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Abstract— In this paper a novel approach to the Cartesian
Impedance Control problem for robots with flexible joints is
presented. The proposed controller structure is based on simple
physical considerations, which are motivating the extension of
classical position feedback by an additional feedback of the joint
torques. The torque feedback action can be interpreted as a
scaling of the apparent motor inertia. Furthermore the problem
of gravity compensation is addressed. Finally, it is shown that
the closed loop system can be seen as a feedback interconnection
of passive systems. Based on these passivity property a proof of
asymptotic stability is presented.

I. INTRODUCTION

Cartesian impedance control, as a particular approach to
the compliant motion control problem, clearly can be seen
as one of the core techniques of modern robot control. The
basic goal of impedance control in the most general sense is
to achieve a desired dynamical relationship between external
forces and movements of the robot [6]. However in many
robotic applications this dynamical behaviour is specified in
terms of stiffness and damping matrices with respect to some
Cartesian coordinates.

The classical approach to impedance control concentrates on
robotic systems in which the joint elasticity can be neglected.
A straight forward application of these techniques to a flexible
joint robot therefore usually will not lead to a satisfactory
performance’. In this paper an impedance control law is
proposed which is designed for flexible joint robots. The
desired impedance is assumed to be a second order mass-
spring-damper system. Furthermore only the achievement of
stiffness and damping is considered herein, while the inertial
behaviour is left unchanged.

In case of a robot with rigid joints, such a stiffness and
damping behaviour could in principle be implemented quite
easily with a PD-like controller (formulated in the relevant
coordinates). In [12] it was proven that a motor position based
PD-controller leads to a stable closed loop system also in case
of a robot with flexible joints. Furthermore in [4] a stability
analysis for a hybrid position/force controller? was presented.

LIn terms of damping out the oscillations due to the flexiblity in the joint.
2for a flexible joint robot without gravitational effects

However it has been shown that in practice only quite unsatis-
factory results can be achieved with a restriction to purely mo-
tor position (and velocity) based feedback controllers (without
additional noncollocated feedback) for the case of a flexible
joint robot. In some works a controller structure based on a
feedback of the joint torques as well as the link side positions
was considered and it was shown that this can lead to better
results (see e.g. [10]). This has also already been verified
experimentally with the DLR-light-weight-robots [2]. From a
theoretical point of view this approach usually is justified (for
sufficiently high joint stiffnesses) by an approximate analysis
based on the singular perturbation theory. The feedback of the
joint torques is therein considered as the control action for an
inner control loop, which receives its setpoint from an outer
loop impedance controller.

In [1] a controller with a complete static state feedback
(position and torque as well as their first derivatives) was intro-
duced, for which (analogously to [12]) asymptotical stability
was shown based on the passivity properties of the controller.
Contrary to the classical PD-controller, the motor inertia and
the joint stiffness are included in the same passive block as
the state feedback controller such that an effective damping of
the joint oscillations could be achieved.

In this paper a physical interpretation of the torque feedback
is given. With this a stability analysis is given which is based
on the passivity properties of the system. It is important to
notice that the described controller itself is not passive due
to the feedback of the joint torque, but it will be shown that
the controlled motor dynamics in combination with the torque
feedback are passive. Together with the passive (link side)
rigid body dynamics the closed loop system can therefore
be represented as a feedback interconnection of two passive
systems. This passivity property is ensured for the Cartesian
impedance controller as well as for a joint level impedance
controller.

Furthermore in [1], [12] a gravity compensation term based on
the desired configuration was used. In case of an impedance
controller this is not appropriate, due to the big deviations
from the desired configuration which may occur here (in case
of a low desired stiffness). In this work a gravity compensation



term will be designed which is based on the measurement of
the motor position and is better suited for the use in context
with impedance control. The problem of gravity compensation
for flexible joint robots in case of impedance control was also
addressed in a recent paper of Zollo et al. [15]. However, in
contrary to our approach, the gravity compensation term in
[15] led to additional constraints on the admissible Cartesian
stiffness.

