MASTER THESIS
COMPUTER SCIENCE

h

G .
é.\9 Ny |
orrer

O’”INe-‘?QJ

RADBOUD UNIVERSITY

Post-quantum blockchain using
one-time signature chains

Author: First supervisor/assessor:
Wouter van der Linde dr. Peter Schwabe
wlinde@science.ru.nl peter@cryptojedi.org

Ezxternal supervisors:
dr. Andreas Hiilsing
andreas@huelsing.net

dr. Yuval Yarom
yval@cs.adelaide.edu.au

Second assessor:
prof. dr. Lejla Batina
lejla@cs.ru.nl

August 27, 2018

Abstract

Recent advances in quantum computing seem to suggest it is only a mat-
ter of time before general quantum computers become a reality. Because
all widely used cryptographic constructions rely on the hardness of prob-
lems that can be solved efficiently using known quantum algorithms, quan-
tum computers will have a profound impact on the field of cryptography.
One such construction that will be broken by quantum computers is elliptic
curve cryptography, which is used in blockchain applications such as bit-
coin for digital signatures. Hash-based signature schemes are a promising
post-quantum secure alternative, but existing schemes such as XMSS and
SPHINCS are impractical for blockchain applications because of their per-
formance characteristics. We construct a quantum secure signature scheme
for use in blockchain technology by combining a hash-based one-time sig-
nature scheme with Naor-Yung chaining. By exploiting the structure and
properties of a blockchain we achieve smaller signatures and better perfor-
mance than existing hash-based signature schemes. The proposed scheme
supports both one-time and many-time key pairs, and is designed to be
easily adopted into existing blockchain implementations.

Acknowledgements

I would like to thank my supervisors Peter Schwabe, Andreas Hiilsing and
Yuval Yarom, for their guidance and support while I was working on this
thesis. Our discussions always inspired me to improve, and to try again when
I was stuck. I am also very grateful to Piotr Narewski, whose implementation
of bitcoin I used, for his time and effort to answer my many questions, and to
Lejla Batina for taking the time to act as second reader. Finally, I thank my
girlfriend, family, and friends for reading various drafts, providing valuable
feedback, helping me clear my head from time to time, and for supporting
me during my studies. Thank you all.

Contents

1 Introduction

2 Cryptographic Background
2.1 Cryptographic Hash Functions
2.2 Pseudo-Random Functions.
2.3 Digital Signature Schemes
2.4 Post-Quantum Cryptography
2.5 Hash-Based Signature Schemes
2.6 W-OTS+inDetail

3 Background on Bitcoin
3.1 Design and Security o000
3.2 Relevant Implementation Details
3.3 Post-Quantum Secure Blockchain

4 XNYSS
4.1 One-time addresses o
4.2 Long-term addresses
4.3 Full Scheme
4.3.1 Parameters and Key State
4.3.2 Algorithms
4.3.3 Limitations,
4.4 Performance

5 Implementation in Bitcoin
5.1 Addresses and Scripts
5.2 UPKH Dabatase
5.3 Updating Wallet State
5.4 Segregated Witness

6 Discussion and Conclusion
6.1 Conclusion
6.2 Related Work
6.3 Improvements and Future Work

A TUsing our code

20
20
23
28

30
30
31
36
36
37
40
41

44
44
47
48
49

51
o1
51
53

61

Chapter 1

Introduction

Many of the world’s largest and most influential technology companies have
been actively developing quantum processors, racing to be the first to achieve
quantum supremacy '. On January 8 2018, Intel announced their 49-qubit
quantum test chip [26], which would allow researchers to further examine and
improve error correction techniques and simulate computational problems.
On March 5, Google presented Bristlecone, their new 72-qubit quantum
processor, stating they are ‘cautiously optimistic that quantum supremacy
can be achieved with Bristlecone’ [27]. The existence of a powerful quan-
tum computer has serious consequences for cryptography: already in 1994
Shor showed that a sufficiently powerful quantum computer can break RSA,
Diffie-Hellman key exchange, and Elliptic Curve cryptography [41], which
currently form the cryptographic foundations of the internet. While there
is a large gap between reaching quantum supremacy and breaking RSA
(which would require thousands of qubits [4]), it is important to prepare
for a world where quantum computers are a reality; we need time to design
post-quantum secure schemes, to improve their efficiency and usability, and
to build confidence in their security [6].

Quantum computing also has significant consequences for blockchain
technology, which includes crypto-currencies such as Bitcoin, Ethereum and
Monero. This field has rapidly gained popularity and mainstream atten-
tion: on December 17 2017, a bitcoin’s value reached an all-time high of
$19,783.06 (USD), while only a year before a bitcoin was worth less than a
thousand dollars [19]. However, since elliptic curve cryptography is used to
prove ownership of funds, the original bitcoin design is not post-quantum
secure. It is crucial for the longevity of bitcoin and other blockchain tech-
nologies to adopt post-quantum secure signature schemes.

An example of a post-quantum secure crypto-currency is the Quantum
Resistant Ledger (QRL) [36], which uses the hash-based signature scheme

!Quantum supremacy denotes the ability of a quantum computer to perform tasks
surpassing what can be done with classical computers.

XMSS. XMSS however has some downsides. One is its long key generation
time: generating a public key that can be used for 216 signatures already
takes about 20 seconds, and having more signatures available only increases
this. Although 2'6 signatures will be enough for most users, a party like
Wikipedia that depends on donations will (hopefully) need far more. How-
ever, XMSS’ main problem when used in blockchain applications is its sig-
nature size, which is about 2.5KB with the parameters that the QRL uses.
When signatures grow larger, less transactions fit in a block, which slows
down the already low rate at which transactions are being processed.

Our goal. In this thesis we develop a quantum secure signature scheme
for use in blockchain technologies, based on one-time signatures combined
with Naor-Yung chaining. Compared to XMSS, we intend this scheme to
have smaller signatures, more efficient key generation with higher signature
capacity, and faster signing and verification times, while (or as a consequence
of) being conceptually easier. Finally, it should be easy to integrate into
existing blockchain implementations. The signature scheme we propose is
designed for blockchain applications in general, but to limit the scope of this
thesis we focus on its application in bitcoin specifically.

Chapter 2

Cryptographic Background

In Chapter 4 we present a new hash-based signature scheme for use in block-
chain technologies. This chapter provides the necessary cryptographic back-
ground, starting with cryptographic hash functions, pseudo-random func-
tions and digital signature schemes. We then take a brief look at post-
quantum cryptography, and discuss the construction and development of
hash-based signature schemes. Finally we discuss one such scheme, W-
OTS+, in detail; it is used as a building block for the scheme we propose in
this thesis.
In the following, x & X means that z is randomly chosen from X.

2.1 Cryptographic Hash Functions

Hash functions map inputs of arbitrary size to smaller fixed-size outputs.
They are often used to allow efficient lookups in unsorted data, by using the
output of a hash function as a key to the data. Such a data structure is
called a hash table or hash map, and is available in most programming lan-
guages. Cryptographic hash functions combine this mapping property with
the concept of a one-way function (OWF), which is efficient to compute
but hard to invert: when given an output y of a OWF f, it is practically
infeasible to find an input z (a pre-image) such that f(z) = y. With ‘prac-
tically infeasible’ we mean that there is no known efficient algorithm. In the
rest of this thesis we use the terms ‘hash function’ and ‘cryptographic hash
function’ interchangeably to refer to the latter.

A cryptographic hash function H : {0,1}* — {0,1}" thus maps inputs
of arbitrary length to fixed-size outputs (often called digests) of n bytes, in
a way that is practically infeasible to invert. Informally, cryptographic hash
functions adhere to the following properties:

e Given an output y = H(x), it is practically infeasible to find the pre-
image x.

e Given an input x1, it is practically infeasible to find a second pre-image
x9 such that x1 # xo and H(z1) = H(x2).

e It is practically infeasible to find a collision: two arbitrary inputs x;
and x9 such that H(z1) = H(x2) and x1 # x3.

Formally, these properties hold if the chance that any probabilistic poly-
nomial algorithm outputs a pre-image, second pre-image or collision respec-
tively is negligible. However, the above description of a cryptographic hash
function does not satisfy this; if we create an algorithm that chooses ran-
dom outputs and simply returns these, there will be an instance that always
produces a collision with a probability of one. To prevent this issue, cryp-
tographic hash functions are more formally defined as follows (we give only
the most popular properties, see [39] for a comprehensive overview):

Definition 2.1.1 (Cryptographic hash function). A cryptographic hash func-
tion is a function H : {0,1}™ x {0,1}* — {0,1}" that, given an m-byte key
and an input of arbitrary size gives an n-byte output, such that

e (Pre-image resistance) for any key k & {0,1}™ and output y = H(k, x),
finding x is practically infeasible,

e (Second pre-image resistance) for any key k & {0,1}™ and input z, €
{0,1}* such that H(k,z1) =y, finding an input xo such that x1 # x2
and H(k,x2) =y is practically infeasible,

e (Collision resistance) for any key k & {0,1}™, finding two inputs
x1 and x2 such that x1 # xo and H(k,z1) = H(k,z2) is practically
infeasible.

By varying the function key, different instantiations of the hash function
are obtained. The set of all such variations is often called a function family,
denoted as H : {H : {0,1}" x {0,1}* — {0,1}"}.

Although the differences between these properties are subtle, their dis-
tinction is vital. In a group of people, it is in fact far more likely that there
is a random pair of people that share the same birthday (a collision) than
that there is a person that shares your birthday (which is similar to finding
a second pre-image). This is known as the birthday paradox. For a cryp-
tographic hash function with n-bit outputs, finding a (second) pre-image
requires a brute force attack with time-complexity O(2") !, but finding a
collision takes O(2"/?) using the so-called birthday attack. Therefore, an ap-
plication that relies on collision resistance of a hash function would require
a longer hash output than one that relies on (second) pre-image resistance
to achieve the same security level.

1We are referring to general attacks on cryptographic hash functions. Using cryptanal-
ysis it might be possible to find more efficient attacks for specific hash functions, as in
[40].

2.2 Pseudo-Random Functions

Another class of functions that is often used in the following sections is
that of pseudo-random functions (PRFs). Intuitively, a PRF is a function
that cannot be distinguished from any other function with the same range
and domain. Formally, an adversary gets access to a black box Box that is
initialized as a function from either a family P or from the set G(m,n) of all
functions with domain {0, 1} and range {0, 1}". The goal of the adversary
is to distinguish both cases. The probability of success for adversary A is
defined as:

SucchF(.A) = |Pr[Box ﬁ P AB() = 1]
—Pr[Box & G(m,n) : AB*0) = lH
The definition of a pseudo-random function is then as follows:

Definition 2.2.1 (Pseudo-random function). We call P : {P : {0,1}" x
{0,1}* — {0,1}"} a pseudo-random function family if for all probabilistic
polynomial time adversaries A, running in time polynomial to n, the maxi-
mum success probability is negligible:

max{Succh(A)} = negl(n)

2.3 Digital Signature Schemes

When signing a contract, for example to rent an apartment, the signer com-
mits him- or herself to its contents because they are (or should be) the only
one able to draw their own signature. In the digital world, digital signatures
provide the same assurances by using public-key cryptography, which uses
a pair of keys: a private key that is known only to the key pair’s owner,
and a public key that is publicly known. In digital signature schemes, the
private key is used by the signer to create a digital signature for a given
message, and the public key can be used by anyone to verify the resulting
signature for that message. As long as the private key remains secret, a
digital signature provides authentication (the message was created or ap-
proved by the signer), non-repudiation (the signer cannot later deny having
signed the message, since only the signer has access to the private key), and
integrity (the message was not altered after it was signed). The only way for
an attacker, who does not own the private key, to create a valid signature
would be to forge one.

Definition 2.3.1 (Digital signature scheme). A signature scheme is defined
as a triple of algorithms (Kg, Sign, Vf) for a message space M (which is
often defined as the output range of a hash function), where

e Kg(1™) generates a key pair (sk, pk) given a security parameter n;
o Sign(sk, M) creates a signature o on M wusing the secret key sk;

o Vf(pk,o,M) returns 1 if o is a valid signature on message M for
public key pk;

such that for all (sk,pk) <— Kg(1™) and all messages M € M, every signa-
ture o < Sign(sk, M) can be verified with Vf(pk,o, M) = 1.

The standard security notion for signature schemes is Existential Un-
forgeability under Chosen Message Attacks (EU-CMA) [21], which means
that an adversary A successfully breaks the scheme if she manages to forge
a valid signature for any message, while being able to obtain one or more
valid message and signature pairs. This is formally defined using the fol-
lowing experiment (where Dss(1¥) denotes a signature scheme with security
parameter k and ¢ the maximum number of signature queries):

Experiment ExpeD“SjS/C(r{‘,f) (A)
(sk,pk) < Kg(1™)
(M*,O‘*) — ASign(sk,~)(pk)
Let {(M;,0;)}{ be the results of all queries to Sign(sk,)
Return 1 iff Vf(pk,o*, M*) =1 and (M*,0*) ¢ {(M;,0,)}

The success probability for an adversary A is then
SucceDus'sc(T,?) (A) =Pr [ExpeD“S'SC(T,?) (A) = 1],
and EU-CMA security of a digital signature schemes is defined as follows:

Definition 2.3.2 (EU-CMA). Let k € N. A digital signature scheme
Dss(1¥) is EU-CMA secure if for all q,t polynomial in k the success proba-
bility of any A running in time <t and making at most q queries to Sign is
negligible in k:

max{Succp) (7 (A)} = negl(k)

One-time signature schemes A recurring concept in this thesis is that
of a One-Time Signature (OTS) scheme, which is a signature scheme that
is secure when using a key pair to sign a message only once. Since creating
a signature with an OTS scheme often means revealing some part of the
private key, using the same key pair to sign multiple messages degrades the
security guarantees, making it more likely that an attacker can forge a sig-
nature. Note that the above definition of EU-CMA holds for an OTS if the
amount of queries the adversary can make to the signing oracle is limited to
one.

Digital signature schemes are widely employed on the internet, for ex-
ample to prove authorship of files, ownership of cryptographic public keys,
and integrity of software distributions. However, as we will see in the next
section, the longevity of currently used schemes is not guaranteed.

