrites	 Breathing Oxidizer for Propulsion and Power
Carbon	 CO, CO₂, and HC's in PSR Solar Wind from Sun (~50 ppm) 	Carbon Dioxide in the atmosphere (~96%)	Hydrocarbons and Tars (PAHs) in Regolith on C-type Carbonaceous Chondrites	 Fuel Production for Propulsion and Power Plastic and Petrochemical Production
Metals	 Minerals in Lunar Regolith Iron/Ti: Ilmenite Silicon: Pyroxene, Olivine, Anorthite Magnesium: Mg-rich Silicates Al:: Anorthitic Plagioclase 	 Minerals in Mars Soils/Rocks Iron: Ilmenite, Hematite, Magnetite, Jarosite, Smectite Silicon: Silica, Phyllosilicates Aluminum: Laterites, Aluminosilicates, Plagioclase Magnesium: Mg-sulfates, Carbonates, & Smectites, Mg-rich Olivine 	and M-type Metal Asteroids	 <i>In situ</i> fabrication of parts Electical power transmission

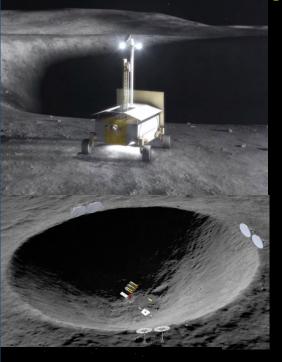
Similar Resources and Needs Exist at Multiple Locations

Moon, Mars, & Near Earth Objects (NEOs)

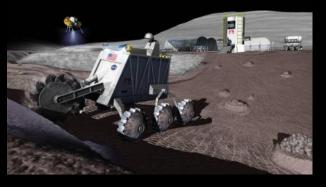
	Moon	Mars	NEO	
Gravity	1/6 g	3/8 g	Micro-g	
Temperature (Max)	110 °C/230 °F	20 °C/68 °F	110 °C/230 °F	
(Min.)	-170 °C/-274 °F	-140 °C/-220 °F	-170 °C/-274 °F	
(Min. Shade)	-233 °C/-387.4 °F		-233 °C/-387.4 °F	
Solar Flux	1352 W/m ²	590 W/m ²	Varied based on distance from Sun	
Day/Night Cycle	28+ Days - Equator Near Continuous Liight or Dark - Poles	24.66 hrs	Varied - hrs	
Surface Pressure	1x10 ⁻¹² torr	7.5 torr	1x10 ⁻¹² torr	
Atmosphere	No	Yes CO ₂ , N ₂ , Ar, O ₂	No	
Soil	Granular	Granular & clay; low hydration to ice	Varied based on NEO type	
		Atmosphere (CO ₂)		
Basauraaa	Regolith (metals, O ₂)	Granular Soil	Regolith (metals, O ₂)	
Resources		Hydrated Minerals	Hydrated Soil/Minerals	
	H ₂ O/Volatile Icy Soils	H ₂ O Icy Soils	H ₂ O/Volatile Icy Soils	

> The Moon has aspects in common with Mars and NEOs/Phobos

> All destinations share common technologies, processes, and operations


> NEO micro-gravity environment is the largest difference between destinations

Denotes


similarities

Lunar ISRU Mission Concepts and Applications

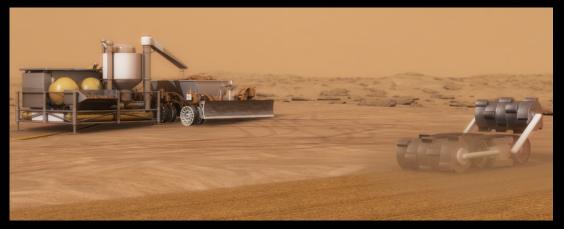
Resource Prospecting & Polar Water/Volatile Mining

Excavation & Regolith Processing for Oxygen and Metal Production

Hardware Repurposing & Reuse

Consumable Depots & Refueling Landers & Rovers

Landing Pad, Berm, Road & Habitat Construction

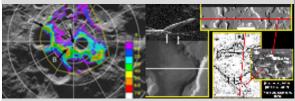

Thermal Energy Storage

Mars ISRU Mission Concepts and Applications

Atmosphere Processing – Oxygen/Methane Liquefaction & Storage

Excavation & Soil Processing for Water

Mars Ice Drilling & Extraction



ISRU Strategic Vector

Today

(Technology & Feasibility)

Orbital Data with Limited/No Surface Water Resource Info

Technology/Concept Option Evaluation

Short Duration System Tests

Capability Feasibility Demonstrated

Near-Term

(Ground Dev. & Flight Demos/Prospecting)

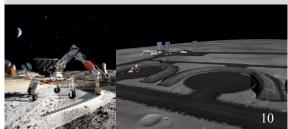
Surface Resource & Water Characterization/Prospecting

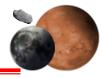
Environmental & Long-Duration Ground Testing

Technology Selection & System Development

Flight Demonstrations & Pilot Plants for Mission Enhancement

Goal (Mission Utilization)


Oxygen & Propellant Production for Transportation

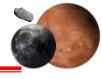

Consumables for Regenerative Power & Life Support

Manufacturing & Construction w/ In Situ Derived Materials

Oxygen from Regolith

- Can be incorporated into the architecture from the start with low-moderate risk
 - Resource characteristics and parameters are reasonably well known
 - Multiple approaches for extraction possible; 2 demonstrated to TRL 4-5 for short periods of time
- Provides 75 to 80% of chemical propulsion propellant mass (fuel from Earth)
- Experience from regolith excavation, beneficiation, and transfer applicable to mining Mars hydrated soil/minerals for water and In Situ Manufacturing and Construction

Water and Volatiles from Polar Regolith


- Polar Water/Volatiles is "Game Changing" and Enables Long-term Sustainability
 - Availability of water for propellants can strongly influence propulsion system design (propellant selection and reusability) and transportation architecture (depots, hoppers, lander reuse, etc.)
 - Provides 100% of chemical propulsion propellant mass
 - Reuse of cargo and human landers and transportation elements can reduce longterm mission costs and enable new mission concepts; Direct to Gateway possible
 - Provides significantly more options for radiation protection, food production, etc. over what is available from lunar regolith