A similar, passivity based, controller structure in which the
controller can also be implemented without a measurement
of the joint velocities is given by the IPC® from [11]. It
should be mentioned that the basic idea of the presented work
was the result of considerations about how such a passivity
based controller designed for rigid body robots could be best
implemented for a robot with flexible joints.

The presented controller is also strongly related to the state
feedback controller from [1]. This will be explained in more
detail in the second part of the paper [3]. Therein it will also
be shown how the presented controller can (analogously to
[1]) be extented to a complete state feedback form without
loosing the passivity properties.

It should also be mentioned that the presented approach clearly
relies on the availability of the joint torques, which can be
achieved either directly by measurement or indirectly by an
additional measurement of the link side position. The DLR-
light-weight-robots [5] (Fig. 1) are equipped with joint torque
sensors in order to allow the achievement of fine manipula-
tion and to enhance the performance when the robot is in
interaction with the environment. Therefore they are ideally
suited for the implementation of the presented controller. In
the second part of the paper also some experimental results of
the Cartesian impedance controller with the DLR-light-weight-
robot-11 are shown.

This paper is organized as follows: In Section 1l the design idea
is described based on a simplified one-dimensional model. The
generalization of the design idea to the complete model of a
flexible joint robot is then presented in Section Il1. In Section
IV the controller will then be augmented by an appropriate
gravity compensation term. Finally, a detailed passivity and
stability analysis is given in Section V.

The second part of this paper [3] will deal with some further
extentions of the controller, which are important in practice.
These extentions contain on the one hand more details about
the actual design of the damping and stiffness matrices. On
the other hand, also the generalization of the controller to a
complete state feedback form is described therein.

Il. DESIGN IDEA

In this section the basic idea underlying the controller design
is described. It is motivated by some simple considerations for
a simplified one-dimensional model.

Consider at first the model of a single flexible joint as it is
sketched in figure 1 for the second joint of the DLR-light-
weight-robot-I11. The motor torque 7,,, acts here on the rotor

SIntrinsically Passive Controller

Sketch of the Model for a Flexible Joint Robot.

Fig. 1.

inertia B of the motor®. The elasticity of the transmission
between the rotor and the following link of the robot® is
modelled in form of a linear spring with stiffness K.

The goal of the impedance controller is to achieve a de-
sired dynamical behaviour with respect to external forces and
torques which act on the link side. In the following it is
assumed that this dynamical behaviour is given by a stiffness
parameter Ky as well as a damping parameter Dy.

In case of a robot with rigid (i.e. non-elastic) joints this
behaviour could be realized by a simple PD-controller. If one
uses, as it is shown in figure 2 for the one-dimensional case,
a motor position based PD-controller also in case of a robot
with elastic joints, then the resulting dynamics will obviously
be influenced significantly by the joint elasticity and the motor
inertia. Intuitively speaking, the deviation from the desired
behaviour will be less significant when the rotor mass B gets
smaller and the joint stiffness K gets larger.

At this point it should be mentioned that the joint stiffnesses
of a typical® flexible joint robot can indeed be assumed to be
quite large” (but not negligible®). By a negative feedback of
the joint torque 7 the apparent inertia (of the rotor) can now be
scaled down, which means that the closed loop system reacts to
external forces and torques as if the rotor inertia were smaller.
The desired dynamical behaviour will be approximated the
better, the smaller the apparent rotor inertia is. This approach,
as suggested in figure 2 intuitively, will be put in concrete
terms in the following section for the model of a flexible joint
robot.

4The motors are herein modelled as ideal torque sources without electrical
dynamics.

5In Figure 1 represented in a simplified form with a constant mass M.

Slike e.g. the DLR-Light-Weight-Robots

7E.g.: For the lower joints of the DLR-Light-Weight-Robots these values
ly in the range 10.000 — 15.000Nm /rad.