2.4 Post-Quantum Cryptography

Already in 1994 Shor showed that by using the unique properties of quan-
tum computers it is possible to construct algorithms that solve discrete
logarithms and integer factorizations in polynomial time [41]. Shor’s algo-
rithms will significantly change the field of cryptography: once a sufficiently
powerful quantum computer is developed, it renders all currently widely
used schemes based on public key cryptography (such as RSA, ECDSA,
Diffie-Hellman key exchange etc.) insecure. Luckily we are still years
away of actually building such a machine, and nothing has been broken
yet. Cryptographers have been working hard on developing alternatives
which include lattice-based cryptography [1][38][42], code-based cryptogra-
phy [31]]28][9][7], multivariate public key cryptography [15], and hash-based
signatures [11][24][8][25]. All these alternatives rely on different problems,
which are believed to resist attacks by quantum computers as well.

In the case of hash-based signatures, that problem is breaking one or
more of the three properties of cryptographic hash functions explained in
Section 2.1. Although there exists a quantum algorithm, called Grover’s
algorithm, that can be used to find pre-images of hash functions faster than
classical computers can [22], the speedup is far less severe: Grover’s algo-
rithm finds a pre-image of an n-bit hash with time complexity O(v/2"),
providing a quadratic speedup compared to O(2") for a classical computer.
Since for an n-bit hash output Grover’s algorithm on average needs /2" =
27/2 tries, it can be counteracted by simply doubling the output length of
the used hash function.

In this thesis we expand the literature on hash-based signature schemes
by proposing a new scheme, designed specifically for use in blockchain ap-
plications. For those unfamiliar with hash-based signature schemes we give
a short historic overview in the next section.

2.5 Hash-Based Signature Schemes

Almost 40 years ago the first hash-based signature scheme was proposed,
but only recently they have become practical enough to be used in gen-
eral applications. In this section we give a short (and incomplete) historic

overview of hash-based signature schemes 2.

2For a more complete history, see https://pgcrypto.org/hash.html and https://
huelsing.wordpress.com/hash-based-signature-schemes/literature/.

10

https://pqcrypto.org/hash.html
https://huelsing.wordpress.com/hash-based-signature-schemes/literature/.
https://huelsing.wordpress.com/hash-based-signature-schemes/literature/.

Lamport one-time signature scheme. The first hash-based signature
scheme was published in 1979 by Lamport [30]. His idea was to selectively
reveal pre-images of the outputs of a one-way function f (which can be
instantiated with a hash function), depending on the bits of the message to
sign. To sign n-bit messages we generate n pairs of random values (k;,, ki,)
to get the sequence (k1,, k1,, - - -, kng, kn,); this sequence is our private key.
The public key is created by applying f to each of the private key values,
(f(k1y), f(k1y), ---y f(kny), f(kn,)), resulting in the sequence (p1,, p1,, -- -,

pnm pnl)
To sign an n-bit message M, we divide it into a string of individual bits
(mq, ma,...,my,) (note that M can be the output of a hash function with

n-bit outputs). After generating a key pair and distributing the public key,
M can be signed by selectively revealing parts of the private key. For every
message bit m;, we reveal k;, if m; = 0, and k;, if m; = 1. The resulting
signature (si, s2, ..., Sp) thus consists of exactly half of the private key
values. To verify such a signature, we start by picking one value of every
pair in the public key, using the message bits to determine which: if m; is
0, we pick p;,, and p;, otherwise. We then apply f to every value in the
signature, and check whether the resulting list matches the public key values
we picked.

While this scheme is very fast, it has some drawbacks that make it
impractical for general use. The first is that it is an OTS scheme. If the
same key pair is used to sign two different messages, both parts of one or
more private key pairs will be revealed, which allows an attacker to forge
a signature. Another issue is that signatures and keys are very large. The
private key values must be large enough to prevent an attacker from simply
iterating over all possible values. Assuming we make these 256 bits long
and use a one-way function with 256-bit outputs (to allow many different
messages to be signed), a signature would be 256 - 256 ~ 8.2 KB, and our
private and public keys 2 - 256 - 256 ~ 16.4 KB.

Merkle trees. In a 1982 patent [32] Merkle describes a structure that
allows many one-time signatures to be associated with one public key. He
called this structure an ‘authentication tree’, but it is commonly referred
to as a Merkle tree or hash tree, and the resulting scheme as the Merkle
Signature Scheme (MSS).

To create a Merkle tree, a signer first generates N OTS key pairs, where
N is a power of two. Assuming a hash function F 2, all N public keys are
‘compressed’ into one by building a binary tree, starting at the leaf nodes.
For every OTS public key pk;, the signer creates a leaf node h; = F(pk;). The
value of a parent node is then obtained by applying F' to the concatenation

3In [33], a paper published several years after his patent, Merkle actually describes I
as an efficient, compressing, and collision resistant one-way function.

11

his = F(hi2||h13)

his = F(hg”hg) hi3 = F(hl()”hll)

hg = F(hol|h1) | | ho = F(hal||h3) | | hio = F(ha|lhs) || h11 = F(he]||h7)

pko pk1 pko pk3 pky ks pke k7

Figure 2.1: A Merkle tree with 23 OTS key pairs.

of that parent’s child nodes. By applying this rule recursively the signer ends
up with one root node, which they make public and use as a ‘many-time’
public key. See Figure 2.1 for an example.

A signer creates an MSS signature by choosing a leaf node that has not
been used before, and creates a signature using the underlying OTS scheme
with the key pair of that leaf. To prove that the key pair used for the
signature is part of a Merkle tree with the long-term public key as root
node, the signer includes an authentication path along with the signature,
which contains the index of the used leaf node, and the shortest list of nodes
that enables a verifier to compute the root node of the tree. An example
of such an authentication path is illustrated in Figure 2.2. When using
the key pair with public key pk; to create the signature sig, the path thus
includes the index 1 (the left-most leaf having index 0). To allow a verifier to
compute the root node of the tree, we must also include hg, hg and hi3: the
signer thus publishes (sig, pk1,1, ho, hg, h13). A verifier can now compute
hl = F(pkﬁl), hg = F(ho”hl), h12 = F(hg”hg) and h14 = F(hm”hlg), and
finally checks whether the result matches our many-time public key.

Merkle already recognized that a large tree takes a long time to generate.
This is because all key pairs and nodes in the tree must be computed to
obtain the many-time public key. The more signatures we want available,
the bigger our tree has to be.

A large tree would also take a lot of storage space, but fortunately it
is not necessary to store the entire tree: we can deterministically generate
the private key values using a pseudo-random number generator and a short
seed value, reducing the required storage to one short seed value at the cost
of some computation time.

12

pko phy pks| pks [pka] pks|[phs| | phs

Figure 2.2: A Merkle tree authentication path example. When creating a
signature with the key pair of pk;, the authentication path consists of the
nodes with black borders. The nodes with dashed borders are computed by
a verifier, and those with gray borders remain known only to the signer.

Winternitz OTS. Following his patent, Merkle published his authentica-
tion tree in 1989 [33]. In the same paper he describes an idea by Winternitz
for an improved one-time signature scheme. Winternitz proposed to iterate
a hash function f, creating function chains such as f(f(f(z))) = f3(x) (note
that f9(x) = z), using chunks of message bits as iteration counts. The size
of these chunks determines the maximum chain length: if we split a message
into 4-bit chunks, we get a maximum chain length w (called the Winternitz
parameter) of 2¢ = 16. This allows us to sign multiple message bits with a
single private-key value, as opposed to Lamport’s scheme where we sign one
message bit with one private key value.

A Winternitz OTS (W-OTS) private key is a list of (pseudo-)randomly
generated values (not pairs). The corresponding public key values pk; are
obtained by iterating f on every private key value k; w — 1 times, such
that pk; = f*~!(k;). To create a signature, we reveal intermediate chain
values: if the first four message bits were 1001 (thus using w = 16), we
would reveal f?(ko) as the first part of our signature. A verifier checks this
part of the signature by evaluating f another 15 — 9 = 6 times to obtain
F8(f2 (ko)) = £ (ko), and making sure the result matches pk;.

This scheme trades signature size for increased computational effort.
Longer chains result in shorter signatures (since we split m into fewer chunks)
but require more evaluations of f. In fact, a linear decrease in signature size
results in an exponential increase in evaluations of f. However, since f is
(often) designed to be fast and easy to compute this is still a worthwhile
trade-off.

There is one obvious vulnerability in this scheme, which is that when
given for example the signature value f°(k;), which signs the message chunk

13

! !
F k— H
u W —— | & n

(

Figure 2.3: An illustration of the differences between MSS (on the left) and
SPR-MSS (on the right, where H is a keyed hashed function, k the key, and
vo and v; bit-masks).

0011, an attacker can easily compute f(f?(k;)), thus creating a signature
for the chunk 0100. This is solved by also signing a checksum that becomes
invalid when the signature is changed.

SPR-MSS. In 2005, Garcia proved that the security of Merkle’s signature
scheme depends on collision resistance of the hash function F' and EU-CMA
of the used OTS [18]. In the same year however, attacks were published on
the collision resistance of MD5 [45] and SHA1 [44], which were quite popular
at the time. Thus, Dahmen, Okeya, Takagi and Vuillaume set out to adapt
MSS to rely on second pre-image resistance of a hash function instead of
collision resistance [13]. The resulting scheme changes the hash function F
in MSS to a keyed cryptographic hash function Hj, and computes parent
nodes a bit differently: before appending child node values and computing
Hj; on the result, the child node values are XOR’ed with bit-masks (see
Figure 2.3 for an illustration). Both the key k and the bit-masks are fixed
during key generation and become part of the public key. The result is a
scheme that has a higher security level and shorter signature size than MSS,
but larger public keys.

W-OTSPRF A glightly adapted version of the Winternitz OTS was pro-
posed by Buchmann, Dahmen, Ehreth, Hiilsing and Riickert in 2011 [10].
Their version changes the hash function f to a keyed PRF fi that is also
used slightly different. When iterating f%, they use the output of the pre-
vious iteration as the key k for the current one. Every iteration thus uses
a different key, but the same input. The original Winternitz scheme was
proven to be secure if the hash function f is collision resistant and unde-
tectable (its output indistinguishable from a purely random output) [16].
Buchmann et al. prove that their scheme is secure without having to rely
on collision resistance. This allows W-OTSFRF to have significantly shorter
signatures than the original W-OTS at the same level of security (unfortu-

14

nately, the given proof turned out to be flawed in 2017, making W-OTSFPRF

insecure in practice [29]).

XMSS. By combining the ideas from SPR-MSS and W-OTSPRF, Buch-
mann, Dahmen and Hiilsing construct the eXtended Merkle Signature Scheme
(XMSS) [11]. By using SPR-MSS, the tree construction of XMSS relies on
a second pre-image resistant keyed function Hj, and by using W-OTSPRF
the only other security requirement is a PRF. The authors prove that these
two requirements are minimal (that theoretically, these are the only two re-
quirements for the existence of a secure signature scheme), and that if both
the hash function and PRF are efficient, XMSS is as well. Furthermore,
they prove that XMSS is forward secure: if an attacker at some point finds
the private key, they are still not able to create forgeries for signatures that
were created before they found the private key. With a signature size of less
than 25% of SPR-MSS and a slightly higher security level, XMSS can be
considered the first practical hash-based signature scheme.

W-0TS+. SPR-MSS replaced the need for a collision resistant hash func-
tion with a second pre-image resistant one by using keyed hash functions
and bit-masks. Hiilsing applied a comparable approach to W-OTS to achieve
shorter signatures for the same (pre-quantum) security level (compared to
W-OTSPRF). Starting from the original W-OTS, we replace the hash func-
tion f with a keyed hash function f; that is second pre-image resistant,
one-way and undetectable. During key generation we fix a key k£ and ran-
domization elements r = (rq,...,7;). Now, every time we apply the function
fr, we first compute the bitwise XOR, of the input of the function and one
of the randomization elements, fx(x @ r;) for some i. By using W-OTS+
in XMSS, the signature size can be further reduced by 50% (compared to
W-OTSPRY) at a security level of 80 bits.

SPHINCS. One major drawback of XMSS is that it is stateful: it is vital
to remember which one-time key pairs were already used to create a signa-
ture. Because of this, it is not always possible to replace RSA or ECDSA
with XMSS. Also, when a previous backup of the key state is restored,
or when the key state is lost, the security of stateful schemes deteriorates
quickly. Because of this state, using the same key pair on different devices
is also difficult to manage. In 2015, SPHINCS was created to ‘eliminate the
state’ [8] and to be a drop-in replacement for current signature schemes such
as RSA and ECDSA. This is achieved by generating a variant of a Merkle
tree so that by randomly selecting leaf nodes to sign with, the chance of
using the same leaf node more than once is sufficiently small to be prac-
tically non-existent. Already in 1986 Goldreich [20] proposed a stateless
hash-based signature scheme by using a very large tree where every node

15

was not the result of hashing two child nodes, but instead an OTS signature
on those children. As a result, Goldreich’s scheme produces extremely large
signatures since the authentication paths consisted of many OTS signatures.
SPHINCS solves this issue by constructing a tree where every node is in fact
a Merkle tree itself: the leaf nodes contain OTS key pairs that are used to
sign the root of other sub-trees. SPHINCS introduces several more improve-
ments, but for the sake of brevity we refer those interested to the original
paper [8]. While SPHINCS does not rely on private key state, it has a large
signature size (41 KB) and long computation times. Two improvements on
SPHINCS, called SPHINCS+ and Gravity-SPHINCS, have been submitted
to the Post-Quantum Cryptography project by NIST (https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions).

WOTS-T & XMSS-T. In 2016 Hiilsing, Rijneveld and Song identified
the issue of multi-target attacks on hash functions in relation to XMSS and
W-OTS(+). These schemes base their security on pre-image resistance of a
cryptographic hash function, for which the attack complexity is O(2") for
n-bit outputs. However, this assumes the hash function is used only once,
while for XMSS and W-OTS(+) an attacker can obtain many hash func-
tion outputs, and can possibly break the security of these schemes if they
succeed in finding just one pre-image. When such a multi-target attack tar-
gets d outputs, the attack complexity degrades to (’)(%), which has serious
consequences in practice when deciding on parameters to use.