NASA should pursue both Development and Insertion of both

> Oxygen from Regolith mining for immediate benefits with low-moderate risk

Prospecting and Polar Ice/Volatiles mining for Long Term Sustainability

Lunar regolith is >40% oxygen (O₂) by mass

- Four primary mineral types on the Moon: Ilmenite, Pyroxene, Olivine, and Anorthite
- Ilmenite and pyroclastic glasses are the easiest lunar materials to reduce/extract O2

Over 20 processes have been identified to extract the oxygen

- Several have been evaluated in the lab to TRL 3 at subscale
- As processing temps increase, O₂ yield increases, and technical and engineering challenges increase.

Two processes have been developed to TRL 4-5 at human mission relevant scale

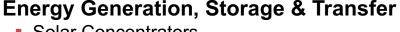
- Hydrogen (H₂) Reduction:

- Reduces iron oxide to iron and water with hydrogen at >900 C; regolith stays granular
- Water is electrolyzed: O_2 is stored and H_2 is recycled
- 1 to 5 kg of O₂ extracted per 100 kg of bulk/unrefined regolith depending on location (1 to 5 wt% eff.)
- Extraction efficiency can be increased with mineral beneficiation to increase iron oxide content

Carbothermal (CH₄) Reduction

- Reduces silicates at >1600 C to produce carbon monoxide (CO) and H₂; regolith is molten
- CO and H₂ are converted to CH₄ and water: methane is recycle, water is electrolyzed
- 10 to 15 kg of O₂ extracted per 100 kg of bulk/unrefined regolith (10 to 15 wt% eff.)

Lunar ISRU Technology, System, & Flight Development in the 2000's


Development Aimed at Oxygen for Life Support Backup & Prospecting for Polar Water

Resource Characterization & Mapping

Lunar polar ice/volatile characterization: RESOLVE

Mission Consumable Production

- Regolith Excavation, Transfer, & Preparation
 - Excavation: bucketwheel, bucketdrum, scoop
 - Pneumatic regolith transfer
 - Size Sorting
 - Mineral Beneficiation
- Oxygen (O₂) Extraction from Regolith
 - Hydrogen (H₂) Reduction
 - Carbothermal (CH₄) Reduction
 - Molten Oxide Electrolysis
 - Ionic Liquids
- Water and Fuel from Trash
 - Steam Reforming
 - Combustion/Pyrolysis
- Water Processing
 - Water Electrolysis
 - Water Cleanup

- Solar Concentrators
- Heat Pipes

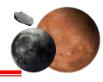
Civil Engineering & Surface Construction

- Area clearing, leveling
- Berm building
- Surface Sintering

Systems

- 2008 Analog Field Test
 - Hydrogen Reduction of Regolith for O₂: PILOT & ROxygen
 - Excavation Rovers: Cratos & LMA Bucketdrum
 - Polar Ice Prospecting: RESOLVE on CMU rover
- 2010 Analog Field Test
 - Carbothermal Reduction, Solar Concentrators, Water Electrolysis, & O₂ Storage
 - Surface Sintering
 - Polar Ice Prospecting: RESOLVE on CSA rover

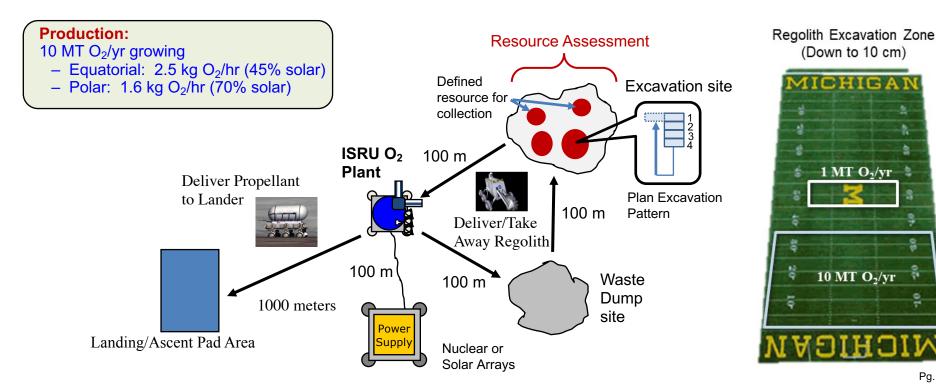
Lunar ISRU Technology Readiness Level (TRL) Advancement


Significant advancement from 2005 to 2011

TRL increase in ETDP	At Start	At End	Delta]
System Level		•	•]
Lunar Volatile Characterization (RESOLVE)	1	5	4	Advanced to TRL 5/6 since 2011
H ₂ Reduction of Regolith	2-3	5	2-3	
CH₄ Reduction of Regolith	2-3	5	2-3	
Molten Oxide Reduction of Regolith	2	3	1	
Trash Processing for Water/Methane Production	2	2-3	0-1	Advanced to TRL 4 since 2011
Subsystem Level				
Regolith Transfer & Handling				
Regolith Transport Into/Out of Reactor	2	5	3	
Beneficiation of Lunar Regolith	2-3	2-3	0-1	
Size Sorting of Lunar Regolith	2-3	2-3	0-1	
Oxygen Extraction From Regolith				
H ₂ Reduction of Regolith Reactor	3	5	2	
Gas/Water Separation & Cleanup	2	4-5	2-3	Technologies advanced since 2011
CH₄ Reduction of Regolith Reactor	3	5	2	
CH₄Reduction Methanation Reactor	3-4	4-5	1-2	Technology advanced since 2011
MOE of Regolith Anode/Cathode	1-2	3-4	2-3	
MOE of Regolith Molten Mat'l Removal	1-2	3	1-2	
MOE Cell and Valving	2-3	3	0-1	
Water/Fuel from Trash Processing				
Trash Processing Reactor	2	2-3	0-1	Advanced to TRL 4 since 2011
In-Situ Energy Generation, Storage, and Transfer				
Solar Thermal Energy for Regolith Reduction	2	5	3]