8In the second paper [3] a method for compensating the influence of the
spring K will also be presented.
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Fig. 2. Motor Position Based PD-Control of a Single Joint.

I1l. CONTROLLER DESIGN
A. Considered Model

In the following a flexible joint robot model is assumed as
was proposed by Spong in [9]:

T+ Text @
Tm - 2

Herein g € k™ represents the vector of link side joint angles
and 8 € R the vector of motor angles. The joint torques 7 €
R™ are determined by the linear relationship = = K (0 — q),
in which K € R"*" is a diagonal matrix containing the
individual joint stiffnesses K; as diagonal elements K =
diag(K;). B € R™*™ is a diagonal matrix, which consists
of the rotor inertias B;. Furthermore M (q) € R"*™ is the
manipulators (link side) mass matrix and C(q, g)g represents
the centrifugal and Coriolis-terms of the link side rigid body
part of the model. The vector of gravity torques is given by
g(q) € R™. The motor torques 7,, € R™ are considered as the
input signals for the control. Finally, the external forces and
torques which act on the robot are summarized in the torque
vector 7., € R™.

In case that the robot has mixed, rotational and prismatic,
joints it is assumed that the elements of the vector g are
normalized such that they all have the same physical unit.
This can be achieved by multiplying the joint variables of the
prismatic joints by a factor 1/r;, where r; has the physical
unit of a length. The normalization of g allows the use of the
Euclidean norm ||| for vectors and the induced 2-norm ||-||;2
for matrices without leading to physical inconsistencies®.

At this point also some well known properties of the robot
model shall be mentioned, which will be utilized in the
following sections:

Property 1: The mass matrix is symmetric and p.d.:

M(q)g +C(q,9)q +4g(q)
BO+1 =

M(q)=M(qg)" >0 VgeR".

9The normalization is equivalent to using the norm ||g|| = /37, v2q?
(with v; = 1/r; for prismatic joints and ~; = 1 for rotational joints) instead
of the Euclidean norm.

Property 2: M (q) — 2C(q, ) is skew symmetric:

y"(M(q) -2C(q.9)y=0 Vy,q,g€R" .

Property 3: The gravity torques g(g) are given by the
differential of a potential function V,(g), hence g(q) =
(8V,(q)/0q)", and there exists an o > 0 such™® that

l|0g(q)/0q|lia <o  VgeR"

holds. The inequality implies that for all q,,q, € R" the
following holds:

1
Vo(qs) — Vy(aqy) — (g2 — Q1)TQ(Q1)| < 504”‘12 - ‘h”g .

Remark 1: A further assumption on the dynamical model
(1)-(2) is that the joint stiffnesses satisfy** K; > «. Notice that
this assumption is not restrictive at all! Intuitively speaking
it states nothing else than that the manipulator should be
designed properly, which means that the joint springs are
sufficiently stiff such that they can prevent the manipulator
from falling down under the action of its weight.

B. Controller Design for a Joint Space Impedance

The scaling of the apparent rotor inertia from B to By can,
as was already described in the last section, be achieved by a
joint torque feedback

Twm = BBp'u+(I-BB,")T, ®)

wherein w is a new input variable. In case that the desired
impedance behaviour is defined (w.r.t. joint coordinates) in
form of a positive definite stiffness matrix Ky and damping
matrix Dy as well as a desired configuration 8,, a motor
position based PD-controller

'LL:—KQ(O—BS)—DQG (4)

can then be used. Therefore one gets the following closed loop
equations:

M(q)g +C(q,9)q +9(q) T+ Teat, (5)
By + Dy +Ky0—-0,)+7 = 0. (6)

C. Generalization to Cartesian coordinates

Usually the desired impedance behaviour is defined with
respect to Cartesian coordinates = € R, which describe the
position and orientation of the robots endeffector, rather than
in joint space. In the following it is assumed that the forward
kinematics mapping from the joint space coordinates g to the
Cartesian coordinates «, = f(q) as well as the Jacobian
matrix J(q) = 8’(;—(:) are known.

