
Pluggable table access methods

Haribabu Kommi / Pankaj Kapoor

About us

 Pankaj Kapoor

 Working for Fujitsu Australia Software
Technology

 15+ years of experience in diverse domains
ranging from applications to telecom

 Leading deliveries of Fujitsu Enterprise
Postgres (FEP) from Australia.

 Working in PostgreSQL ecosystem from
around ~3 years

1

 Haribabu Kommi

 Working for Fujitsu Australia Software
Technology

 11+ years of experience in development of
database

• In memory, &

• Disk based

 Working in PostgreSQL ecosystem from
around 7+ years

• Contributions include reviews, bug-fixes,
feature development of core server

• and in various tools/drivers e.g. JDBC

Contents

 History of the development

 People behind it

 High level overview

what is pluggable table access method

why not FDW

what is supported in v12

 New syntax support

 Overview of table access method API

 Possibilities using pluggable table AM

 Further development

2

History of the development

 The seed was sown by Alvaro

 Columnar Storage was requested and fairly invasive patch was worked upon
around Aug-2016

 It was agreed that whole database can not be columnar based as it will serve
OLAP but will hit OLTP scenarios

 Fujitsu also wanted to contribute their columnar storage - Vertical
Clustered Index (VCI). To support the cause, Haribabu, from Fujitsu
Australia Software Technology participated in the development.

 Robert Haas suggested to work on rather generic and extensible
approach - pluggable table access methods; rather than just
focussing on storage layer

With huge efforts from Andres in terms of development, reviews,
fixes and guidance, Pluggable Table AM got committed in Mar 2019

3

People behind it

 Pluggable Table AM is a big feature and many people were involved
in completion of this feature. The list of people involved were:

 Andres Freund

 Haribabu Kommi

 Alvaro Herrera

 Alexander Korotkov

 Dimitri Dolgov

 Ashutosh Bapat

 Amit Khandekar

 David Rowley

 and others

 Draft Pluggable Table AM was being used by zHeap team, thereby
helping to identify needs apart from what Heap AM needs

4

What is pluggable table access method

 Till PostgreSQL 11, core maintains a pluggable access mechanism for Index to
choose different index implementation; however no similar mechanism was
available for Table

 The idea was to implement storage access mechanism (similar to index) for Tables
as well to allow different tuple storage mechanisms. The same is been referred to
Pluggable table access methods henceforth.

 Pluggable table access methods exposes API, that facilitates any intendent
developer/team to generate specialised storage/access mechanisms of tuples for a
table.

5

Existing PostgreSQL access mechanisms

Index

A
cc

es
s

m
et

ho
ds

 I
/F btree

gin

gist

... Table

heap

What is pluggable table access method?

 Pluggable table access methods API implementation also includes moving original
heap mechanism over pluggable access methods, which will be the default
available access method.

 There are many organizations that are working on implementing their own tuple
storage types on top of pluggable access methods API, hopefully PG v13 will have
some ready for integration.

6

New PostgreSQL access mechanisms (starting 12)

Index

A
cc

es
s

m
et

ho
ds

 I
/F btree

gin

gist

...

heap

Zheap *

Columnar *

...

* Work in progress or other possible implementation

Table

A
cc

es
s

m
et

ho
ds

 I
/F

Why not FDW

 FDW is intended to access foreign data and not for storing local data

 using this approach to access other storage types cannot yield best results and
will have its own limitation e.g. DDL support

 Couple of are columnar storage extensions that are available for
PostgreSQL using FDW

 cstore_fdw

 clickhousedb_fdw - ‘might’ be the right usage/hack, as it pushes/access data on
ClickhouseDB server. But question remains, do we need a different server to
store columnar data ?

7

What is supported in v12

 User can create new TABLE type access methods

 TABLE access methods can be assigned to

 Tables, and

Materialised Views

 Indexes and its access methods remains same. No changes have
been done for the same

 The supported API is currently useful to create row based table
storages

 This however can be contended; and

 Doesn’t stop developers to hack it for columnar storage as well

8

New syntax support | User’s view

 CREATE ACCESS METHOD <new access method> TYPE TABLE
HANDLER <table_am_handler>

 CREATE TABLE ... USING <new access method> ...

 CREATE TABLE ... USING <new access method> AS ...