Concept of Operation – Full ISRU O₂ Plant

Hydrogen Reduction – 10 MT O₂/yr



Excavation & Regolith Delivery

- 2 or 3 small excavators (~80 to 100 kg class)
- Excavate loose soil to depth of ~10 cm
- Deliver multiple loads per day to ISRU plant
 - Store multiple batches in hopper so excavators have time to recharge periodically
 - Include mineral beneficiation on rover or in hopper to increase extraction efficiency
- Take processed ('spent') regolith to dumping zone
- Take discard from beneficiation to separate zone
- Return to excavation zone

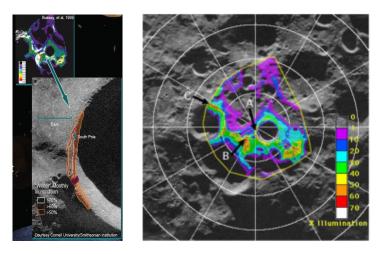
O₂ Production, Storage, & Delivery

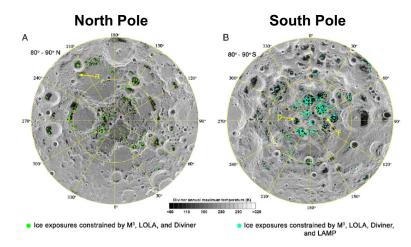
- 3 Modules (~3.5 MT O₂/yr each) mounted on lander or deployed to the surface
- Regolith processed in batches to extract oxygen (O₂) in the form of water (H_2O)
 - Reactor work in staggered parallel to maintain continuous production rate
- H₂O is split into O₂ and hydrogen (H₂)
 - H₂ is recycled back to reactor
- Oxygen is liquefied in stored
 - Delivered to Lander via mobile O₂ storage unit

ICHIGAN

1 MT O₂/vr

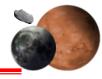
10 MT O₂/yr

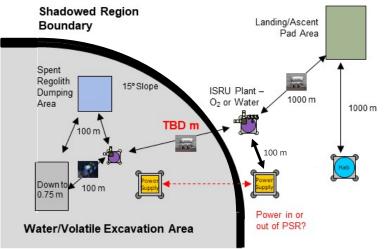



Polar Locations – Optimal location for sustained surface operations

- Areas of near permanent sunlight (>70% sunlight per year)
 - Lower thermal extremes and greater use of solar power
 - Regolith based resources for oxygen and metals; Highland regolith (iron poor)
- Areas of permanent shadow
 - Cold locations for cryogenic storage, instruments, and thermal energy generation
 - Polar volatiles may include hydrogen, water, ammonia, carbon monoxide, and organics

Polar Water/Volatiles


- LCROSS Impact estimated 5.5 wt% water in plume
- Green and blue dots show positive results for surface water ice using M³ and LOLA data for the North pole, and M³, LOLA, and LAMP data for the South pole.
- Data points also have maximum annual temperatures of <110 K from Diviner data.
- Spectral modeling shows that some ice-bearing pixels may contain ~30 wt % ice (mixed with dry regolith)
- Ice detections in the south are clustered near the craters Haworth, Shoemaker, Sverdrup, and Shackleton, while those in the north are more isolated.



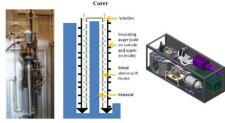
Polar Water/Volatile Extraction

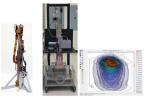
Polar Mining Site Selection Criteria

- 1. Surface/Subsurface Volatiles
 - High hydrogen content (LEND instrument)
 - Constant <100 K temperatures 10 cm below surface (Diviner instrument)
 - Surface OH/H₂O (M³, LAMP)
- 2. Reasonable terrain for traverse inside and in/out of shadowed region
- 3. Long-duration sunlight and hospitable environment nearby for mining and logistics infrastructure
- Significant Uncertainties in Physical Properties and Resource Distribution
 - Several technologies & concepts under consideration; Highly dependent on physical/resource properties
 - Technologies are low TRL; limited testing to date
 - Lunar 'ground truth' data is critical to downselect and finalize development

Potential Approaches to Polar Ice Mining

Excavation w/ Closed Reactor


<u>2022 Mission</u>: Auger Brings Icy Regolith to Heated Crucible-Oven Excavator Brings <u>Non-Cemented Icy</u> Regolith to Continuous Feed Reactor-Processor for Extraction


Excavator Rover

Downhole – Enclosed Extraction

Auger Down to 50 cm and feed gases to Collector & GC/MS

Downhole – Open Extraction

Beamed Energy Downhole (Solar or Microwave) and Volatiles Collected Process in 50 cm steps; Use Auger to clear processed regolith from hole

Combine Auger Drilling, Downhole heating via solar thermal energy, and Dome collector

ISRU Development and Implementation Challenges/Risks

Space Resource Challenges

- R1 What resources exist at the site of exploration that can be used?
- R2 What are the uncertainties associated with these resources? Form, amount, distribution, contaminants, terrain

R3 How to address planetary protection requirements?

Forward contamination/sterilization, operating in a special region, creating a special region

ISRU Operation Challenges

- **O1** How to operate in extreme environments? Temperature, pressure/vacuum, dust, radiation
- O2 How to operate in low gravity or microgravity environments?

Drill/excavation force vs mass, soil/liquid motion, thermal convection/radiation

O3 How to achieve long duration, autonomous operation and failure recovery?

No crew, non-continuous monitoring, time delay

ISRU Technical Challenges

- T1 Is it technically and economically feasible to collect, extract, and process the resource? Energy, Life, Performance
- T2 How to achieve high reliability and minimal maintenance requirements? Thermal cycles, mechanisms/pumps, sensors/ calibration, wear

ISRU Integration Challenges

- I1 How are other systems designed to incorporate ISRU products?
- I2 How to optimize at the architectural level rather than the system level?
- I3 How to manage the physical interfaces and interactions between ISRU and other systems?