10The physical unit of « is a joint stiffness.

UNotice that in general, the fulfilment of the condition &; > « depends
on the choice of the above mentioned normalization of the vector g via the
parameters r; (or, equivalently, on the norm used to evaluate the condition).
From the equivalence of norms on R™ (see e.g. [14]) it follows that the
convergence properties which will be derived in the paper hold as long as a
particular scaling can be found, so that K; > a.



The controller from (4) can then be generalized to Cartesian
coordinates easily, if one uses the motor angles @ instead of
the link side angles g in the forward kinematics. The desired
stiffness and damping matrices are given in form of positive
definite matrices K, and D,. Then the feedback law

u = —JO)"(K.2(0)+ D.&), (7
z(0) = f(0)—=s )]
x = J(6) (9)

generalizes (4) to Cartesian coordinates. Herein, x, is the
virtual®® motor side position in Cartesian coordinates. Notice
that in the design of x the static (i.e. in equilibrium state
for 7., = 0) difference of the motor and link side angles
due to gravity should be considered. This means that, for a
given link side position g, which corresponds to the desired
Cartesian position , s = f(q,), s should be chosen as:
z, = f(g, + K 'g(q,)).

The controller in (7) leads then, together with (3), to the closed
loop system:

(10)
(11)

J\{-((Q)ii +C(q,9)q+9(q) =T+ Tewt »
By0 +J(0)" (K,&(0) + Dy&) +7=0.

IV. GRAVITY COMPENSATION

In the derivations so far the gravity torque g(q) was not
considered in the controller. It has been shown in [12] that
for a motor position based PD-controller a feedforward term
of the gravity torques in the desired steady state can be used.
This indeed leads in case of a position controller usually to a
good performance, because the deviations from the steady state
position can be kept small. In case of an impedance controller
however this is not true. Here a pure feedforward action for
the gravity compensation does not give satisfactory results,
because large deviations from the steady state positions may
occur in case of a small desired stiffness K .. Therefore in
the following a compensation term is constructed which is
based solely on the motor position and can compensate for
the link side gravity torques (in a quasi-stationary fashion).
Consider first the set Q := {(q,0) | K(0 — q) = g(q)} of
stationary points (for 7.,; = 0) for which the torque due to
the joint elasticity counterbalances the link side gravity torque.
The goal of the gravity compensation is now to construct a
compensation term g(6) such that in

g(0) =g(q)

holds, which means that the gravity compensation term coun-
terbalances the link side gravity torque in all stationary points.
Notice that for any point (g,,600) €  the motor position
can now be expressed uniquely as a function of the link side
position:

V(q,0) € Q (12)

0o =gq + K_lg(%) = h(‘]o) . (13)

121 impedance control the desired steady state position for the case of free
motion is usually called virtual position.

Furthermore, by the use of the contraction theorem (see
Remark 2 below for more details on this) it can be shown
that the inverse function to h(q,) exists. Then

qo = h™'(80) := q(60)

can be used for the construction of a gravity compensation
term of the form g(6) := g(g(@)) which clearly fullfills (12).

Remark 2: While in general the inverse function h~'(8,)
can not be computed directly in practice, it is possible to
approximate it with arbitrary accuracy by iteration. Notice
therefore that (since K; > « from Remark 1) the mapping
T(q) := 60— K 'g(q) is a contraction and thus has a unique
fixpoint ¢* = T'(qg*) = q,. The iteration

T(q,)

converges then for every starting point (e.g. g, = 6o) to this
fixpoint, as follows from the contraction mapping theorem (see

e.g. [14]):

(14)

[In-i-l (15)

lim g, = q* =h™"(60) .