To prevent such attacks on XMSS and W-OTS+, the authors propose to
use different keys and bit-masks for every hash function call, making each one
unique. To avoid making public keys even larger, these keys and bit-masks
are computed deterministically using a PRF. The resulting schemes XMSS-
T and WOTS-T thus resist multi-target attacks (both in the classical and
post-quantum settings), at a minor performance cost, and were standardized
in RFC 8391 in May 2018 [23].

2.6 W-OTS+ in Detail

The signature scheme we propose in Section 4 uses an OTS as a building
block. We chose to use W-OTS+ (including the adaptations from WOTS-T
to prevent multi-target attacks) as its security is well understood and be-
cause it allows us to control the trade-off between performance and signature
size. At the time of writing it is also the only standardized OTS scheme [23].
This section describes W-OTS+ in detail, as described in RFC 8391. As we
use W-OTS+ as a sub-routine rather than a standalone signature scheme,
the key generation and signing algorithms use different inputs than spec-
ified in Defition 2.3.1. Finally, we provide an algorithm that computes a
W-OTS+ public key from a signature rather than a verification algorithm.

16

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

In the following log denotes the base-2 logarithm.

Parameters and functions. W-OTS+ uses two parameters. The secu-
rity parameter n determines the size of private key, public key and signature
elements, and is usually (but not necessarily) also used as the length of mes-
sages that can be signed (which are usually hash digests). The Winternitz
parameter w determines the trade-off between size and computation effort.
These parameters are used to calculate the variables len, len; and lens.
Here len denotes the amount of function chains used, which when multi-
plied with n gives the total length of a private key, public key and signature.
leny determines the number of chains gathered from an input message, and
leno the number gathered from a checksum. They are determined as follows:

leny = [8n/logw]
leny = [log (leny - (w —1))/logw| + 1

len = leny + leng

Recommended values for w are 4 and 16 as these provide good trade-offs
between size and performance, but other values are possible as well. We also
need a second pre-image resistant hash function F', which takes an n-byte
input and n-byte key to compute an n-byte output, and a pseudo-random
function PRF that maps an n-byte key and 32-byte address value (which is
defined in the next paragraph) to an n-byte output. Both can be instantiated
using a cryptographic hash function such as SHA256 or SHA3-256".

To protect against multi-target attacks, all hash function calls are ran-
domized using pseudo-random keys and bit-masks. We first describe how
these are generated, then define the W-OTS+ chaining function and the
algorithms for key generation, signing and verification.

Addresses, keys and bit-masks. Since we need the same keys and bit-
masks used to create a signature to verify it, they must be generated deter-
ministically. This is achieved by using the addressing structure depicted in
Figure 2.4, which we from now on refer to as an OTS address. The ‘layer’,
‘tree’ and ‘OTS’ fields specify the position of an OTS key pair in a larger tree
structure (as used by XMSS), and are all set to 0 when no such structure
is used. The type field is also set to 0, indicating that the address belongs
to an OTS hash °. The ‘Chain’, ‘Hash’ and ‘KeyAndMask’ fields are used
internally in W-OTS+. We use dot notation to refer to a specific field, i.e.
a.Chain where a is an OTS address.

“For more information on the security requirements of these functions we refer to
Section 9 of RFC 8391.

SRFC 8391 specifies two other address structures with different type values. These are
only used in XMSS and thus not relevant for W-OTS+.

17

Layer address (32 bits)
Tree address (64 bits)
Type = 0 (32 bits)
OTS address (32 bits)
Chain address (32 bits)
Hash address (32 bits)
KeyAndMask (32 bits)

Figure 2.4: A W-OTS+ OTS address.

Keys and bit-masks are generated with the function PRF', using an OTS
address as the 32-byte address input and a pseudo-randomly generated n-
byte public seed as the n-byte key. While the OTS address guarantees
different keys and bit-masks for every call to the hash function F', the public
seed guarantees a different set of keys and bit-masks for every W-OTS+ key
pair. Depending on the value of the ‘KeyAndMask’ field of the used address,
PRF produces a hash function key or bit-mask.

Chaining function. We define the chaining function C*/(z, a, ps) with an
n-byte input z, an amount of iterations i, a starting index j, an OTS address
a and a public seed value ps, as follows. If ¢ = 0, C returns x. Otherwise,
given that aj denotes address a with a.Hash = j + ¢, we compute a key k
and bit-mask r as

k = PRF(ps,ap) with aj,.KeyAndMask = 0,

r = PRF(ps,ap) with ap. KeyAndMask = 1,
and define C' recursively it as

C™ (x,a, seed) = F(k, C""Y (z,ay,, ps) ©r).

The chaining function thus first generates a key k and bit-mask r, then
takes the bitwise XOR of the previous iteration C*~1J(z, a, ps) and r, and
computes F' using key k on the result.

Key generation. The algorithm Kg(s,a, ps), given an n-byte secret seed
s, an OTS address a and an n-byte public seed ps, generates a key pair
(sk,pk). The private key sk = (skq, ..., Skje,) consists of n-byte values that
are pseudo-randomly generated from s. To reduce the amount of storage
required it is regenerated from s when needed. A public key pk of n - len
bytes is then computed as

pk = (pk1, ..., Pkien) = (CV710(sky, acy, ps), . .., CV710(skign, ac,, pS))

where a., denotes an address a with a.Chain = 7.

18

Signing. The signing algorithm Sign(s, M, a, ps) computes a signature o
for an n-byte message M, given an n-byte secret seed s, an OTS address
a and an n-byte public seed ps. First, the message is mapped to len;
chain lengths by dividing its binary representation into len; groups of bits
(m1,...,Mien,) = m. Each m; is then interpreted as a natural number
between 0 and w — 1. The idea is to treat M as the binary representation
of a natural number, and transform that to a base-w representation. This
results in a list of natural numbers between 0 and w — 1, which can be used
as chain lengths. A checksum c is computed as ¢ = Zéeﬁf (w—1—my),
and its binary representation similarly interpreted as lens chain lengths
(c1,...,Cleny) = c. The full list of len chain lengths b is then obtained by
concatenating these two lists so that b = (b1,...,bien) = m||c.

After computing the private key sk = (ski, ..., skie,) from s, a signature
o of n - len bytes is computed as

0 = (017 ey Ulen) - (Cb170(8k17 aC17pS)7 ey Cblemo(Sklena aclm,,7p5))

where a.; again denotes an address a where a.Chain = ¢. A signature thus
consists of partially evaluated chains on the private key.

Verification. Lastly we define the algorithm PkFromSig(o, M, a, ps) that
computes a W-OTS+ public key from signature o of n-len bytes on an n-byte
message M, given an OTS address a and public seed ps. First, PkFromSig
computes the chain lengths in exactly the same way as when creating a
signature: M is mapped to len; chain lengths, the message checksum is
computed and converted to lens chain lengths, and the two are concatenated
to obtain b = (b1,...,bn). Then a public key pk is computed from o by
completing the partial chains in the signature:

pk = (pkh cee 7pk7len) - (Cwilibl’bl (017 ac1>7 ey Cwiliblenyblen (Ulena aclcn))-

Finally, pk is returned. Checking the validity of pk is thus delegated to the
caller.

19

Chapter 3

Background on Bitcoin

Having discussed the cryptographic background, we now turn to the second
topic of this thesis. In the following sections we provide an introduction to
the design and security of bitcoin, and describe some implementation details
that are relevant to our work. We then discuss the consequences of quantum
computing on bitcoin’s security.

3.1 Design and Security

Bitcoin was designed by Nakamoto in 2008 [34] as a decentralized electronic
currency. There is no trusted third party that processes every transaction;
instead it uses a peer-to-peer network where the transaction history is de-
termined by decree of the majority. Transactions are recorded in a public
ledger, called a blockchain, which is constructed in such a way that it is
practically infeasible for malicious users to make changes. Every user main-
tains a copy of the blockchain, and communicates changes to its peers. A
blockchain is essentially a database maintained by an online community that
determines the database’s contents by consensus among users.

Transactions. Nakamoto defined an electronic coin as a chain of digital
signatures. Each signature signs the hash of the previous link and the public
key of the new owner of the coin. Each link can thus be seen as a transaction
of the coin. To transfer a coin to someone else, the current owner adds a
link to this chain, thus creating a new transaction: the owner signs the hash
of the current signature and the public key of the payee. See Figure 3.1 for
an illustration of such a coin.

Such a transaction however would only be able to transfer a single ‘coin’,
and using a separate transaction for every cent of a larger payment would
not be practical. To solve this a transaction can be further broken down
into inputs and outputs. Inputs ‘collect’ funds from outputs of previous
transactions, and outputs make funds available to subsequent inputs, speci-

20

Transaction 1 Transaction 2 Transaction 3

’ P;’s public key ‘ ’ Py’s public key ‘ ’ P5’s public key ‘

Y

{Hash] | ———[Hash] | ————[Hash]

’ Py’s siénature ‘ ’ P’s sig'nature ‘ ’ Py’s siénature ‘

,/’§\é“ -G
’ Py’s private key ’ Py’s private key

’ P5’s private key‘

Figure 3.1: An illustration of a series of transactions as defined in [34]. After
Transaction 1, P; is the owner of the coin. P; sends the coin to P, by using
their private key to sign the hash of Transaction 1 and P»’s public key.

fying certain conditions on how they can be claimed (Nakamoto did not go
into detail on how to construct inputs and outputs; see Section 3.2 for more
details).

The hardest part of developing an electronic currency system is to pre-
vent double spending. While it is impossible in the physical world to give
away the same coin twice, a digital bit string is not lost after it is used to
pay. As argued in [34], the only way to know whether a transaction already
exists is to be aware of all transactions. Since we want to avoid having to
trust a third party, this means all transactions must be publicly announced,
and that all participants in the network must agree on a single transaction
history.

Blocks and proof-of-work. In bitcoin the transaction history is defined
as a chain of blocks, where each block contains the hash of the previous block
in the chain, a list of transactions, and a random nonce. To add a block to
the chain, a user must provide a proof of work: only blocks with hashes that
start with a certain amount of zeros are accepted by the network. Users
are thus asked to find a pre-image for a partial hash output, which (for a
pre-image resistant hash function) should require a brute-force search. The
amount of zero’s required, often called the difficulty, can be varied depending
on the total hashing power of the network.

To add a block to the chain (given the hash of the last block in the
chain and a list of transactions to include) a user repeatedly increments

21

the new block’s nonce until they find one such that the block’s hash has
enough leading zeros. For a secure hash function, the chance of finding a
number that results in a hash with n leading zeros is on average 2% Ifn
is large enough, finding a suitable nonce using a single computer could take
days, months, or even years. However, if many users are searching for such
a nonce, the chance that one of them will find one quickly is significantly
higher.

To give users an incentive to create new valid blocks, the first transac-
tion in every block is a special one that ‘creates’ a new coin. While this may
seem like free money, users have to expend resources to create new blocks.
In bitcoin, these resources are CPU/GPU time and thus electricity. Another
incentive is the transaction fee: part of the funds collected by a transaction’s
inputs is reserved as payment to the user that includes it in a new block.
Once a predetermined amount of coins exist, finding a block no longer gen-
erates new coins and the transaction fee becomes the only incentive to find

new blocks.

Consensus. Occasionally multiple users might find a new block (roughly)
simultaneously. In this scenario, the blockchain forks into multiple branches.
Each user continues with whichever of these conflicting blocks they received
first, but will switch to the other branch if it becomes longer earlier. The
bitcoin consensus rule thus says that the longest chain is always right. Long
forks, where for multiple branches new blocks are found simultaneously mul-
tiple times in a row, are very unlikely; and if they do occur, they will even-
tually resolve to one chain. However, when receiving payment via bitcoin, it
is a good idea to wait for the transaction to be confirmed by several blocks
(3 confirmations is considered highly reliable) before acting on it to avoid
a situation where the transaction was included in a branch that is later
abandoned.

Malicious users that want to double spend their coins have to change or
undo a transaction in the blockchain after receiving what they initially paid
for. Every block that is added to the chain makes it harder for a malicious
user to make changes to previous blocks. Because every block in the chain
contains the hash of the previous one, a change in one block affects all blocks
after it as well. Therefore a malicious user must redo not only the proof of
work for the changed block, but also for every block that came after it.
While an adversary is re-doing all this work, the honest users are adding
blocks to the ‘honest’ chain. As long as more than half of the processing
power in the network is controlled by honest users, the ‘honest’ chain will
most likely grow faster than a fork created by any adversary.

!See https://bitcoin.org/en/you-need-to-know#instant

22

https://bitcoin.org/en/you-need-to-know#instant

3.2 Relevant Implementation Details

Although Nakamoto mentioned that transactions could be built using inputs
and outputs, he did not describe how these would work in detail. Below we
discuss how these are implemented, and how to pay or receive payment us-
ing bitcoin addresses. We also discuss the different software components of
the bitcoin network, as well as a protocol that was recently added to bit-
coin, segregated witness, which makes the scheme we propose in Chapter 4
significantly more practical. We only describe those details that are rele-
vant to our work; for more information on the implementation of the P2P
network, smart contracts, and other details we refer to bitcoin’s developer
guide (https://bitcoin.org/en/developer-guide).

Bitcoin addresses. An address can be seen as the bitcoin equivalent of
a bank account: if Alice wants to send some bitcoins to Bob, she needs his
bitcoin address, which is a base58-encoded string <wversion || hash || csum>
consisting of a version number, a hash, and a checksum. The version num-
ber describes how the hash should be used (more on this in the following
paragraphs), and the checksum is there to avoid transmission errors.

Transactions, inputs and outputs. A transaction is a tuple (ins, outs)
of a list of inputs ins and a list of outputs outs with at least one each (we
exclude some fields that are not relevant for this thesis), and is identified
by a transaction identifier (txid) defined as its hash. An output is a tuple
(val, scriptpi) of a bitcoin value val and a public key script scriptpy. The
public key script specifies conditions that must be met to spend the output’s
value, which are described using a simple scripting language. An input,
which is a tuple (tzid, idz, scriptg) claims funds of the output with index
idz in a transaction with txid tzid, by providing a signature script scriptg
that contains data that satisfies the conditions described in the specified
output’s scriptpi. A signature script is verified by pushing its data onto
a stack, then executing the corresponding public key script. We describe
several script types below.