Overcoming these challenges requires a multi-destination approach consisting of resource prospecting, process testing, and product utilization.

NASA ISRU Development Strategy

Technology Needed to:

- Prospect for potential resources
- Extract and process those resources into mission critical products (propellants, life support consumables)
- Produce parts, landing pads, and structures from extraterrestrial materials

Capabilities will Enable:

- Finding and characterizing water resources
- Processing of extraterrestrial resources to produce oxygen (and fuel) for crew ascent and reusable lander and transportation systems
- Commercial involvement in space exploration

Development Approach:

- Develop and mature component, subsystem, & systems, and demonstrate them in ground environments
- Mature ISRU technologies to reach system-level TRL 6 to support future flight demonstration missions
- Validate, high fidelity ISRU systems mass, power, & volume for incorporation into architecture analyses
- Maintain a balance of in-house and external work to mature the technologies and capabilities

Path to Operational ISRU:

ISRU must first be demonstrated (on the ground and on the Moon/Mars) before it can be mission-critical.

- Subscale Mars atmosphere to oxygen demonstration (MOXIE) flying on Mars 2020 rover
- Subscale demonstrations of critical technologies on Commercial Lunar Payload Services (CLPS) landers (e.g. excavation, mineral beneficiation, regolith processing) in the early to mid 2020's
- Orbital and lander/rover missions to find and characterize water/volatiles in permanently shadowed craters
- Pilot/Human mission relevant scale demonstrations of ISRU mining and processing for oxygen and water; possibly tied to demonstration of nuclear power on the Moon in the mid 2020's

ISRU Excavation & Chemical Processing Development

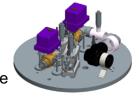
ISRU Technology Project

- Mars Atmosphere Processing
 - Dust Filtration: Filter, Electrostatic, & Cyclone
 - CO₂ Collection & Pressurization: Freezing & Rapid Cycle Adsorption
 - Sabatier Reactor Design/Modeling/Testing for ISRU
 - Solid Oxide Electrolysis Design/Modeling/Testing
 - Gas separation Technologies: CO/CO₂ & CH₄/H₂

Extraterrestrial Material Excavation

- Surface granular material lab reconditioned
- Granular material excavation with bucketdrum & scoopers
- Consolidated/hard excavation testing of single tooth ripper

Extraterrestrial Material Processing for Water

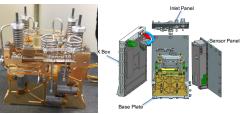

- Open reactor
- Closed continuous-feed auger reactor
- Microwave granular material heating reactor
- Subsurface ice extraction (Rodwell) concept evaluation
- Water collection & cleanup

System Engineering, Integration, and Testing

- Modeling & Analysis
- Simulants

Studies – Track 1

- Enhancing Lunar Exploration with ISRU Strategies – Blue Origin
- ISRU Affordability Thresholds ULA
- Integrated Architecture Trade Studies on ISRU – Uni. Of Illinois
- Water Electrolysis UTC Aerospace Systems


ISRU NextSTEP BAA

Components – Track 2

- Compact High Efficiency Dust Filter BlazeTech
- Hydrogen & Methane Separator Skyhaven Systems
- ISRU-derived Water Purification and H₂ O₂ Production – Paragon Space
- Advanced Alkaline Electrolyzer Teledyne Energy

Mars OXygen Isru Experiment (MOXIE)

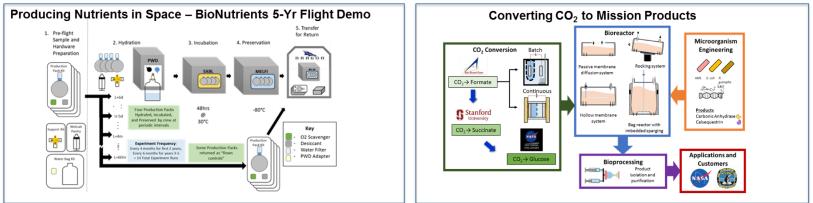
- Payload on Mars 2020 rover
 - Make O₂ from Atm. CO₂:
 ~0.01 kg/hr O₂; 600 to 1000 W-hrs;
 15+ sols of operation
 - Demonstrate Scroll Compressor and Solid Oxide Electrolysis technologies

University Challenges

- Mars Ice Challenge
 - 10 Teams in 2018
 - Modified to Moon-Mars Challenge for 2019
- Robotic Mining Competition

Subsystems – Track 3

- RedWater: Extraction of Water from Mars Ice – Honeybee Robotics
- Production of O₂ & Fuels from In Situ Resources on Mars – OxEon Energy



ISRU-Related Biological Processing Technology Development

Synthetic Biology

- This project is developing methods to manufacture needed, complex compounds in space. Novel methods are also being created to use CO₂ as a feedstock for bio-manufacturing
- Develop a prototype system that rapidly converts CO₂ to microbial feedstock with subsequent bio-production of valuable mission products.

Center for the Utilization of Biological Engineering in Space (CUBES)

- STMD Space Technology Research Institute (STRI) BioManufacturing Topic
 - Microbial Media and Feedstocks Division
 - Biofuel and Biomanufacturing
 - Food and Pharmaceutical Synthesis
 - Systems Design and Integration
- \$15 M Total \$3M/year for 5 years.
- One year complete Arkin presented to NASA Advisory Council

Carbon Dioxide Conversion Centennial Challenge"

- STMD Centennial Challenge Program Developing
- \$1.0M challenge regarding CO₂-derived products that support microbial growth.
- Over 1000 registrants worldwide attention.