n—oo
In the following it is therefore assumed that the inverse
function h™'(0,) is known exactly, although it can only be
approximated in practice. It should also be noted that usually
already one or two iteration steps lead to quite satisfactory
results in this approximation. Notice also that by a first order
approximation with g, = g, one would obtain the online
gravity compensation term of [15].
From the construction of the gravity compensation term it also
follows that g(@) is given as the differential of a potential
function V;(8). A detailed derivation of this potential function
is given in the appendix. However, in order to show that the
function is given by

V(6) = Vy(a(®))+Vi(0 - a(6))
= Vy(a(0)) + 59(6) K ()

(16)

a7
(18)
where V(0 — q) = 1/2(0 — q)T K(6 — q) is the potential

energy of the joint elasticity we compute its differential (with
r(0) := 60 — q(0)) as:

aV,0) V() 0a0) OVi(r) or(6)
0~ oq o0 " o o6 1
oV,(q)

“oq 9(a(6))" =g(6)"
Herein, the property 0Vi(r)/0r = 0V,(q)/0gq was used,
which follows directly from the definition of the function q(0)
in (14).
The complete control law with gravity compensation is given
now by (3) together with

(20)

u = —J(O)"(K,&(0)+D,&)+g6), (21)

and leads to the closed loop system equations:
M(9)q+C(4,9)q+9(a) =T + Tear (22)
By + J(0)(K,2(0)+ D,x)+1=g(0) . (23)



V. ANALYSIS

In this section it will first be shown that in case of a globally
bounded potential function V,(q) the closed loop system can
be written as the interconnection of two passive subsystems.
Additionally, a proof of asymptotical stability is given for the
general case.

For the passivity analysis it will be assumed that there exists
a real 8 > 0, such that

Vo(@) < B VgeR" (24)

holds. This is for instance satisfied for all robots with solely
rotational joints (i.e. without prismatic joints). Due to property
3 also the gravity torque vector g(g) will then be globally
bounded. Furthermore from (24) also the boundedness of
V5(0) and g(@) follows. Notice that requirement of a bounded
gravity potential is only needed for the passivity analysis,
while the proof on asymptotic stability is valid for a general
potential.

A. Passivity Analysis

A system z = f(z,u),y = y(z,u) with state z € R",
input « € RN™ and output y € N™ is said to be passive, if
for an admissible input w(t) the energy that can be extracted
from the system in an arbitrary time interval [¢o, ¢;] is bounded
from below [13]:

ty
deeR: / u(t) y(t)dt > ¢
to
A sufficient condition therefore is given by the existence of a
continuous (in z) function S, (z) (storage function [8], [13]),
which is bounded from below and for which the derivative
with respect to time along the solutions of the system satisfies
the inequality:

(25)

S.(z) = flz,u) <uly.

In the following it will now be shown that the system (22)-
(23), as outlined in figure 3, consists of two passive subsys-
tems. It is often assumed that also the environment of the robot
can be described by a passive mapping (¢ — —Tcut).

The passivity of (22), as a mapping (7 + Test) — ¢q, is well
known due to purely physical reasons and can be shown with
the storage function

5. ()
e (26)

1. .
Sy = §qTM(q)q + Vy(q)

for which the derivative along the solutions of (22) is given
by*3:

(27)

Sy =G (T + Tewt) - (28)

In a similar way the passivity of (23), as a mapping ¢ — —,
can be shown with the storage function:

Sp = %GTBeO + %(0 -a)"K(0 - q)
+53(0)7K,(6) ~ V;(0) 29)

13This is due to Property 2.

q
O (22)
—-T
D (23) -
—Text .
Environment =

Fig. 3. System Representation as Interconnection of Passive Subsystems.

The derivative of Sy along the solutions of (23) is then given
by:

Sg=—&" Dy —q" 1 . (30)
The desired passivity properties follow then directly from (28)
and (30).

Remark 3: It should also be mentioned that the passivity
properties would still be valid if the PD-controller from (7) is
replaced by any other passive (W.r.t. & — ) controller.