 CREATE MATERIALIZED VIEW ... USING <new access method> ...

9

Overview of Table AM API | Developer’s view

 The following structure contains all the APIs that are necessary for any pluggable table
access method provider. The handler function must return the filled API structure.

/*

* API struct for a table AM. Note this must be allocated in a

* server-lifetime manner, typically as a static const struct, which then gets

* returned by FormData_pg_am.amhandler.

*

* In most cases it's not appropriate to call the callbacks directly, use the

* table_* wrapper functions instead.

*

* GetTableAmRoutine() asserts that required callbacks are filled in, remember

* to update when adding a callback.

*/

typedef struct TableAmRoutine

{

…

}

10

Overview (cont.)

 A total of 38 API’s are available in the TableAmRoutine structure,
except Bitmap and bulk insert API’s, rest are all mandatory to
develop a new table access method.

 There are 10 different categories of API that are present in the
TableAmRoutine that needs to supplied by the new access methods.

 Slot related callbacks –

•Callback is to provide the slot type that is used by the AM

 Table scan callbacks –

•Callbacks to perform scanning of a relation and provide the necessary tuples

 Parallel table scan callbacks –

•Callbacks to perform scanning of a relation using parallel workers to speed up the
relation scan.

 Index scan callbacks –

• Callbacks to perform scanning of a relation from the index

11

Overview (cont.)

 Non-modifying tuple callbacks –

•Callbacks to check the tuple, like tuple visibility and etc.

Modifying tuple callbacks –

•Callbacks to modify the tuple, like insert, update and etc.

 DDL callbacks –

•Callbacks that handle the operations like setting the relfilenode, vacuum and etc.

Misc callbacks –

•Callbacks to provide AM specific information like toast and etc.

 Planner callbacks –

•Callback to provide relation estimation size.

 Executor callbacks –

•Callback for bitmap and sample scan functionality.

12

Possible implementation over pluggable table AM

 Using the pluggable table access methods, it is possible to implement
many different variety of table AM’s, such as:

 An alternative to heap (zHeap)

 Columnar table

 In-memory table

 Index organized table

 Etc.

13

An alternative to heap - zHeap

 zHeap is already in progress with following objectives

 Provide better control over bloat using in-place updates and undo records for
delete

 Reduce write amplification as compared to heap

 Reduce tuple size by reducing tuple header

We expect zHeap to be available in community version by PG v13

 Currently supported pluggable table access methods meets basic
needs of zHeap (not all though)

14

Columnar table

 The storage layout of the columnar table is column-wise instead of
row-wise.

 Fujitsu also has its own time-tested columnar table that support both
write and read query performance thereby achieving OLAP and OLTP
cases. In past it needed core level changes – however now getting
considered over Pluggable Table AM

 Zedstore, which is under development based on pluggable table
access methods supports columnar table using btree index.

With pluggable Table AM, the implementations will be rather
focussed without bothering to change the core server

15

In-memory table

Main memory is used as primary storage tables. Rows in the table are
read from and written to memory. Some considerations:

 Copy of the table data is maintained on disk, only for durability

 Follow Only in memory table (MongoDB has in-memory storage engine)

 in_memory is an extension in an enterprise version of postgres
implemented via FDW. Implementing it over Pluggable API will
reduce its codebase, let reap benefits of core and more

 Existing heap like mechanism, sans buffer-manager, will give an in-
memory table AM; but it may need some additional capability to
achieve syncing for persistence (if required).

16

Index organized table

 In index-organized table unlike ordinary (heap-organized) table
whose data is stored as an unordered collection (heap), data for an
index-organized table is stored in a B-tree index structure in a
primary key sorted manner. Each leaf block in the index structure
stores both the key and non-key columns.

 This is some what similar to INCLUDE column support in PostgreSQL,
but it eliminates the needs two place storage.

 Some quick implementation is possible by reusing zedstore columnar
implementation, by storing all columns as part of the index organized
by a primary key column.

17

Further development

 New API to share targetlist columns from the table during the select
operation, so that the specified columns can only be returned

 ALTER table syntax enhancement to switch from one AM to another

 Adding cost functions to let the planner know more about Table AM

 Not exactly related to pluggable table AM, but following will open up
more avenues

 Executor batching

 Executor vectorization

18

19