Civil Engineering and In Situ Construction

Areas Clearing/Berm Building

Moses Lake, 2007

Landing Pad Construction: (NASA, PISCES, Honeybee Robotics)

Grading & Leveling Blade

Images Courtesy Rodrigo Romo, Pacific Int'l Space Center for Exploration Systems (PISCES)

Paver Deployment

Additive Construction with Mobile Emplacement (ACME)

 2D and 3D printing on a large (structure) scale using in-situ resources as construction materials to help enable on-location surface exploration

NASA Centennial Challenge: 3D Printed Habitat (\$2.5 Million Prize)

Phase 2: Structural Member Competition

Third Place: Team LavaHive

Phase 1: Concept

Phase 2: 1.5 m Printed Dome

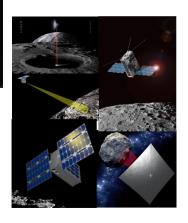
Phase 3: Structure Fabrication – April 2019

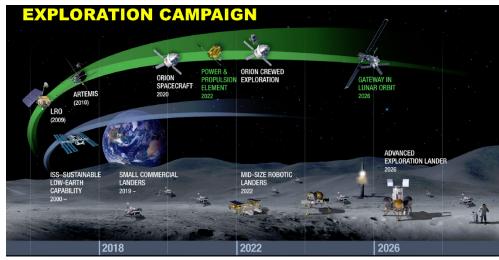
Automated Construction for Expeditionary Structures

(ACES) - NASA with U.S. Army Corps of Engineers

3D print large structures to support deployment in remote areas

Current NASA Lunar ISRU-Related Research & Missions Underway & Under Development


Lunar Reconnaissance Orbiter (LRO) – 2009 to Today


Korea Pathfinder Lunar Orbiter (KPLO) - 2020

• ShadowCam Map reflectance within permanently shadowed craters

Science/Prospecting Cubesats (SLS EM-1 2019)

- Lunar Flashlight: Near IR laser and spectrometer to look into shadowed craters for volatiles
- Lunar IceCube: Broadband InfraRed Compact High Resolution Explorer Spectrometer
- LunaH-MAP: Two neutron spectrometers to produce maps of near-surface hydrogen (H)
- Skyfire/LunIR: Spectroscopy and thermography for surface characterization
- NEA Scout: Multispectral camera for NEA morphology, regolith properties, spectral class

Commercial Lunar Payload Services (CLPS)

Request for Proposals for 50, 200, and 500 kg class lander missions

Human Lunar Landers

 Series of landers aimed at increasing payloads to 5000+ kg and human-rating for crewed lunar missions in the late 2020's

Dev. & Advancement of Lunar Instrumentation (DALI)

RFP for science and resource instruments

Lunar Surface Instrument & Technology Payload (LSITP)

 RFP for CLPS payloads that address Strategic Knowledge Gaps, including ISRU for water and oxygen (solicitation is for payloads less than 15 kg)

ISRU Next Space Technologies for Exploration Partnerships (NextSTEP)

 Request for Proposals for studies, and ISRU components and subsystems for water mining and CO₂/H₂O Processing

Announcement of Collaborative Opportunity (ACO)

Space Act Agreement with NASA Centers

NASA ISRU Lead-Make, Partner-Leverage, Eventually Buy

Lead

- Resource characterization and prospecting (sufficient for NASA to rely on it)
- Technology risk reduction
- Moon/Mars ISRU capabilities for human mission needs (Initially)

Partner & Leverage

- Within NASA: Technology and hardware development coordination
 - Modify existing technology developed to new needs/requirements
 - Select one lead and others buy copies (ex. PEM water electrolysis)

With Investment-based Terrestrial and Space Mining Companies

- External Capability Assessment Process (ECAP) Study identified areas of possible leverage for spin-in and spin-off technologies and approach
- ISRU NextSTEP Broad Agency Announcement (BAA) first attempt to actively solicit terrestrial industry
- Interest expressed in commercial production of propellants for NASA and space transportation companies (ULA propellant price point announcement in 2016)
- Interest in technology partnerships expressed by Offworld and TransAstra on joint technology/capability development
- Leave asteroid mining to Commercial Companies (TransAstra, DSI, Planetary Resources)
- With Non-Market Space Companies (SpaceX, Blue Origin)
 - Different partner/leverage and make/buy approach than with Investment-based companies
- With International Space Agencies
 - Determine strategic interests/technologies of importance with each potential partner
 - Must balance barter agreements with fostering commercial opportunities

Possible NASA roles in ISRU Space Commercialization

- Characterize space resources, especially lunar polar water/volatiles
- Reduce technology/capability risk of ISRU hardware/equipment through in-house development and demonstration and SBIRs, BAAs, PPPs, Tipping Point, Challenges, etc.
- Initial anchor tenant for products

It's not about having the most efficient ISRU system to begin with.

It is about achieving the benefits of ISRU for a reasonable cost, mass, and risk.

Backup

Lunar ISRU Can Sustain and Grow Human Lunar Surface Exploration

- Lunar Resource Characterization for Science and Prospecting
 - Provide ground-truth on physical, mineral, and volatile characteristics provide geological context; test technologies to reduce risk for future extraction/mining
- Mission Consumable Production:
 - Propellants for reusable robotic landers and eventual use for crew and transportation; life support and fuel cell consumables to extend missions.
- Learn to Use lunar resources and ISRU for Sustained Operations
 - Civil Engineering and Construction: Site Preparation, Radiation protection, Landing Pads, etc.
 - Manufacturing with In Situ Derived Materials
 - Energy Generation, Storage, and Transfer: Thermal storage, Thermal Gradients, etc.