B. Stability Proof for 7.,; =0

The following stability analysis is restricted to the nonre-
dundant case (m = n). Additional to that, singular configura-
tions have to be avoided. Thus the further analysis is restricted
to an area in the workspace in which the Jacobian J(8) is
nonsingular and in which the inverse mapping to = = f(0)
can be solved uniquely.

In the following it will be shown that the closed loop system is
asymptotically stable for the case of free motion (i.e. T¢x =
0).

1) Determination of the steady state: The steady state

condition of the system (22)-(23) is given by

K0 —q,) =9(q,) ,
K0, —q,) +J0,)"K,z(0,) =g(0,) .

(31)
(32)

Herein the matrix K, is positive definite. Due to (12) it
follows that

JOHN K, z0,) = 0 (33)

must be satisfied in steady state. The stability analysis is, as
already mentioned above, restricted to an area in which this
condition can be solved uniquely for 8. The steady state is
then given by:

20,) = 0=0,=f"(z),
q, = h7'(6,),
g, = 6,=0.



2) Lyapunov-Function: Consider the following function
V(q,q,0,0) as a candidate Lyapunov function:

V(Qv‘?aoaé) = Sq + S@ .
In steady state the following holds (due to (18)):

(34)

V(qS,O,OS,O) = Vg(‘]s) - ‘/57(05)
1
+§(05 - qs)TK(GS - qs)
= 0.

The kinetic part of V(q, ¢, 6, 6)

1. o1l .
is positive definite with respect to ¢ und @, because the mass
matrix is positive definite. In order to show that V' (g, q, 0, 6) is
positive definite, it is then sufficient to show that the potential
part

‘/POt (q7 0) = V(q7 iL 07 0) - Vkin

is positive definite with respect to g and 6.

Consider at first only the part of the potential energy due to
K. In the following g is written instead of g(6) in order to
simplify the notation.

(35)

Vi = 50-9'K©O-q)
- %(0_q+q_q)TK(e—q+a—q)
= %g(a)TK “g(g) + %(a -9)"K(q@—q)

+@a-a)"9(@)
Herein the relationship K(6 — q) = g(q) was used which

holds, contrary to (12), always (i.e. not only in Q). The
potential energy can then be written (with (18)) as follows:

Vi + %i(e)TKzi»(e) +
Vo(q) — V5(0)
= Vk+ %i(e)TKzi»(e) +

‘/pot (qv 0) =

Vy(a) - Vy(a) ~ 39() K 'g(a)

Due to property 3 the following inequalities hold:

Vi 2 5(@-a) K(a - q)+ 3#(0) K.&(0)

~Vy(a) — Vs(@) — (a — 2)"9(@)|
1, _ 1. .
> S(@-q)"(K-al)(g-q)+5%60) K.(6)

The right hand side of the last inequality is nonnegative for
all (q,0), since K; > o (from Remark 1). The area in
which the term &(6)7 K ,2(0) is positive definite (in 0) finally
determines the area in which the Lyapunov function is positive
definite. For the case of a general forward kinematics only
local statements can be made therefore.

14Remember that in steady state g, = g(6s).

3) Derivative of the Lyapunov-Function: The derivative of
Vg, q,0,80) along the solutions of the system (22)-(23) (for
Tzt = 0) IS given by:

V(q,q,0,0) =S, + Sy =—2" D, . (36)

Due to the fact that the matrix D, is positive definite, it
can then be concluded that the equilibrium point is stable.
Furthermore asymptotic stability can be shown by the use of
the invariance principle of LaSalle. Therefore the system state
will converge into the largest positively invariant set for which
@ = 0 holds. From the system equations it follows that there
does not exist any trajectory for which & = 0 holds exept for
the restriction to the equilibrium point!®. Therefore asymptotic
stability can be concluded.
4) Some Additional Remarks:

« In contrast to any previous works, no restrictions are
imposed on the p.d. matrix K, for stability, meaning
that the stiffness can be commanded arbitrarily close to
zero.

o The redundant case:

Notice that by the same argumentation as above one can
in principle also show convergence of the Cartesian error
& — 0 in the redundant case m < n (as long as singular
configurations are avoided). However, it is then of course
necessary to add also a nullspace damping term in order
to ensure & — 0 (see e.g. [7]).