Until an output is spent, it is marked as an Unspent Transaction Output
(UTXO). All UTXOs are kept in a UTXO database until they are spent, so
that checking whether a specific output has already been spent is trivial: if
an input tries to spend funds of an output that is not in the database, the
corresponding transaction is rejected.

P2PKH script. An output with a Pay-to-Public-Key-Hash (P2PKH)
public key script requires a claimant to prove they own a key pair of which
the public key hashes to a certain value. Let us assume that Alice wants to
pay Bob half of a bitcoin for trimming her backyard, and that Bob would

23

https://bitcoin.org/en/developer-guide

like to collect his payment using a P2PKH script (shown in Listing 3.1).
Bob first generates a key pair and computes a cryptograhic hash of his pub-
lic key H(pkpgy). He then constructs a bitcoin address using this public
key hash and a version prefix of 1 <1 || H(pkpy) || csump,y>, and sends
it to Alice. She decodes the address to extract Bob’s public key hash, cre-
ates a P2PKH script scriptg,"cb, and uses it to construct a transaction output
out4 = (0.5, scrz’ptg,oé)). Finally, she includes out 4 in a transaction tz 4 (such
that tx 4.outs[i] = out 4 for some index) with txid tzid 4, and broadcasts it

over the network.

OP_DUP OP_HASH160 <pubkey hash> OP_EQUALVERIFY OP_CHECKSIG

Listing 3.1: A P2PKH pubkey script

<signature> <public key>

Listing 3.2: A P2PKH signature script

To claim his coins, Bob must create an input with a valid signature
script. For a P2PKH script, it consists of a signature op,, created with
Bob’s private key and his full public key (see Listing 3.2). By default the
signed data consists of all inputs (excluding signature scripts) and outputs of
the transaction. Bob thus creates the input (tzid 4, i, 0o Pkpp)- Verifying
Bob’s signature script starts by pushing both the signature and full public
key it contains onto the stack. We then execute the operations of the public
key script (illustrated in Table 3.1), starting with OP_DUP which duplicates
the item currently on top of the stack. OP_HASH160 computes a hash of
the top stack item, consuming the original value. After this a public key
hash (the one Alice extracted from Bob’s address) is pushed onto the stack.
OP_EQUALVERIFY then checks whether the two topmost items on the stack
are equal, removing both from the stack. If not, script verification fails.
Finally OP_CHECKSIG is executed, which interprets the two topmost items on
the stack as a signature and full public key (in that order, consuming both),
then checks whether the signature is valid for the given public key.

P2SH script. The bitcoin scripting language can be used to create com-
plex scripts, but it would be impractical to distribute custom scripts to
spenders instead of a short, well defined bitcoin address. Moreover, public
key scripts are created by spenders who do not necessarily care about what
a script does, while receivers often do. Pay-to-Script-Hash scripts (P2SH)
were created to solve these problems. A receiver creates a P2SH address
by creating the custom script they want to use, which is called the redeem
script, hashing it, and including that hash in a standard bitcoin address
with the version prefix 3. A spender that receives such an address creates a
P2SH public key script as follows:

24

Stack Script

sig - pka OP_DUP OP_HASH160 <pkg hash>
OP_EQUALVERIFY OP_CHECKSIG
sig - pka — pka OP_HASH160 <pkp hash>

OP_EQUALVERIFY OP_CHECKSIG

sig - pkay - pkp hash <pkp hash>

OP_EQUALVERIFY OP_CHECKSIG
sig - pka - pkas hash - pkg hash | OP_EQUALVERIFY OP_CHECKSIG
sig - pka OP_CHECKSIG

1 -

Table 3.1: An example of a successful P2PKH script evaluation, where the
signature script elements have already been pushed to the stack.

OP_HASH160 <redeem script hash> OP_EQUAL

Listing 3.3: A P2SH public key script

A receiver then claims their funds by creating a signature script that
includes the redeem script and any data required to verify it. An example
of a more complex script for which P2SH addresses are used (and one we
refer to later in this thesis), is a multisig script.

Multisig Script. Multisig scripts can be used to require signatures from
multiple parties to spend an output. A multisig redeem script has the fol-
lowing structure, where m denotes the amount of required signatures and n
the number of given public keys:

<m> <pubkey A> [pubkey B] [pubkey C...] <n> OP_CHECKMULTISIG

Listing 3.4: Multisig redeem script

To spend an output with a P2SH multisig script, a spender must provide
m signatures that match m of n given full public keys along with the original
redeem script. A full multisig signature script, including the data required
for verification, thus looks like the following, where the OP_0 is included
because of an off-by-one error in the original bitcoin code that needed to be
preserved for backwards compatibility:

0P_0 <sig A> [sig B] [sig C...] <m> <pubkey A> [pubkey B] [
pubkey C...] <n> OP_CHECKMULTISIG

Listing 3.5: Multisig redeem script with data

25

Stack Script

OP.0 - sig A - OP_1 pky OP_HASH160 <hash> OP_EQUAL
pky OP_2 OP_CHECKMULTISIG
OP.0 - sig A - redeem hash <hash> 0P_EQUAL

OP.0 - sig A - redeem hash - hash | OP_EQUAL

OPO - sig A - 1 -

OP.0 - sig A 0P_1 <pkp> <pkp>

0P_2 OP_CHECKMULTISIG

OPO - sig A - 1 - pky - pkpy - 2 OP_CHECKMULTISIG
1 -

Table 3.2: An example of a successful 1-of-2 P2SH multisig script evaluation.
After restoring the redeem script as public key script, we skip a few pushes
to the stack for the sake of brevity.

A P2SH multisig script is then verified as illustrated in Table 3.2. First
the multisig redeem script is hashed and compared to the script hash in the
public key script. Then script verification is performed a second time, using
the redeem script as public key script.

Clients, wallets and miners. Creating a bitcoin address is done using
a wallet program. Wallets store the private key for all addresses they create,
and are thus also used to sign transactions; or in other words to create valid
signature scripts for public key scripts that send funds to an address con-
trolled by the wallet. Since wallet programs do not need to be connected to
the bitcoin network to generate addresses or sign transactions, and because
they store private keys, they can and should be kept on a system that is not
directly connected to the internet.

The networking components of bitcoin are performed by clients (some-
times called bitcoin nodes). When running a bitcoin client for the first time,
it will download and verify all blocks in the blockchain from other active
clients, after which it can be used to check the balance of a given address,
distribute new blocks or transactions signed by a wallet, etc.

Mining software is used to find new blocks as quickly as possible. A
mining program asks a bitcoin client for a block template, which contains
a number of transactions that can be included in a new block, the current
difficulty (how many leading zeros the next block must have), as well as
other data required to create a new block, and then starts iterating a ran-
dom nonce until it finds a block of which the hash satisfies the difficulty
requirement (hash enough leading zeros). Once a block is found, the mining

26

software sends it to a client so it can be distributed through the network.
To obtain their reward, miners include a special transaction called a coin-
base transaction in every block they mine. A coinbase transaction contains
one input (the content of which is completely ignored), and one output that
sends the mining reward and any mining fees payed by other transactions
included in the mined block to an address of the miner’s choice.

To optimize their profits, miners should find the optimal combination of
transactions in terms of size and fees; large transactions thus need higher
fees than smaller ones to give miners an incentive to include them in new
blocks. Thus, one of the obstacles for using hash-based signatures in bitcoin
is that because of their large signature sizes the required transaction fees
could become exorbitantly high. One of the goals of this thesis is thus to
create a hash-based signature scheme with a smaller signature size than
existing ones.

Segregated Witness. To conclude this section we take a brief look at
segragated witness (segwit), a protocol upgrade designed to increase the
amount of transactions that fit in a block and to solve the issue of transaction
malleability. Changes in certain data, such as the signature script, do not
change the outcome of a transaction (are malleable) but do change its txid:
it is possible for a malicious miner to change an input’s signature script,
without invalidating the transaction but changing its txid. This can make
it hard to monitor the status of a transaction by tracking its txid.

Segwit solves this malleability by moving signature scripts from inputs
to a separate data field, called the segregated witness or witness, that is
not used when computing the txid; a segwit transaction thus looks like
(ins, outs, witness). Since these segwit signature scripts are not part of the
txid, they must be added to the block hash when a miner includes such
transactions in a block. To do this the miner collects all segwit signature
scripts in the block by concatenating the witness fields of all segwit trans-
actions, computes a Merkle tree of their hashes, and puts the root of that
tree root s in the scriptpy of a second output of the coinbase transaction
cbtz 2:

cbtz.outs[1] = (0, 700t ys)-

As this output does not have any value and its script contains only data,
it cannot be spend with future inputs.

Segwit also introduces a virtual block size, computed as [(base size - 3 +
full size)/4] where base size denotes the block size without witness data, and
full size the block size including witness data. The (base size - 3 + full size)
part is called the block weight, and has to be smaller or equal to 4 MB. As a

2This is again a simplified explanation. For more details we refer to https://github.
com/bitcoin/bips/blob/master/bip-0141.mediawiki#Commitment_structure.

27

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#Commitment_structure
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#Commitment_structure

result, a 71-byte (DER~encoded) bitcoin signature included as witness data
only counts as 18 bytes for the virtual block size. This increases the amount
of transactions that fit in a block, thus increasing the amount of transactions
bitcoin can process per second and lowering the required transaction fee.
Most importantly for us, segwit ameliorates the large signature sizes of hash-
based signature schemes, making them much more practical in bitcoin: a
typical W-OTS+ signature of 2144 bytes would count as only 536 bytes for
the virtual block size when included as witness data.

3.3 Post-Quantum Secure Blockchain

The security of payments in bitcoin relies on the prevention of double spend-
ing and controlling who can spend what coins. The first is achieved using
the hash-based proof-of-work described above, which relies on the assump-
tion that finding a pre-image of a (partial) output of a cryptographic hash
function is much more costly than the potential gains. As we discussed in
Section 2.4, a sufficiently powerful quantum computer could use Grover’s
algorithm to find a pre-image of an n-bit hash function after O(2"/2) tries
(on average). Therefore miners using a quantum computer would have an
advantage because they can find pre-images faster than miners using a non-
quantum computer. While the same can be said for miners using ASICs, the
speedup that such specialized hardware provides is linear, while quantum
computers (using Grover’s algorithm) achieve a quadratic speedup. Solving
this issue is an important part of making bitcoin post-quantum secure, but
is out of scope for this thesis.

Access to coins is controlled using digital signatures. Currently bit-
coin uses the elliptic curve algorithm secp256k1 [37], which can be broken
by quantum computers using Shor’s algorithm (again see Section 2.4). It
must be replaced with a post-quantum secure signature scheme to make
bitcoin post-quantum secure. Hash-based signature schemes are a good op-
tion because their security is well understood and they provide practical
performance.

W-0TS+, XMSS and SPHINCS The obvious hash-based candidates
are W-OTS+, XMSS and SPHINCS. However, W-OTS+ is not an ideal
candidate because it is an OTS scheme: as users can only create one signa-
ture for any public key, only one-time addresses would be possible. This is
impractical for many use cases (for example for parties relying on donations
or have a high volume of transactions), and can lead to loss of funds if a
signed transaction does not end up in the blockchain as creating another
signature with the same key pair increases the chances that an adversary
successfully creates a forgery. XMSS signatures are quite large: using Win-
ternitz parameter w = 16, a tree height A = 10, and a 256-bit hash function,

28

a signature is 2500 bytes. This results in large transactions, which require
large fees and reduce the amount of transactions that fit in a block. Fur-
thermore, with these parameters we get 2" = 210 = 1024 signatures for one
public key, and larger trees result in longer key generation times and even
bigger signatures. When using XMSS, users must remember to move their
funds to another address before they run out of signatures. Another possi-
ble drawback is that XMSS is stateful. SPHINCS is stateless, but pays for
it with even larger signatures of about 41 KB. As none of them are ideal
candidates for use in blockchain applications, we propose a new hash-based
signature scheme that is specifically designed for use in such applications.

29

Chapter 4

XNYSS

We now propose a new post-quantum secure signature scheme that is de-
signed specifically for use in blockchain-based applications such as bitcoin:
the eXtended Naor-Yung Signature Scheme (XNYSS). Before we define the
algorithms for key generation, signing and verification, we describe how the
scheme is designed by discussing the issues that arise when using an OTS
scheme in the context of a cryptographic currency, and our solutions to these
issues.

4.1 One-time addresses

All information stored in a blockchain is public. For blockchain-based cryp-
tographic currencies this means that if someone uses one address for all of
their transactions, everyone knows exactly how much money they have and
how they are spending it. To gain some financial privacy it is recommended
to use an address only once to receive payment, and once to spend it. This
makes it significantly harder (but not impossible [2]) for an adversary to
track your balance and spending behavior.

If a public key is to be used only once to collect payment, using a one-time
signature scheme seems logical: just generate a key pair, send an address
based on the public key to the spender, and later create a signature using the
private key to spend the funds. Transactions, however, are not guaranteed to
be adopted into the blockchain: this can take a long time if the transaction
fee is too low, and can even fail if an invalid transaction is signed. If a one-
time private key was used to sign an invalid transaction, that key cannot
be used again securely because using an OTS private key more than once
makes it easier for an attacker to forge a signature and thus potentially steal
funds.

Multiple key pairs per address. To alleviate this problem we associate
a bitcoin address with multiple OTS key pairs instead of one (see Figure

30

4.1). A signature for such an address would then have to match any of the
given public keys. Thus, when using k key pairs to construct an address, a
user has k chances to claim their funds. In practice this approach allows such
a one-time address to be used for k transactions if all goes well. However,
their purpose is to be used just once, with k¥ — 1 backup options in case
things go awry.

’ One-time address ‘

’Pk1‘ ’Pk2‘ ’pkk‘

Figure 4.1: A one-time address based on k public keys. The white circles
represent key pairs that can be used to sign.

Key state. It is vital that a wallet keeps track of which key pairs of an
address were already used: if we use the same key pair twice (for example
because the signed transaction was not adopted into the blockchain the first
time), an attacker could succeed in forging a signature and attempt to claim
our funds before we do. Thus after using a key pair to sign an input, it
should be removed from the key state. Similarly, after a one-time address
is successfully used to claim funds, all key state for that address can (and
should) be removed, preventing it from being used again in the future.