Lunar ISRU Can Reduce the Risk and Prepare for Human Mars Exploration

- Demonstrate ISRU to reduce the mass, cost, & risk of human Mars missions
 - Propellant production from regolith (10's MT/yr); Produce, liquefy, store, transfer, & fuel ascent vehicle
 - Surface civil engineering and infrastructure emplacement for repeated landing at same location
- Use Moon for operational experience and mission validation for Mars
 - Pre-deploy, remote activation and operation, propellant transfer, landing with empty tanks
- Enable new exploration capabilities with ISRU
 - Refuelable hoppers, enhanced shielding, common mission fluids and depots

Lunar ISRU Can Enable Economic Expansion into Space

- Lunar Polar Water/Volatiles is Game Changing/Enabling
- Promote Commercial Operations/Business Opportunities
 - Same as above but enhanced and accelerated
- Support/promote establishment of reusable/commercial transportation
 - Large scale polar ice mining (100's MT/yr)

....Adds This

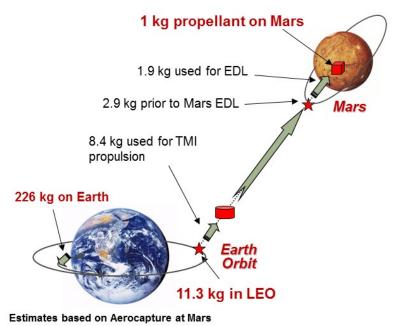
Every 1 kg of propellant made on the Moon or Mars saves 7.4 to 11.3 kg in LEO

Potential 334.5 mT launch mass saved in LEO = 3 to 5 SLS launches avoided per Mars Ascent

Lunar missions

- Oxygen (O₂) only 75%/80% of ascent propellant mass: 5 to 10 mT
- O_2 /Hydrogen (H₂) 100% propellant for single stage: 15 to 40 mT

Mars missions


- Oxygen (O₂) only
- 75% of ascent propellant mass: 20 to 23 mT

Lunar Destination Orbit

Lunar Rendezvous Orbit Farth Surface

O₂/Methane (CH₄) 100% of ascent propellant mass: 25.7 to 29.6 mT Regeneration of rover fuel cell reactant mass

A Kilogram of Mass Delivered Here…	Adds This Much Initial Architecture Mass in LEO	Much To the Launch Pad Mass
Ground to LEO	-	20.4 kg
LEO to Lunar Orbit (#1→#2)	4.3 kg	87.7 kg
LEO to Lunar Surface (#1	7.5 kg	153 kg
LEO to Lunar Orbit to Earth Surface (#1→#4→#5; e.g., Orion Crew Module)	9.0 kg	183.6 kg
Lunar Surface to Earth Surface (#3→#5; e.g., Lunar Sample)	12.0 kg	244.8 kg
LEO to Lunar Surface to Lunar Orbit (#1→#3→#4; e.g., Ascent Stage)	14.7 kg	300 kg
LEO to Lunar Surface to Earth Surface (#1→#3→#5; e.g., Crew)	19.4 kg	395.8 kg

ISRU is Similar to Establishing Remote Mining Infrastructure and Operations on Earth

Utilize SKGs and Commercial interests as drivers for ISRU Demos and Pilot Plants

Strategic Knowledge Gaps (SKGs) for Moon & Mars

Lunar Strategic Knowledge Gaps

☆ = Strongly Influences ISRU

Mars Strategic Knowledge Gaps

Inderstand the lunar resource potential.	Atmospheric SKGs
A. Solar Resources	A1-1 Global Temperature Field
B. Regolith Resources 1 (Earth testing)	A1-2 Global Aerosol Profiles and Properties
C. Regolith Resources 2: Volatiles in mare and highland regolith	A1-3 Global Winds and Wind Profiles
D. Polar Resources	A2-1 Atmospheric Modeling
Geotechnical charactgeristics of cold traps	A4-3 Aerocapture Demo
Physiography and accessibility of cold traps	B1-1 Dust Climatology
Charging and plasma environment characterization	B1-2 Global Surface Pressure: Local Weather
Water/volatile characterization 1 to 2 meters deep	B1-3 Surface Winds
Water/volatile characterization over 10's of meters	B1-4 EDL Profiles
Mineralogical, elemental, molecular, and isotopic make up of volatiles	B1-5 Atmospheric Electricity Conditions
Physical nature of volatiles	B1-6 EDL Technology Demo
Spatial and temporal distribution of surface OH/H2O	B1-7 Ascent Technology Demo
Measure exospheric water and monitor movement towards PSRs	Mars Surface and ISRU
E. Pyroclastic Deposit Resources	B6-1 Dust Physical, Chemical and Electrical Properties
F. Lunar ISRU production efficiency 1 (Earth testing)	B6-2 Dust Column Abundances
G. Lunar ISRU production efficiency 2	B6-3 Trace Gas Abundances
nderstand the lunar environment and its effects on human life.	B7-1 Regolith Physical Properties and Structure
A. Solar Activity (Earth based)	B7-4 Auto Rover Tech Demo
B. Radiation at the lunar surface	B7-6 Sample Handling Tech Demo
Radiation environment on the surface 2	B8-1 Fission Power Tech Demo
Radiation shielding effect of lunar materials 2	D1-1 Cryo Storage Demo
C. Biological impact of dust	D1-2 Water ISRU Demo
D. Maintaining peak human health	D1-3 Hydrated Mineral Compositions
Inderstand how to work and live on the lunar surface.	D1-3 Hydrated Mineral Occurrences
A. Resource Production	D1.5 Shallow Water Ice Composition and Properties
	D1.5 Shallow Water ice Composition and Properties
Technology for excavation of lunar resources	
Technologies for transporting lunar resources	Mars Surface Hazards
Technologies for comminution of lunar resources	B4-1 Electricity
Technologies for beneficiating lunar resources	B4-2 Dust Physical, Chemical, and Electrical Properties
B. Geodetic Grid and Navigation	B4-3 Regolith Physical Properties and Structure
Lunar topography data	B7-2 Landing Site Selection
Autonomous surface navigation	B7-3 Trafficability
C. Surface Trafficability	B7-5 Environmental Exposure Tech Demo
D. Dust and Blast Ejecta	Phobos/Deimos
Lunar dust remediation	A3-1 Orbital Particulate Environment
Regolith adhesion and associated mechanical degradation	A4-1 Autonomous Redezvous and Docking
Descent/ascent engine blast ejecta	C1-1 Surface Composition
E. Plasma environment and charging	C2-1 Electrostatic and Plasma Environments
F. Energy production and storage	C2-2 Gravitational Field
Energy production and storage - non polar missions	C2-3 Regolith Properties
Energy production and storage - polar missions	C2-4 Thermal Environment
Propellant scavenging	C3-1 Anchoring and Surface Mobility Systems - Tech Demo
G. Radiation shielding	Planetary Protection
H. Micrometeroite shielding	B2-1 Biohazards
I. Lunar mass contribution/distribution	B5-1 Identify and Map Special Regions
J. Habitat, life support and mobility	B5-2 Model Induced Special Regions
· · · · · · · · · · · · · · · · · · ·	B5-3 Microbial Survival. Mars Conditions
	B5-4 Develop Contanminant Dispersal Model
= Directly Relevant to ISRU	B5-5 Forward Contamination Tech Demo
	C2.4. Thermal Environment