« Global Analysis in Joint Space
It should also be mentioned that the stability analysis
would have led to a globally valid statement in case of
a joint space impedance controller (as in Section Ill-
B). The reason for the fact that the analysis is only
valid locally for the Cartesian impedance controller is
explained hereafter. In the previous analysis the motor
angles 6; of the rotational joints are seen as elements of
R instead of the more appropriate manifold S* (the unit
circle). Any set of Cartesian coordinates which describe
the position and orientation of the endeffector therefore
must necessarily be periodic in 6. Furthermore it is
well known that, due to topological reasons®®, it is not
possible to design a potential function in Cartesian space
(SE(3)) which has a single global extremum. Besides
that, the manipulator singularities (as well as additional
representation singularities of the coordinate function
) represent further restrictions to the analysis of the
Cartesian controller.

VI. CONCLUSION

In this paper it has been shown that the feedback of joint
torques for a flexible joint robot can be interpreted physically
as a scaling of the motor inertia. This new interpretation allows
in principle the combination of a torque feedback action with
any controller designed for flexible joint robots. In this paper

I5Notice again that the analysis is restricted to a workspace in which the
Jacobian is nonsingular.
16and Morse’s theory



the case of a Cartesian impedance controller was treated in
detail. A stability analysis of the presented controller was
given which was based on the passivity properties of the torque
controlled motor dynamics and the impedance controller. The
design of an appropriate gravity compensation term poses an
additional problem in case of a robot with nonnegligible joint
flexibility. Therefore a compensation term was proposed which
is based only on the measurement of the motor side position.
In order to achieve a high control performance in practice,
many extentions to the presented controller are possible. They
are the topics of the second paper [3] in which it also will
be shown how the controller must be extended in case of
nonnegligible joint damping (i.e. damping in parallel to the
joint stiffness K'). Furthermore also some experimental results
with the presented controller will be given in the second part.

APPENDIX

In this appendix the potential function V(@) for the gravity
compensation term g(@) will be derived. Remember that for
the construction of g(0) := g(g(@)) in Section IV the function
q(8) := h™'(0), i.e. the inverse of the function h(q) :=
q+ K 'g(q), was used. Existence and uniqueness of h~*(8)
were already established in Remark 2.

In the following the Jacobian matrix 9g(6)/00 will be needed.
Consider first the Jacobian matrix of the function h(q):

oh(q) 199(q)
9 <I + K~ 94 (37)
Due to h(g(0)) = 6, the Jacobian matrix 8?9(09) must be
dq(6 < 109(a >> 1
——= =(I+K~ . (38)
00 0q —4(0)
The potential function V;(0) clearly can be written in the form
V3(6) = V5(h(q(8))) =: V5n(a(6)) (39)
For the differential 0V;(6)/06 one obtains
Vy(0) _ (9Van(@) 94(6) (@0)
00 0q _ae) 00

a
By substituting (as desired) é
from (38) one gets

Vnla) _ 199(@)
Tt = s (1o GL)
- 9@ +9@' K ED

This differential can then be integrated to V31, (q) = V,(q) +
19(@)" K 'g(g) + c, with an arbitrary constant ¢ € R".
Setting ¢ = 0 leads to the gravity compensation potential
V5(0) from Section 1V:

V5(0) = Vy(a(8)) + ;g( 0))"K~'g(a(0)) .

Notice also that the complete potential function V.(q,0) =
Vy(q) + Vi(0 — q) — V5(0) vanishes at all stationary points

Ve(q,0) =0 V(q,0)€Q. (42)

(41)

Therefore
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[3]

[4]

[5]

(6]

[71

[8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

V5(0) can also be written as
V5(0) = Vy(q(0)) + Vi(0 — q(8)) .
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