4.2 Long-term addresses

There are situations where using a one-time address is not practical, and a
long-term one is preferable. For example, it is not practical for parties that
rely on donations, such as Wikipedia, to change their public address after
every donation. Thus our scheme must also support long-term addresses,
which is not possible using just an OTS scheme.

Naor-Yung chaining. To support long-term public keys we use Naor-
Yung signature chains [35]: whenever a message m is signed, we also sign
the hash of the public key we will use for our next signature, thus creating a
chain of related signatures. The public key of the chain’s start node is then
used as a long-term public key and can be used to create a long-term bitcoin
address. To verify a signature for a long-term public key, we check whether
it is part of the corresponding signature chain, in other words whether its
OTS public key was signed in a previous link of the chain. Naor-Yung

31

chaining is best known for providing forward-security to signature schemes,
which means that if a private key is compromised it is still impossible to
forge previously created signatures. This can be achieved when signing with
Naor-Yung by deleting the current private key after creating a new signature,
and replacing it with the one corresponding to the next public key.

Forking chains. When using signature chains in the context of a block-
chain, there are still significant problems. For example, since bitcoin uses
transaction fees as incentive for miners it can take a long time for a low fee
transaction to be included in the blockchain. When using a single chain, no
inputs can be signed until the previous signature in the chain is confirmed
in the blockchain: clients that are not aware of the previous signature will
reject the new one since they are missing a link in the chain. It is even worse
if a signed transaction does not make it into the blockchain at all, which for
example can happen when the fee is too small or the transaction is invalid:
we would not be able to add a new node to our chain since we cannot use
the last used key pair again.

To solve these problems, we fork the chain when creating a signature by
signing b new public key hashes instead of one. The result is essentially a
tree of signatures, where we can fall back to a previous fork whenever we
break our current chain (‘trimming’ a branch of our tree). The signed public
key hashes must be sent along with the signature for it to be verified: we
denote such a signature for a long-term address oy as a tuple of a one-time
signature and a number of public key hashes:

o = (Uotsapkhm e 7pkhb—1)

Of course this scheme only works if we can assume that failed trans-
actions are sufficiently rare. Every time a signed input is included in the
blockchain, we gain b— 1 key pairs to fall back on. Thus, if nine transactions
succeed but the tenth fails, we would have 9 - (b — 1) key pairs to fall back
on.

Slow start. As is, this construction suffers from a ‘slow start’: after cre-
ating an address, a user can create one transaction and then has to wait for
it to be recorded in the blockchain before being able to sign another. We
can alleviate this by using a similar approach as for our one-time addresses:
instead of using one forked chain for a long-term address, we use k, so that
after generating an address a user can already sign k transactions (see Figure
4.2 for an illustration of this construction). This also increases the amount
of subsequent transaction failures after which a user runs out of available
signatures; when one tree is exhausted they can continue signing with any
of the others.

32

’ Long term address ‘

]pkh1\]pkhz\ o |pkh k

&5

Figure 4.2: A long-term address using a multisig script that includes k
public key hashes and creates b forks for every signature. The white circles
represent unused key pairs, the gray circle a key pair that has already been
used for a signature.

The slow start problem is further mitigated by the fact that we can sign
multiple inputs in one transaction while consuming only one key pair in our
tree. For the first input in a transaction we choose an available key pair
and create a signature oy that signs b new public key hashes along with the
transaction. For any other inputs in the same transaction we can actually
use those b new key pairs signed by oy directly: since they are included in
the same transaction, either all of the new public key hashes are confirmed
when it is included in a new block, or they are all rejected. In the second
case, we only used one available node; but if the transaction is adopted into
the blockchain and we signed 7 inputs we gain b+ (b—1) - (¢ — 1) usable key
pairs (see Table 4.1 for results using varying input counts and branching
factors). Because of this property the slow start period is very short for
users that collect funds in bulk.

#inputs | b=2 b=3 b=4 b=5
1 2 3 4 5
2 3 5 7 9
4 5 9 13 17
6 7 13 19 25
8 9 17 25 33

Table 4.1: Comparison of the amount of advertised public key hashes in a
single transaction for various amounts of inputs and branching factors b.

Of course this does not solve the slow start issue completely. We could
provide ‘missing links’ in signatures by including hashes and signatures for
failed or unconfirmed transactions. However this would significantly increase

33

the signature size, decreasing the amount of transactions that fit in a block.
Because the size of a W-OTS+ signature (which is 2144 bytes using w = 16
and n = 32) dominates the transaction size, each ‘missing link’ would take
the place of a transaction with a single input. An attacker could try to
abuse this in order to slow down the transaction rate, by including multiple
missing links in every signature. Furthermore, including a ‘missing link’
effectively doubles the required transaction fee, making such transactions
very expensive. In our opinion the benefits of including missing links do not
justify the costs.

Signature verification. To verify a signature for a long-term address, we
have to trace the used public key to one of the long-term public keys that are
part of that address. Since the entire chain is stored in the blockchain, we
can look up every previous link in the signature chain until we find one that
was created with one of the root public keys. But because we are working
with a blockchain, we only have to verify that the previous link in the chain
(which advertised the public key of the current signature) is adopted into
the blockchain and was used for the same address. If so, that previous link
has already been verified as being valid for that address, which allows us to
assume that the public key signed in that link is indeed part of a chain that
can be traced back to the given long-term address. This makes signature
verification in our scheme very efficient.

Stateful wallet. Because we sign with an OTS scheme, we need an up-
to-date key state whenever we sign a new input. Despite the fact that we
can only use key pairs of which the public key hash has been confirmed in
the blockchain, we cannot derive our key state from the public ledger. This
is because only accepted transactions are stored; rejected or pending ones
are not. Therefore, the wallet needs to store the key state itself.

In the following we assume the key state to only contain information
of unused OTS key pairs. Thus each state entry contains all information
necessary to create a signature, which for W-OTS+ includes a private and
public seed, as well as a confirmation status that indicates whether the
public key hash of this key pair has been accepted into the blockchain. To
update this confirmation status, the owner of a wallet has to periodically
poll a bitcoin client.

Wallet backups and multi-device support. If a user loses their key
state (for example because of hardware issues or file corruption), they cannot
recover that state reliably: if at any time the user signed a failed transaction,
any key state recovered from the blockchain would be incomplete and could
result in a key pair being used more than once. However, restoring a full
system backup with previous key state is very insecure because that could

34

restore previously used private keys. Since loss of key state likely results in
loss of funds, we need a secure and reliable way to create key backups.

Fortunately we can easily create a backup of the key state by moving
one or more state entries to a separate storage device (removing them from
the original state). As these nodes are no longer in the active key state,
they cannot be used to create signatures until that backup is restored. Of
course this is only possible after a number transactions were successfully
adopted into the blockchain. Thus when a user loses or corrupts their key
state, they must restore such a key state backup with unused state entries
before signing new transactions.

These backups can also be used to provide multi-device support: the
user can create a ‘backup’ for every additional device they want to use as
a wallet. These devices can then be used to sign transactions for the same
long-term address simultaneously and independent of each other, since they
do not share any state.

Preventing double key usage. After signing a number of transactions
for the same address, multiple combinations of public keys and signatures
will be publicly available. If an attacker finds a private key for any of
them (which might happen many years from now), they can create a valid
signature and claim any UTXO of the corresponding address. A similar
issue occurs when a user signs two transactions with the same private key:
this could allow an attacker to forge a signature for the corresponding key
pair.

To prevent key reuse we propose that all bitcoin clients build and main-
tain an Unused Public Key Hash (UPKH) database, similar to the UTXO
database. Assume a block is accepted into the blockchain that includes a
transaction input (tzid, idz, scripts) where the signature script scriptg con-
tains a long-term signature oy = (0ots, pkhyg, - .., pkhy_1). The client then
adds advertised public key hashes pkhy, ..., pkh,_; to the database, such
that when queried for one of them it returns the public key hash of the start
node of the chain for which oy is a signature. The client also removes the
hash of the public key corresponding to o, from the database. Finally,
whenever the client verifies a transaction it checks whether the public key
hashes corresponding to given one-time signatures are present in the UPKH
database, except for those corresponding to the start of a chain which are
included in their respective bitcoin addresses.

Another advantage of using such a UPKH database is that it reduces
signature verification time: instead of searching through the blockchain for
a certain UPKH, we look it up in a database (which can be done in constant
time when using hash maps).

35

Revoking a UPKH. At some point there might be a UPKH in the
database which should not be used for future signatures, for example be-
cause its private key was used to sign a failed transaction. The UPKH
entries that would be removed by a failed transaction would remain in the
database forever because the signer cannot use the corresponding private
keys again. Therefore, it should be possible to revoke UPKHs from the
database to remove redundant data from storage and to prevent an attacker
that actually finds a private key from creating valid signatures. This could
be done by including a revocation section in transactions where we list UP-
KHs to remove. Since UPKHs are hashes, their size does not significantly
impact the total size of transactions, which is dominated by the signature
size in our scheme. Of course the verifying client must check that revoked
UPKHs belong to a chain owned by the signer: thus a UPKH can only be
revoked if the transaction includes a signature for the same chain.

4.3 Full Scheme

Below we specify algorithms for key generation, signing and verification.
Note that the algorithms below operate on signature chains, not on bitcoin
addresses (which consist of k& such chains). We define a cryptographic hash
function H with output length n, and use the notation wotsp.alg to refer to
an algorithm alg of W-OTS+ (see Section 2.6). We use the notation ag to
denote an all-zero W-OTS+ address.

4.3.1 Parameters and Key State

The parameters of our scheme are a security parameter n in bytes (equal
to the W-OTS+ parameter n) also used as the message digest length that
can be signed, and a branching factor b that determines the amount of child
nodes generated when creating a signature for a long-term public key. We
also inherit the Winternitz parameter w from W-OTS+.

Because our scheme is stateful, it is vital to keep track of the key pairs
that have already been used to sign. We store all nodes that can be used
for new signatures, being nodes with public keys that were advertised in
previous signatures. Our key generation creates a new key state, which
consists of a flag ots that signals whether the given state belongs to a one-
time (if true) or long-term (if false) public key, and a list of signature nodes.
FEach node contains

e an n-byte secret seed s,
e an n-byte public seed ps,

e a 32-byte txid tzid of the transaction that advertises the node’s public
key, and

36

e a boolean confirmation status confirm that indicates whether the node
can be used to create a signature.

The signing algorithm uses a key state to find a suitable node it can use to
create a signature. By deleting a node from the key state after using it, we
make sure that private keys are never used more than once. The size of a
signature node in our key state is calculated as follows (assuming one byte
of storage for confirmation status and n = 32):

len(s || ps || tzid || confirm)
=32+324+32+1
=97 B

Since the key state is quite small (99.3 KB for a state with 1024 available
nodes) it should not be a problem for any modern device.

4.3.2 Algorithms

Below we define the key generation, signing and verification algorithms of
XNYSS in detail. We deviate from our definition of a digital scheme (see
Definition 2.3.1) for the following reasons.

Because our scheme has two modes of operation (one-time and long-
term), Kg takes an additional argument ots that signals whether a one-time
or long-term secret key state should be generated.

The Sign algorithm has an additional parameter trid which enables us
to create signatures for inputs in the same transaction without waiting for
confirmation. It also returns an updated secret key state sk in addition to the
created signature. As such, our scheme formally classifies as a Key FEvolving
Signature Scheme [5], which uses a key update function after signing to
update the secret key. We capture this behavior by removing nodes used to
create a signature from the key state, and adding any generated child nodes.

To verify a signature, we do not need to follow a signature chain all the
way to the root (as mentioned in 4.2). A W-OTS+ signature is verified by
computing a public key from a signature and checking whether it matches a
public key that was distributed earlier. In our case, the public key computed
from a signature may not match the public key that it was created for,
because a signature for a long-term public key is part of a chain of signatures.
A signature is valid if the corresponding public key is either 1) advertised in
a previously accepted transaction, 2) advertised in the same transaction, or
3) the root of a new chain. As there are multiple candidates a regenerated
public key can match to be valid, we would have to call the verification
algorithm multiple times. It is more practical and efficient to compute a
public key from a given signature (which is possible when using W-OTS+),
and let the blockchain application verify it for a given address. Because
of this, we do not provide a full verification algorithm, but instead define

37

a function PkFromSig that computes the public key of a given signature.
This public key is then checked against the three cases described above in
the blockchain application using our scheme.

Key generation. We define the key generation algorithm Kg(1™, ots) (see
Algorithm 1), given a security parameter n and boolean ots, to generate a
key pair (sk,pk) where sk holds the state information as described above.
The ots parameter determines whether a one-time (when ots is true) or
long-term (when it is false) public key is created. The returned key state
saves the value of ots, and contains one node (the start node of a new forked
chain) that contains a random n-byte secret seed s, a random n-byte public
seed ps, no txid, and a confirmation status set to true; it can thus be used
to sign a transaction input immediately after key generation. We obtain pk
by evaluating wotsp.Kg(s, ag, ps). The corresponding private key is pseudo-
randomly generated from s when it is needed, and is thus not returned.

Algorithm 1 The XNYSS key generation algorithm
1: procedure (sk, pk) < Kg(1™, ots)
8, ps & {0,1}"

2

3 _, pk < wotsp.Kg(s, ag, ps) > with ag an all-zero address
4: nodes = {(s, ps, trid := null, confirm := true)}

5: sk := (ots, nodes)

6 return (sk, pk)

7: end procedure

Signing. The signing algorithm Sign(sk, M, txid) (see Algorithm 2), given
a secret key state sk, an n-byte message M and transaction identifier tzid,
creates a signature and updates sk. First it picks a node from sk’s node
list. As mentioned before, after creating a signature for the first input of a
transaction we can sign all other inputs in the same transaction using the
child nodes generated for the first signature without waiting for confirma-
tion. Thus Sign first checks if there is a node with a matching txid; if not,
it does a second pass over the node list and picks the first already confirmed
node. The algorithm fails if no suitable node can be found.