C2-4 Thermal Environment

Pg. 30

					LCROSS		LRO	Chand-1
	Column Density (# m ⁻²)	Relative to H2O(g) (NIR spec only)	Concentration (%wt)*	Long-term Vacuum Stability Temp (K)	UV/Vis	NIR	LAMP	М3
H ₂ O	5.1(1.4)E19	1	5.5	106		x		
CO	2.2e12±1.5e11		0.70	15			x	
H ₂	5.8e13±1.0e11		1.40	10			х	
H₂S	8.5(0.9)E18	0.1675	1.74	47	x	x		
Ca	3.3e12±1.3e10		0.20	412			x	
Hg	5.0e11±2.9e8		0.24	135			x	
NH ₃	3.1(1.5)E18	0.0603	0.31	63		x		
Mg	9.0e10±5.3e9		0.40	346			x	
SO ₂	1.6(0.4)E18	0.0319	0.64	58		x		
C ₂ H ₄	1.6(1.7)E18	0.0312	0.27	50		x		
CO ₂	1.1(1.0)E18	0.0217	0.32	50	x	x		
CH₃OH	7.8(42)E17	0.0155	0.15	86		x		
CH ₄	3.3(3.0)E17	0.0065	0.03	19		x		
ОН	1.7(0.4)E16	0.0003	0.00	278	x	x		x
H ₂ O (adsorb)			0.001-0.002	323				x
Na		1-2 kg		197	x			
CS					x			
CN					x			
NHCN					x			
NH					x			
NH ₂					x			

Besides H₂O and H₂, there are other volatiles of interest as well including CO, CO₂, and hydrocarbons

*Table courtesy of Tony Colaprete

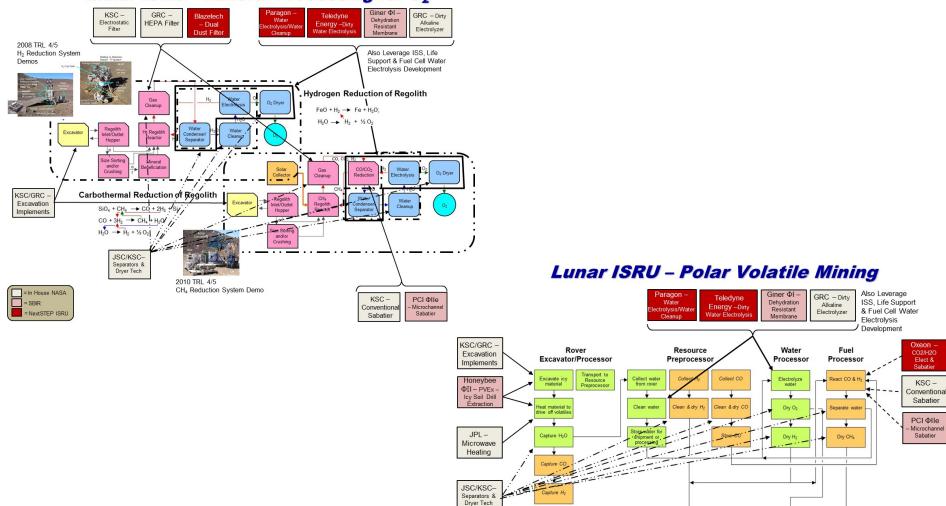
Regolith vs Polar Water/Volatiles: Pros & Cons

	O ₂ Extraction				Polar H₂O		
	H₂ Reduction	CH₄ Reduction	Molten Oxide Electrolysis	lonic Liquid Reduction	PVEx	Dome	
Resource Knowledge	Good - O	rbital High Resolu	ution & Apollo Sa	mples	Poor - Orbital Low Resolution - LCROSS Impact		
Site Specificity	Moderate (Ilminite & Pyroclastic Glasses Preferred)		rate (Iron oxides a	High (Permanently Shadowed Crater/Regions Near extensive sunlight)			
Temperature to Extract	Moderate (900 C)	High (>1600 C)	High (>1600 C)	Low (100+ C)	Low (<150 C)		
Energy per Kilogram	High	Moderate	Moderate	?	Low?		
Extraction Efficiency wt%*	1 to 5	10 to 15	20 to 40	?	Dependant on water concentration		
TRL	4-5	4-5	2-3	2	3 1-2		

*kg O2/kg bulk regolith

Oxygen Extraction from Regolith

- H₂ Reduction Lowest Efficiency/Lowest Risk due to <900 C and granular
- Molten Oxide Electrolysis is Highest Efficiency/Highest Risk due to high temperature/molten material and electrode degradation
- CH₄ Reduction Moderate Efficiency/Moderate Risk but is highly dependent on solar concentrator mass and performance
- Ionic liquid reduction is promising but further research is required


Polar Water/Volatile Extraction

- Not much energy required to release water/volatiles
- Excavation/extraction highly dependent on concentration, depth, and homogeneity of water resource
- Low temperatures (40 to 100 K) increases energy and material selection concerns