Having found a suitable signature node with secret seed s and public seed
ps, a W-OTS+ signature o, is created by calling wotsp.Sign(s, m, ag, ps).
The value of m depends on the value of sk.ots. If it is true, m = M. When
ots is false, b child nodes are generated. Their secret and public seeds are
computed as H(s || 1) and H(ps || r2) respectively, where r; and 7o are
both n bytes of (pseudo) random data. The tzid field of these child nodes
is set to tzid, and their confirmation status to unconfirmed. Then their
public keys pk; through pk, are generated using W-OTS+ key generation,

38

Algorithm 2 The XNYSS signing algorithm

1: procedure (sk, o) < Sign(sk, M, txid) > where sk = (ots, nodes)
2 node, < FINDNODE(sk.nodes, trid)

3 if node, = FAIL then

4: return FAIL

5: end if

6 if ots = true then

7 forie {1,...,b} do

8 1,72 ﬁ {0, 1}”

9 si < H(nodes.s || 1)

10: psi < H(nodey.ps || m2)

11: _, pk; wotsp.Kq(s;,ap, ps;)

12: node; < (s;, psi, trid, false)

13: end for

14: sk.nodes < sk.nodes U {nodey, ..., nodey}
15 me HOM | H(pky) || ... || H(pky))
16: pks < (pky, ..., pkp)

17: else

18: pks + ()

19: m <+ M

20: end if

21: Oots < wotsp.Sign(nodey.s, m, ag, nodey.ps)
22: sk.nodes < sk.nodes \ node,

23: return (sk, (oos, ps, pks))
24: end procedure

25: function node < FINDNODE(nodes, tzid)
26: for all N € nodes do

27: if N.tzid = trid then

28: return N

29: end if

30: end for

31: for all N € nodes do

32: if N.confirm = true then
33: return N

34: end if

35: end for

36: return FAIL

37: end function

39

and finally M is defined as
M = H(m || H(pky) || - || H(pky))-

In order to verify the created signature o, a verifier will need the used
public seed and any child public key hashes generated when ots is false.
Since we always use all-zero W-OTS+ addresses, ag does not need to be
included. The signature, including data required for verification, is then
defined as

g = (Uot57 pS[, H(pk1)7 SRR H(pkb)])
See Table 4.2 for the total size of one-time and long-term signatures when
using W-OTS+. After creating the signature, any generated child nodes are
added to the key state, and the node used to sign is removed from it so it
cannot be used again.

one-time long-term

b=0 b=2 b=3 b=4
16 | 2176 2240 2272 2304
256 | 1120 1184 1216 1248

Table 4.2: Total signature size for one-time signatures and long-term signa-
tures for various values of the branching factor b and Winternitz parameter
w.

Verification. The algorithm PkFromSig(sig, M) (see Algorithm 3) thus
computes a public key, given an n-bit message M and signature o that
contains a W-OTS+ signature o, public seed ps and optionally public
key hashes H(pko), ..., H(pky—1). First, PkFromSig defines a message m,
in a way similar to Sign: if no public key hashes are included in o, m = M,
otherwise m = H(M || H(pko) || ... || H(pkp—1)). Then it computes the
signature’s public key using wotsp. PkFromSig(o o5, m, ag, ps).

4.3.3 Limitations

Signature capacity. Unlike XMSS, we do not have a fixed tree height
that limits signature capacity. The only limiting factor on the amount of
available signatures for a single public key is in fact the amount of public
seeds we can generate. Since public seeds consist of 32 bytes, we have 2256
different seeds available. To prevent multi-target attacks from degrading the
security level of our scheme, we should never use a public seed more than
once. If we choose them at random, we expect a collision to occur after
generating 2'?® nodes due to the birthday paradox. Therefore, a long-term
public key should not be used for more than 2'?® signatures, which can be
considered infinite for all practical use cases.

40

Algorithm 3 The XNYSS public-key regeneration algorithm

1: procedure pk < PkFromSig(o, M) > where o = (04ts, PS, pks)
2 if 0.pks = () then

3 m<+— M

4 else > pks = pkg, ..., pky_q
5: m <« H(M || H(o.pks.pky) || ... || H(o.pks.pky_1))

6 end if

7 pk < wotsp.PkFromSig(o.0 415, m, ag, 0.ps)

8 return pk

9: end procedure

Slow start. By using forking chains our scheme allows signing multiple
transaction inputs without having to wait for confirmations. However, when
starting a new signature chain tree we do not have any forks to fall back
on yet. As it might take a while for transactions to be adopted into the
blockchain, a user will have to wait a while before being able to create more
signatures after using the start nodes of all k chains of an address.

Failed transactions. When a signed transaction is not adopted into the
blockchain, for example because a user signs an invalid transaction or the
fee is too low, we cannot reuse the used signature node (nor use any of its
child nodes). Our construction mitigates the impact of this issue by having
many signature nodes available, but if this happens early on in a public key’s
lifetime, the consequences could be severe. If worse comes to worst, there
will be no more nodes available to create signatures, which could result in
a loss of funds as the user is unable to collect them. Users should thus be
careful about transaction validity and fees when they use a new public key.

4.4 Performance

We implemented XNYSS as described above (as well as W-OTS+ since we
could not find a suitable standalone implementation) in Go using n = 32,
b =3, and w € {16,256}; it can be found at https://github.com/lentus/
xnyss. Table 4.3 lists performance benchmarks and the sizes of signatures
and public keys of our implementation; for comparison, Tables 4.4 and 4.5
show benchmarks and sizes for different XMSS implementations. The results
in Table 4.4 were obtained using the Aidos Kuneen implementation of XMSS
(https://github.com/AidosKuneen/xmss), which uses an optimized SIMD
implementation of SHA256. Westerbaan’s XMSS implementation (https:
//github.com/bwesterb/xmssmt), used to obtain the results in Table 4.5,
uses hash precomputation and caching to optimize signing times specifically,
but does not use an optimized implementation of SHA256. A typical bitcoin

41

https://github.com/lentus/xnyss
https://github.com/lentus/xnyss
https://github.com/AidosKuneen/xmss
https://github.com/bwesterb/xmssmt
https://github.com/bwesterb/xmssmt

client would use the Aidos Kuneen implementation for fast block verification,
while a wallet program might use Westerbaan’s for faster signing. We ran
all benchmarks on a machine with an Intel Core i7-4770K CPU (4 cores @
3491.79 MHz).

Optimizations. We implemented two major performance optimizations,
the first of which is hash precomputation in W-OTS+ !. The keys and
bit-masks in W-OTS+ are computed with a PRF, which is implemented
as the SHA256 hash of 32 bytes of padding, a 32-byte public seed, and a
full W-OTS+ address. The padding and public seed make up exactly one
SHA256 digest, and since they do not change during a sign, verify or keygen
operation, W-OTS+ recomputes the same intermediate hash digest many
times. By precomputing this value we save a lot of hash computations: in our
implementation this reduced signing, verification and key generation times
by about 42%. The second optimization is to compute W-OTS+ hash chains
concurrently by dividing the work over as many CPU cores as are available.
We use the standard SHA256 implementation provided by the Go crypto
package. Since our code spends about 75% of the time computing SHA256
hashes (determined using the Go profiling tool ‘pprof’), any speedup for
SHA256 directly results in a speedup of W-OTS+ and thus XNYSS.

timings (ms) signature sizes (bytes)

w sign one-t. sign long-t. verify keygen | one-time long-term
16 | 0.21 1.17 0.19 0.32 2176 2272
256 | 1.59 9.44 1.70 2.63 1120 1216

Table 4.3: Timing benchmarks and signature sizes for XNYSS, using n = 32
and b = 3. For signing we give both one-time and long-term benchmarks.

Results. In blockchain applications such as bitcoin, the most important
performance measures for signature schemes are verification time and sig-
nature size: slow verification increases the time it takes to download the
entire blockchain on client initialization, and bigger signature size decreases
the amount of transactions that fit in a block. When using Winternitz pa-
rameter w = 16, signature verification is about 61.2% faster with XNYSS
than with Aidos Kuneen’s XMSS implementation, and signatures are almost
13% smaller than when using XMSS. We also achieve significantly faster key
generation, and signing with a one-time key pair is 65.6% faster than West-
erbaan’s XMSS implementation. Signing for a long-term key pair is however
47.9% slower, but since signing time does not affect the performance of the

1Credit for this optimization goes to Westerbaan, who included it in his XMSS imple-
mentation.

42

timings signature size

#signatures | sign verify keygen (bytes)
210 713 ms 0.49 ms 291.84 ms | 2500
216 6.87 ms 0.50 ms 17.83 s 2692

Table 4.4: Timing benchmarks and signature sizes for the Aidos Kuneen
XMSS implementation (using SHA256 and w = 16).

timings signature size
#signatures | sign verify keygen (bytes)
210 0.61 ms 0.72ms 386.98 ms | 2500
216 0.61 ms 0.70 ms 20.47 s 2692
220 0.61 ms 0.80 ms 326.78s | 2820

Table 4.5: Timing benchmarks and signature sizes for Westerbaan’s XMSS
implementation (using SHA256 and w = 16).

network and because we can still create hundreds of signature per second,
this is not a big issue.

By increasing the Winternitz parameter, it is possible to achieve sig-
nificantly smaller signatures at the cost of performance. Using w = 256,
signature size is lowered by 48.5% but signing, verification, and key genera-
tion times increase with factors of about 8, 9, and 8 respectively.

We chose to use a standard branching factor of 3 because it provides a
good balance between signature size and the number of available signatures
(based on Table 4.1). We must also keep in mind that all advertised public
key hashes have to be saved in the UPKH database, which is another reason
to keep b small. However, an instantiation of our scheme is not bound to
one branching factor, and a wallet can (and should) choose to lower the
branching factor when enough key pairs are available for signing. Wallets
can use this feature to stop the key state from growing beyond a certain limit,
which is very useful for wallets running on resource constrained devices.

43

Chapter 5

Implementation in Bitcoin

We modified an existing bitcoin implementation in Go (gocoin, https:
//github.com/piotrnar/gocoin) to use XNYSS. The resulting client sup-
ports addresses based on XNYSS public keys in addition to all existing
address types. Below we describe how the new addresses are created, how
the UPKH database is implemented, and describe how to implement our
scheme using segregated witness. Our full implementation can be found at
https://github.com/lentus/wotscoin.

5.1 Addresses and Scripts

As we describe in Chapter 4 we use multiple XNYSS key pairs to create
an address, for both one-time and long-term addresses. We implement this
using Bitcoin’s (P2SH) multisig scripts, or m-of-n scripts, requiring only
one matching signature (m = 1) instead of multiple. By reusing the existing
multisig code we avoid having to add a completely new address type and
can reuse much existing code.

XNYSS addresses. To create an XNYSS-based address, we generate the
root nodes of k new XNYSS signature chains (in our implementation we fixed
k = 3), and compute the hashes of their public keys. While normal multisig
scripts contain full public keys, this is not practical when using XNYSS
because of the large public keys of W-OTS+ (which are the same size as
signatures). It is possible to use just hashes in our multisig scripts because
when using W-OTS+ it is possible to compute a public key from a signature.
We then create a normal multisig script with these k£ hashes, using the
opcode OP_CHECKXNYSSMULTISIG instead of the original OP_CHECKMULTISIG,
and hash the resulting script to create a script hash. The new opcode
tells a verifier that an XNYSS signature is required to claim funds paid to
this address, without requiring changes to existing data structures. We can
then create a P2SH address, and use it to receive payment. The differences

44

https://github.com/piotrnar/gocoin
https://github.com/piotrnar/gocoin
https://github.com/lentus/wotscoin

between a normal multisig script and an XNYSS one are thus the use of
public key hashes instead of full public keys, and the new opcode. Note that
during address generation there is no difference between one-time and long-
term addresses; this distinction is only relevant when creating and verifying
XNYSS signatures.

0P_0 <sig> <1> <pk hash A> [pk hash B] [pk hash C...] <n>
OP_CHECKXNYSSMULTISIG

Listing 5.1: XNYSS multisig redeem script with data.

XNYSS multisig scripts. To claim funds paid to an XNYSS-based ad-
dress, we must create a valid XNYSS signature and a multisig redeem script
(using the new opcode) that matches the script hash included in the address.
Since our key state contains the ots flag, the wallet knows whether to include
new public key hashes in the signature (for long-term addresses) or not. The
used wallet program must update and store the key state accordingly after
signing.

Verifying an XNYSS multisig script is done in the same way as verifying
a normal Bitcoin multisig (and thus can reuse the same code), except that
the signature is verified by first evaluating the PkFromSig algorithm from
Section 4.3.2 and checking whether the hash of the resulting public key 1)
equals one of the k£ public key hashes included in the multisig script, 2) is
present in the UPKH database, or 3) is included in a signature of a previous
input in the same transaction. If any of these cases apply, the signature is
valid and script evaluation ends successfully. See Algorithm 4 for pseudo
code. Note that the given code assumes an XNYSS multisig contains only
one signature (i.e. is a 1-of-k multisig).

There is however an issue when using XNYSS signatures in bitcoin, which
is the maximum size of data that can be pushed onto the stack during script
verification: it is fixed at 520 bytes, which is far too small for an XNYSS
signature. In our implementation we simply increased this value !, but this
is not necessary when using segregated witness (as described below).

Supporting XNYSS. In summary, to add support for XNYSS multisig
scripts, a bitcoin wallet must be able to create multisig scripts with public
key hashes and the new OP_CHECKXNYSSMULTISIG opcode and to manage key
state. A client must be able to verify an XNYSS signature during multisig

Tn bitcoin terms, this would result in a ‘hard fork’: when the acceptance rules are
relaxed, blocks that satisfy the new rules may not satisfy the old ones, and would thus
be rejected by clients that have not yet updated. When the rules are made more strict,
all blocks accepted under the new rules are also valid under the old ones, resulting in a
‘soft fork’: as long as the new rules are accepted by a majority of users, the network will
eventually converge to a single chain.