Need to Consider Applicability of Mars ISRU Work toward Lunar ISRU

Lunar ISRU – Mineral Processing for O2

= In House NASA

= NextSTEP ISRU

= SBIR

Store/press gaseous H₂

Liquefy H₂

+

Cryogenically store H₂

H₂ Storage

Store/press gaseous O₂

Liquefy O₂

+

O₂ Storage

Cryogenically store O₂ Store/press gaseous CH4

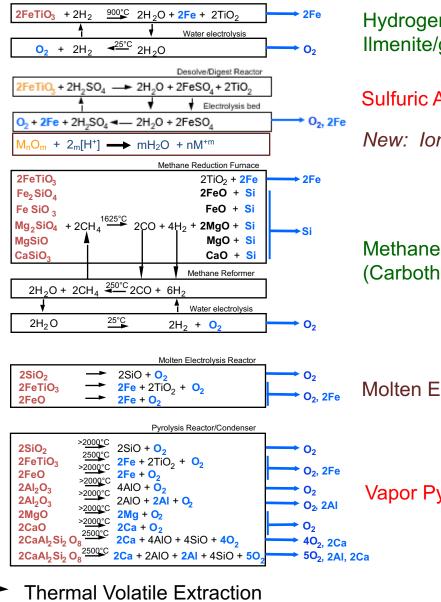
Ŧ

Cryogenically store CH4

CH₄ Storage

Lunar Resources & Products of Interest

LUNAR RESOURCES


MARE REG	<u>OLITH</u>	
Ilmenite - 15%		
FeO•TiO ₂	98.5%	
Pyroxene - 50%		
CaO•SiO ₂	36.7%	
MgO•SiO ₂	29.2%	
FeO•SiO ₂	17.6%	
Al ₂ O ₃ •SiO ₂	9.6%	
TiO ₂ •SiO ₂	6.9%	
Olivine - 15%		
2MgO•SiO ₂	56.6%	
2FeO•SiO ₂	42.7%	
Anorthite - 20%		
CaO•Al ₂ O ₃ •SiO ₂	97.7%	
VOLATILES (Solar V	Vind & Polar Ice	<u>e/H₂)</u>
Hydrogen (H ₂)	50 - 150 ppm	_
Helium (He)	3 - 50 ppm	
Helium-3 (³ He)	10 ⁻² ppm	

100 - 150 ppm

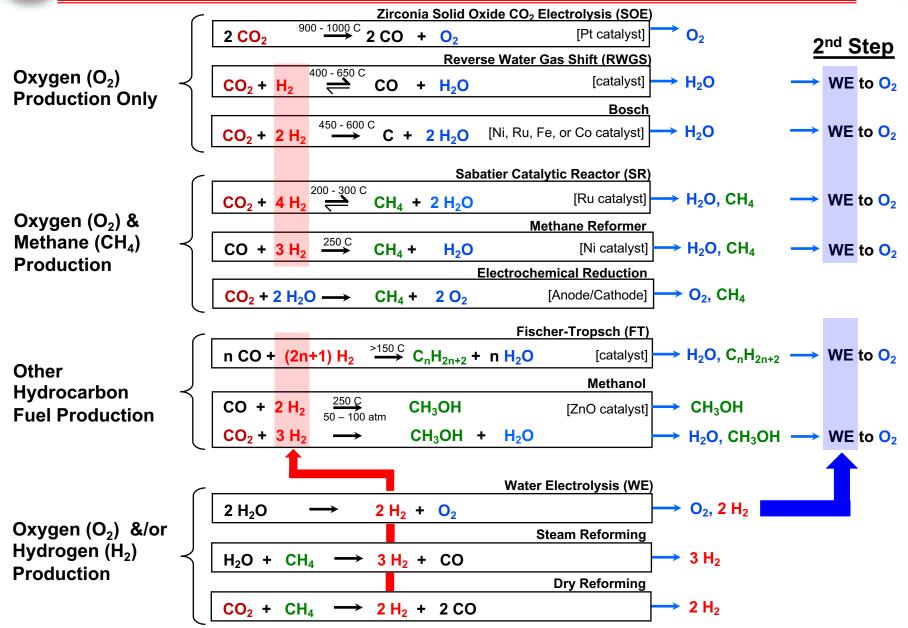
1 - 10%

Carbon (C)

Polar Water (H₂O)/H₂

Hydrogen Reduction of Ilmenite/glass Process

Sulfuric Acid Reduction
New: Ionic Liquids


Methane Reduction (Carbothermal) Process

Vapor Pyrolysis Process

Mars ISRU Technology, System, & Flight Development in the 1990's

Development Aimed at Supporting Mars Sample Return with ISRU in 2005/7

CO₂ Processing

- CO₂ electrolysis & low pressure dissociation (NASA, Univ., Industry, SBIRs)
- Reverse Water Gas Shift (KSC, PNNL, SBIRs)
- Sabatier reactors (NASA, Industry, SBIRs)

Microchannel adsorption pump (PNNL)

Methane reformer (JPL, SBIRs)

CO₂ Collection & Separation

- Hydrocarbon fuel reactors methanol, toluene, ethylene, etc. (SBIRs)
- Microchannel reactors/heat exchangers (PNNL, SBIRs)

Water Processing

Water electrolysis/decomposition (NASA, Industry, SBIRs)

Mars atmosphere adsorption pump (JPL, ARC, LMA, JSC)

Mars atmosphere solidification pump (LMA, SBIR, NASA)

Systems

- 1st Gen Sabatier/Water Electrolysis (SWE) breadboard under ambient & Mars environment testing (NASA, Pioneer Astronautics)
- 1st Generation Reverse Water Gas Shift with and w/o Fuel production (NASA, Pioneer Astronautics)

Flight Demonstrations

- Mars ISPP Precursor (MIP) Mars 2001 (Flight unit built & tested)
 - 5 x 10⁻⁴ kg/hr O_2 ; 15 W; 10 operations
- PROMISE Mars 2003 (Awarded but cancelled)
 - 8.7 x 10^{-4} kg/hr O₂ (with CH₄ production); 30 W; 90 sols