45

Algorithm 4 The XNYSS multisig verification algorithm

1. procedure b < VERIFYMULTISIG(M, 0, scripty, tx)

2: pkhs < GETPUBLICKEYS(scriptr) > Get pkhs from redeem script
3: pkh, < H(XNYsS.PkFrRomSI1G(o, M))

4: for all pkh € pkhs do

> Check if pkh, corresponds to a start node

5: if pkh, = pkh then
6 return true
end if
> Check if pkh, was signed in a previous node
pkhy, < UPKH.GETLONGTERM(pkh,)
: if pkh;, = pkh then
10: return true
11: end if
> Check if pkh, was signed in the same tx
12: for all inp € tz.ins do
13: Oinp < GETSIGNATURE(inp.scripts)
14: if pkh, € 0inp.pks then
15: script’s? < GETREDEEMSCRIPT(inp.scriptg)
16: if script;gp = scripty then
17: return true
18: end if
19: end if
20: end for
21: end for
22: return false

23: end procedure

46

script verification, which requires an implementation of the UPKH database
and handling the new opcode OP_CHECKXNYSSMULTISIG.

5.2 UPKH Dabatase

The UPKH database is used to store public key hashes, advertised in sig-
natures for long-term addresses, until their corresponding key pair is used
for subsequent signatures. In our implementation each UPKH record rec =
(pkh.,,,,, pkhy, bh) contains the unused public key hash pkh,,,, the hash of the
corresponding long-term public key pkh; (the start node of a chain), and
the ‘block height’ bh at which it was added to the blockchain. All UPKH
records are saved in a hashmap to provide fast lookups. Whenever a block is
successfully verified, a new UPKH record is created for all public key hashes
advertised in that block’s XNYSS signatures (using the new block’s height),
and the new records are added to the UPKH database. Note that advertised
public key hashes that are used in the same transaction to sign a different
input must not be added to the database because they have already been
used. When the public key hash of a signature in a new block is present in
the database, it is removed when that block is accepted.

UPKH database size. In our current implementation each UPKH record
is 56 bytes in size (32 bytes for the unused public key hash, 20 bytes for
the long-term public key hash 2, and 4 bytes for the block height). The
storage footprint could be reduced by grouping UPKHs for the same long-
term public key hash: the UPKH database would then consist of a hash
map with (part of) the long-term public key hashes as indices, and with
hash maps that map an unused public key hash to a block height as values.
This approach saves 20 bytes for every UPKH entry in a chain after the first
one. Unfortunately we were not able to implement this optimization during
the time allotted to this thesis.

Adding a database of unused public key hashes will of course add to the
total storage required for all clients. However, its size is always a fraction
of the full blockchain because it does not contain any information that is
not present in the blockchain itself. We should also keep in mind that most
users do not need long-term addresses at all, and should be using one-time
addresses, which do not add any data to the UPKH database, to protect
their privacy.

In fact, limiting the amount of available public key hashes per address
would introduce several issues. Let us assume we use a limit of m UPKHs
per address. Whenever a transaction is issued, we check whether the total
amount of UPKHs after applying the transaction would exceed m; if so, we

2Bitcoin uses the RIMP160 hash function, which has 20-byte outputs, for hashes in-
cluded in addresses and multisig scripts.

47

reject the transaction. One minor issue is that there will always be people
that want more than m UPKHs; without becoming practically infinite, m
will never be large enough for everyone.

Another more important issue is that (offline) wallets do not have any
information on whether an unconfirmed transaction has been rejected or
not. Thus, wallets will need to keep their own count of confirmed UPKHs.
Let us assume we currently have m confirmed UPKHs in the database, and
the wallet just signed a transaction consuming one of them and providing
a new one (keeping the total at m). If we sign another transaction with-
out confirming the previous one, the wallet must assume that either 1) the
previous one is not yet confirmed, or that 2) it was rejected. Either way, it
runs into problems if it chooses wrong.

In case 1), the wallet will wait for confirmation of the transaction, having
k—1 available signing nodes until it is confirmed. However, if that confirma-
tion is never given because the transaction is actually rejected, we effectively
reduce our available nodes from the wallet’s perspective by one permanently.
Thus the wallet will eventually run out of available public keys, even though
not all slots in the UPKH database are in use for the corresponding address.

In case 2), the wallet would decide to revoke the public key hash used
for the previous transaction. Now, if the first transaction was actually still
pending it will be canceled if the second is accepted first. We thus risk
having to sign and distribute a perfectly valid transaction again. If the
first is accepted before the second, the latter transaction becomes invalid
since it is trying to revoke an already used UPKH. If we decide to accept
such transactions anyway, an attacker could try to bloat the blockchain with
invalid UPKH revocations. So again we have to re-sign and redistribute a
transaction. In this situation we are essentially back to using non-forking
chains, since we will have to wait for previous transactions to be confirmed
before being able to sign a new one.

5.3 Updating Wallet State

When a long-term address is used to sign a transaction input, the created
signature advertises public keys of key pairs to be used in the future. Before
those key pairs keys advertised in the signature can be used to sign for the
same address, the transaction must be included in a block and added to the
blockchain. The wallet thus needs to be able to poll a client about the status
of advertised public keys. We implemented this process as follows:

e On request of the user the wallet generates a file listing unconfirmed
public key hashes;

e The user moves the generated file to a machine running a client;

48

e The client looks up the confirmation status on a user request, writing
it to another file;

e The user moves this confirmation file back to the wallet;

e On request of the user the wallet updates its key state accordingly.

By using the block depth as confirmation status, a user can decide how many
confirmations are required before an advertised key pair can be used to create
a signature. This is similar to waiting for a transaction to be confirmed by a
few more blocks before spending funds received in that transaction, to make
sure that the transaction was not part of a branch that is later abandoned;
if a user signs with a key pair that was advertised in a block that is later
abandoned, that key pair goes to waste since it cannot be used again. By
setting the amount of required confirmations to a higher value (while 3 is
already ‘highly reliable’, 6 is generally regarded as safe %), this issue can be
avoided.

5.4 Segregated Witness

The main drawback of our scheme is its large signature size: when signa-
tures become larger, fewer transactions fit in a block and transaction fees
increase. In bitcoin we can use the segregated witness protocol to reduce
the ramifications of our large signatures. We can create a native Pay-To-
Witness-Script-Hash (P2WSH) address * by creating a public key script as
described in Section 5.1, computing the corresponding script hash, prefixing
it with a version byte set to 0, and encoding the result to a new base-32 for-
mat called ‘bech32’ °. When claiming funds sent to such a segwit address, we
create a normal XNYSS signature and recreate the multisig redeem script,
but instead of putting these in the signature script we write them to the wit-
ness structure; the signature script is left empty. Verification of the witness
script and signature is then performed as normal, except that the maximum
script element size of 520 bytes can be ignored since the witness structure
is not restricted by existing script constraints. When using XNYSS signa-
tures in segwit scripts it is thus not necessary to change the maximum script
element size.

Unfortunately we were not able to include segwit support for XNYSS
keys in our implementation due to the limited time available for this thesis.

3See https://bitcoin.org/en/you-need-to-know#instant

4The segwit protocol specifies P2SH witness addresses, which are indistinguishable from
normal P2SH addresses, and ‘native’ witness addresses that use a new address format. For
the native versions, we can leave an input’s signature script empty, which is not the case
for the P2SH versions; thus, using native segwit addresses results in smaller transactions
(see https://bitcoincore.org/en/segwit_wallet_dev/).

®See https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki#Bech32

49

https://bitcoin.org/en/you-need-to-know#instant
https://bitcoincore.org/en/segwit_wallet_dev/
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki#Bech32

Traditional Segwit
w one-time long-term | one-time long-term
16 | 2333 2429 658 682
256 | 1277 1373 394 418

Table 5.1: Total transaction size (one input and one output) in bytes when
using ‘normal’ and (native) P2WSH scripts, with 1-of-3 multisig scripts.

We can however compute the new virtual transaction size, which as men-
tioned in Section 3.2 is computed as (base size - 3 + full size)/4: the results
are listed in Table 5.1. Note that a P2WSH public key script is 34 bytes long
instead of 24 because the redeem script is hashed with SHA256. The reduc-
tion in transaction size, about 70%, makes our scheme much more useful in
practice.

50

Chapter 6

Discussion and Conclusion

6.1 Conclusion

We presented the post-quantum secure signature scheme XNYSS, which is
based on Naor-Yung signature chaining of an OTS scheme, which we in-
stantiate with W-OTS+, and is specifically designed for use in blockchain
technologies. Our scheme supports both one-time and many-time public
keys, and provides smaller signatures and better performance than exist-
ing many-time hash-based signature schemes such as XMSS. Moreover, we
showed that XNYSS can easily be integrated into existing bitcoin imple-
mentations, and thus does not require the creation of another cryptographic
currency. While XNYSS signatures are still significantly larger than those
currently produced in bitcoin, we showed that signature size can be reduced
at the cost of performance (by increasing the W-OTS+ Winternitz parame-
ter w), and that the segwit protocol can be used to significantly reduce the
resulting transaction size.

A disadvantage of our scheme is that it is stateful. Consequently, loss of
key state can lead to loss of funds, and restoring a full system backup can
result in reuse of one-time key pairs which significantly reduces the security
of our scheme. It is however possible to create safe key state backups using
our scheme, in a way that also allows multiple devices to create signatures
for the same long-term public key.

6.2 Related Work

The QRL. The Quantum-Resistant Ledger (QRL) [36] uses XMSS in-
stead of secp256kl to provide a post-quantum secure blockchain. It was
created as an alternative to bitcoin, the primary reason being that up-
dating bitcoin to use a post-quantum secure signature scheme would be
quite hard in practice (for the full reasoning, see https://theqrl.org/
faq/coinsupdate/). The QRL launched its main network in June 2018.

o1

https://theqrl.org/faq/coinsupdate/
https://theqrl.org/faq/coinsupdate/

As the QRL uses single-tree XMSS with Winternitz parameter w = 16
and (by default) a tree height of 10. These parameters result at most 2!9 =
1024 signatures of 2500 bytes. If a user runs out of signatures for a certain
address, they must take care to empty their wallet with the last available
signature; otherwise all remaining funds are lost. For the same value of w,
XNYSS produces signatures that are about 13% smaller, has significantly
better performance (as shown in Section 4.4), and supports a practically
infinite amount of signatures for every address (see Section 4.3.3).

The large signature size of XMSS is a problem in the context of block-
chain technology, as it means that less transactions fit in a block. When
defining a new blockchain such as the QRL, the maximum block size could
simply be increased, but that would require more bandwidth and storage
space. However, perhaps the biggest issue with projects such as The QRL
is that there are over 1600 different cryptographic currencies, yet bitcoin
alone accounts for over 40% of the market share, followed by Ethereum with
about 17% '. Rather than introducing yet another alternate coin, we think
it is more effective to integrate post-quantum secure signature schemes in
existing implementations. In this thesis we have shown that this is indeed
possible in the case of bitcoin, and requires relatively little effort.

IOTA. Another project that provides a post-quantum secure distributed
ledger is IOTA [17], which focuses on the application of blockchain tech-
nology for the Internet-of-Things by providing fee-less micro-transactions.
IOTA actually replaces the blockchain with a new structure called the tan-
gle, a discussion of which is out of scope for this thesis.

IOTA achieves post-quantum secure signatures by using the Lamport
OTS scheme [30], which means that an address in IOTA can be used to
create only one signature. As such, long-term addresses are not possible in
IOTA. This may be sufficient for some applications, but as we have seen
in the above there are situations where being able to create multiple sig-
natures for the same address is more practical and can reduce the risk of
losing funds due to failed transactions. IOTA does not have bitcoin’s issue
where a transaction with a low fee may take a very long time to be adopted
into the blockchain, as IOTA is fee-less. However, if a user signs and dis-
tributes an invalid transaction, the corresponding funds are either at risk of
being stolen if a second signature is created and distributed, or lost if not.
When using XNYSS, after signing and distributing an invalid transaction
the corresponding funds can still be claimed securely because of the available
backup nodes.

Depending on the preferred security level, the length of a signature in
IOTA is either 1300 bytes (‘low’ security level of 129 bits), 2600 bytes
(‘medium’ security level of 257 bits), or 3900 bytes (‘high’ security level

! As of July 2nd, data retrieved from https://coinmarketcap.com/.

92

https://coinmarketcap.com/

of 386 bits). At roughly the same ‘medium’ security level of 256 bits for
W-OTS+, XNYSS provides smaller one-time signatures (roughly 16% using
w = 16), and provides long-term addresses as well.

BPQS. While we were working on this thesis, Chalkias, Brown, Hearn,
Lillehagen, Nitto and Schroeter published an idea similar to ours called
Blockchained Post-Quantum Signatures (BPQS) [12]. BPQS, instead of
creating one (or multiple) big tree(s), chains together very small Merkle trees
consisting of only two leaves, a left and right leaf both containing an OTS
public key. The right leaf can be used to create a signature while the left is
used to sign the root of another small Merkle tree. Using this construction,
the authors define BPQS-FEW, which consists of a fixed tree where all
keys are precomputed, and BPQS-EXT, where only the keys for two leaves
are computed and the left leaf can be used to sign another small Merkle
tree when required. These two constructions can be mixed, for example by
starting with BPQS-FEW but with the last left leaf signing a BPQS-EXT
root, thus starting with a fixed number of available signatures but allowing
an arbitrary number if required. It could even be used to fall back to a
different signature scheme such as SPHINCS. And since all signatures are
included in blocks in the blockchain, it is not necessary for a verifier to check
the entire authentication path of a BPQS tree by referencing the previously
signed block in a new signature.

Both BPQS and XNYSS are hash-based signature schemes designed to
be used in blockchain technologies, and use a similar approach. The main
difference between these two proposals is that XNYSS was designed to be
easily added to existing blockchain implementations that are not yet quan-
tum secure, while BPQS is a general improvement for blockchain technolo-
gies using hash-based signature schemes, such as the QRL. And while the
authors briefly mention that verification with BPQS is efficient because part
of a signature’s authentication path is stored in the blockchain, we pro-
vide a practical implementation of this approach in the form of our UPKH
database.

6.3 Improvements and Future Work

Practical considerations In Section 4.4 we provide benchmarks for our
scheme using two values for the Winternitz parameter parameter, w = 16
and w = 256. By increasing w we decrease signature size but increase com-
putation time, which is not a trivial trade-off. Decreasing signature size
allows us to fit more transactions in a block, thus increasing the throughput
of the network and decreasing required transaction fees. However, the re-
sulting increase in computation time means that signature verification, and
thus block verification, is slower. New clients that join the network have

93

to download and verify the entire blockchain before being able to partic-
ipate 2: an increase in signature verification time means that this initial
download will take longer. More work should be done to determine whether
this trade-off between transaction size and initial download time is worth it,
for example by using a large-scale simulation.

We have also not covered the economic ramifications of our work. Trans-
actions that include XNYSS signatures will require a higher fee because of
their larger size. Assuming a fee of 6 satoshis per byte, a transaction with
one input and one output using an XNYSS multisig script for a one-time
address (using segwit and w = 16) requires a total fee of 6 - 394 = 2364
satoshis, as opposed to 1350 satoshis for a median transaction size of 225
bytes 2. Whether such a fee is already practical, and what would be its
effect on the current market, are interesting questions for future work.

Performance improvements. Currently our XNYSS code uses a SHA256
implementation provided by the standard Go crypto package. Since the
XNYSS algorithms spend most of its time computing SHA256 hashes, any
performance improvement in the SHA256 implementation used (for example
by using AVX or NEON vector assembly instructions [14][43]) will result in
a speedup of XNYSS. It might also be worthwhile to try different, more
efficient hash functions such as BLAKE2 [3] to improve performance. And
while Go is not slow by any means, it is not quite as fast as C. We ex-
pect an optimized C implementation of our scheme to outperform the one
accompanying this thesis.

Unbalanced Merkle tree script. We use the bitcoin multisig script to
base an address on multiple XNYSS chains. Each chain is represented in the
multisig with a 20-byte public key hash. For one-time addresses, if all goes
well only one of them will ever be used to create a signature. It is possible
to reduce the total script size by using an unbalanced Merkle tree (depicted
in Figure 6.1) instead of a multisig script, where the public key hashes of the
XNYSS chains are all on different levels: the first public key hash is directly
below the root node, the second is one level below that, etcetera. When
creating a signature, we then include the authentication path required to
verify this tree, which for the first key pair consists of the signature and
one hash (the first non-leaf node in the unbalanced Merkle tree). However,
when the signed transaction fails and we have to sign again using the same

2This is not entirely true as bitcoin also supports clients that only download block head-
ers, without the full transacactions (see https://bitcoin.org/en/developer-guide#
simplified-payment-verification-spv). However, such clients must trust the server
they are downloading from to be truthful, and if SVP clients were to be massively adopted
the bitcoin network would in practice be centralized around a few full nodes that do store
the entire blockchain, a situation that bitcoin is designed to prevent.

3Data sourced from https://bitcoinfees.earn.com/ on July 16, 2018.

o4

https://bitcoin.org/en/developer-guide#simplified-payment-verification-spv
https://bitcoin.org/en/developer-guide#simplified-payment-verification-spv
https://bitcoinfees.earn.com/

address, the authentication path becomes longer since we have to use a node
that is further down in the tree.

H (pkh [n1)
’ pkh; ‘ ny = H(pkhsy||ng)
ny = H(...)

EAR

Figure 6.1: An illustration of an unbalanced Merkle tree, which could be
used instead of multisig scripts to slightly reduce the total script size.

Using this approach, the first signature for a one-time address can thus
be shorter than when using multisig scripts, but the script size increases
with every failure. We did not implement this approach because the re-
duction in script size is quite small (a few 20-byte hashes) compared to the
total signature size, and because it would require more changes to script
evaluation than when using the existing multisig scripts. It is however an
interesting optimization that might be useful in the future.

NIST PQC. Multiple signature schemes were submitted to the NIST
Post-Quantum Cryptography Standardization project (https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography), which aims to standardize
post-quantum secure alternatives to currently used cryptographic schemes.
Signature schemes such as LUOV and Rainbow might be useful in block-
chain applications because of their relatively small signature sizes, and since
they do not require any key state to be kept they could be used as drop-in
replacements for currently used schemes.

95

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Bibliography

1]

Miklés Ajtai and Cynthia Dwork. A public-key cryptosystem with
worst-case/average-case equivalence. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 284—293. ACM,
1997. 10

Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer,
and Srdjan Capkun. Evaluating user privacy in bitcoin. In International
Conference on Financial Cryptography and Data Security, pages 34-51.
Springer, 2013. 30

Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and
Christian Winnerlein. Blake2: simpler, smaller, fast as md5. In In-
ternational Conference on Applied Cryptography and Network Security,
pages 119-135. Springer, 2013. 54

Stephane Beauregard. Circuit for shor’s algorithm using 2n+ 3 qubits.
arXiv preprint quant-ph/0205095, 2002. 4

Mihir Bellare and Sara K Miner. A forward-secure digital signature
scheme. In Annual International Cryptology Conference, pages 431—
448. Springer, 1999. 37

Daniel J Bernstein. Introduction to post-quantum cryptography. In
Post-quantum cryptography, pages 1-14. Springer, 2009. 4

Daniel J Bernstein. Simplified high-speed high-distance list decoding
for alternant codes. In International Workshop on Post-Quantum Cryp-
tography, pages 200-216. Springer, 2011. 10

Daniel J Bernstein, Daira Hopwood, Andreas Hiilsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Pe-
ter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS: practical state-
less hash-based signatures. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 368-397.
Springer, 2015. 10, 15, 16

o6

[9] Bhaskar Biswas and Nicolas Sendrier. McEliece cryptosystem imple-
mentation: Theory and practice. In International Workshop on Post-
Quantum Cryptography, pages 47-62. Springer, 2008. 10

[10] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hiilsing, and
Markus Riickert. On the security of the winternitz one-time signature
scheme. 2011. https://eprint.iacr.org/2011/191. 14

[11] Johannes Buchmann, Erik Dahmen, and Andreas Hiilsing. XMSS-a
practical forward secure signature scheme based on minimal security
assumptions. In International Workshop on Post-Quantum Cryptogra-
phy, pages 117-129. Springer, 2011. 10, 15

[12] Konstantinos Chalkias, James Brown, Mike Hearn, Tommy Lillehagen,
Igor Nitto, and Thomas Schroeter. Blockchained Post-Quantum Sig-
natures. Cryptology ePrint Archive, Report 2018/658, 2018. https:
//eprint.iacr.org/2018/658. 53

[13] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuil-
laume. Digital signatures out of second-preimage resistant hash func-

tions. In International Workshop on Post-Quantum Cryptography,
pages 109-123. Springer, 2008. 14

[14] Ana Karina DS de Oliveira and Julio Lépez. An efficient software im-
plementation of the hash-based signature scheme mss and its variants.
In International Conference on Cryptology and Information Security in
Latin America, pages 366-383. Springer, 2015. 54

[15] Jintai Ding and Bo-Yin Yang. Multivariate public key cryptography.
In Post-quantum cryptography, pages 193-241. Springer, 2009. 10

[16] Chris Dods, Nigel P Smart, and Martijn Stam. Hash based digital
signature schemes. In IMA International Conference on Cryptography
and Coding, pages 96-115. Springer, 2005. 14

[17] IOTA Foundation. The Next Generation of Distributed Ledger Tech-
nology — IOTA. https://www.iota.org/. Accessed: July 12 2018.
52

[18] LC Coronado Garcia. On the security and the efficiency of the Merkle
signature scheme. Technical Report 192, Cryptology ePrint Archive,
2005. Available at http://eprint. iacr. org/2005/192, 2005. 14

[19] Omkar Godbole. Bitcoin Price Primed to Test $20k
Ahead of CME Launch. https://www.coindesk.com/

sell-news-bitcoin-price-tests-20k-ahead-cmes-futures-launch/.
Accessed: 16 March 2018. 4

o7

https://eprint.iacr.org/2011/191
https://eprint.iacr.org/2018/658
https://eprint.iacr.org/2018/658
https://www.iota.org/
https://www.coindesk.com/sell-news-bitcoin-price-tests-20k-ahead-cmes-futures-launch/
https://www.coindesk.com/sell-news-bitcoin-price-tests-20k-ahead-cmes-futures-launch/

[20]

[21]

22]

[23]

[24]

[25]

[26]

[29]

[30]

Oded Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest
signature scheme. In Conference on the Theory and Application of
Cryptographic Techniques, pages 104-110. Springer, 1986. 15

Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital sig-
nature scheme secure against adaptive chosen-message attacks. STIAM
Journal on Computing, 17(2):281-308, 1988. 9

Lov K Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, pages 212-219. ACM, 1996. 10

A. Hiilsing, D. Butin, S. Gazdag, J. Rijneveld, and A. Mohaisen. XMSS:
eXtended Merkle Signature Scheme. RFC 8391, RFC Editor, May 2018.
16

Andreas Hiilsing. W-OT'S+-shorter signatures for hash-based signature
schemes. In International Conference on Cryptology in Africa, pages
173-188. Springer, 2013. 10

Andreas Hiilsing, Joost Rijneveld, and Fang Song. Mitigating multi-
target attacks in hash-based signatures. In Public-Key Cryptography—
PKC 2016, pages 387—416. Springer, 2016. 10

Intel. 2018 CES: Intel Advances Quantum and Neuromorphic
Computing Research. https://newsroom.intel.com/news/

intel-advances-quantum-neuromorphic-computing-research/.
Accessed: 15 March 2018. 4

Julian Kelly. A Preview of Bristlecone, Google’s New Quan-
tum Processor. https://research.googleblog.com/2018/03/
a-preview-of-bristlecone-googles—-new.html. Accessed: 15
March 2018. 4

Kazukuni Kobara and Hideki Imai. Semantically secure McEliece
public-key cryptosystems-conversions for McEliece PKC. In Interna-
tional Workshop on Public Key Cryptography, pages 19-35. Springer,
2001. 10

Philip Lafrance and Alfred Menezes. On the security of the wots-prf
signature scheme. Cryptology ePrint Archive, Report 2017/938, 2017.
https://eprint.iacr.org/2017/938. 15

Leslie Lamport. Constructing digital signatures from a one-way func-
tion. Technical Report CSL-98, SRI International Palo Alto, 1979. 11,
52

o8

https://newsroom.intel.com/news/intel-advances-quantum-neuromorphic-computing-research/
https://newsroom.intel.com/news/intel-advances-quantum-neuromorphic-computing-research/
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://eprint.iacr.org/2017/938

[31]

[36]

[37]

[40]

R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Cod-
ing Theory. Deep Space Network Progress Report, 44:114-116, January
1978. 10

Ralph C. Merkle. Method of providing digital signatures. Patent, 01
1982. US4309569A. 11

Ralph C Merkle. A certified digital signature. In Conference on the
Theory and Application of Cryptology, pages 218-238. Springer, 1989.
11, 13

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008. Accessed: 19 June 2018.
20, 21

Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 33-43. ACM, 1989.
31

The QRL. QRL - The Quantum Resistant Ledger. https://theqrl.
org/. Accessed: July 12 2018. 4, 51

Minghua Qu. Sec 2: Recommended elliptic curve domain parameters.
Certicom Res., Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6,
1999. 28

Oded Regev. New lattice-based cryptographic constructions. Journal
of the ACM (JACM), 51(6):899-942, 2004. 10

Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function
basics: Definitions, implications, and separations for preimage resis-
tance, second-preimage resistance, and collision resistance. In Interna-
tional workshop on fast software encryption, pages 371-388. Springer,
2004. 7

Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster
Than Exhaustive Search. In Antoine Joux, editor, Advances in Cryp-
tology - EUROCRYPT 2009, pages 134-152, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg. 7

Peter W Shor. Algorithms for quantum computation: Discrete loga-
rithms and factoring. In Foundations of Computer Science, 1994 Pro-
ceedings., 35th Annual Symposium on, pages 124-134. Teee, 1994. 4,
10

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-
ficient public key encryption based on ideal lattices. In International

99

https://bitcoin.org/bitcoin.pdf
https://theqrl.org/
https://theqrl.org/

Conference on the Theory and Application of Cryptology and Informa-
tion Security, pages 617-635. Springer, 2009. 10

Wouter van der Linde, Peter Schwabe, and Lejla Batina. Parallel sha-
256 in neon for use in hash-based signatures. BSc thesis, Radboud
University Nijmegen, 2016. 54

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in
the full SHA-1. In Annual international cryptology conference, pages
17-36. Springer, 2005. 14

Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash
functions. In Annual international conference on the theory and appli-
cations of cryptographic techniques, pages 19-35. Springer, 2005. 14

60

Appendix A

Using our code

Our code is available at https://github.com/lentus/wotscoin. Assum-
ing that Go is installed correctly (see https://golang.org/doc/install
for installation instructions), the code can be retrieved with the command
go get github.com/lentus/wotscoin. To build our software, navigate to
$HOME/go/src/github.com/lentus/wotscoin. Then execute go build in
the wallet folder to build the wallet, and in the client folder to build the
client. See the included README for further usage information.

Currently the client is setup to connect to a private network we used
for testing which has been taken offline. To create a private network,
we recommend to setup a permanent client on a server (using a random
port number for the test network, or 52082 which is currently used in the
code), then setup a bitcoin seeder (such as https://github.com/sipa/
bitcoin-seeder, changing lines 401-405 to use the url of the server run-
ning the client and replace any occurrence of the port number 18333 with the
chosen port number). Finally, in our code navigate to 1ib/others/peersdb
and change lines 294-297 of peerdb.go to use the url of the seeder you in-
stalled and the chosen port number. After rebuilding and executing the
client, it should connect to the permanent client. We used Pooler’s CPU
miner (https://github.com/pooler/cpuminer) to mine new blocks.

61

https://github.com/lentus/wotscoin
https://golang.org/doc/install
https://github.com/sipa/bitcoin-seeder
https://github.com/sipa/bitcoin-seeder
https://github.com/pooler/cpuminer

	Introduction
	Cryptographic Background
	Cryptographic Hash Functions
	Pseudo-Random Functions
	Digital Signature Schemes
	Post-Quantum Cryptography
	Hash-Based Signature Schemes
	W-OTS+ in Detail

	Background on Bitcoin
	Design and Security
	Relevant Implementation Details
	Post-Quantum Secure Blockchain

	XNYSS
	One-time addresses
	Long-term addresses
	Full Scheme
	Parameters and Key State
	Algorithms
	Limitations

	Performance

	Implementation in Bitcoin
	Addresses and Scripts
	UPKH Dabatase
	Updating Wallet State
	Segregated Witness

	Discussion and Conclusion
	Conclusion
	Related Work
	Improvements and Future Work

	Using our code

