
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Unobservable Communication over Fully
Untrusted Infrastructure

Sebastian Angel, The University of Texas at Austin and New York University;
Srinath Setty, Microsoft Research

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel

Unobservable communication over fully untrusted infrastructure

Sebastian Angel
UT Austin and NYU

Srinath Setty
Microsoft Research

Abstract
Keeping communication private has become increas-
ingly important in an era of mass surveillance and state-
sponsored attacks. While hiding the contents of a con-
versation has well-known solutions, hiding the associated
metadata (participants, duration, etc.) remains a challenge,
especially if one cannot trust ISPs or proxy servers. This
paper describes a communication system called Pung that
provably hides all content and metadata while withstand-
ing global adversaries. Pung is a key-value store where
clients deposit and retrieve messages without anyone—
including Pung’s servers—learning of the existence of
a conversation. Pung is based on private information re-
trieval, which we make more practical for our setting with
new techniques. These include a private multi-retrieval
scheme, an application of the power of two choices, and
batch codes. These extensions allow Pung to handle 103×
more users than prior systems with a similar threat model.

1 Introduction
Can two or more users exchange messages over a public
network without anyone else learning that they communi-
cated? And can this be done in a practical manner without
trusting any other entities (e.g., other users, ISPs, proxy
servers)? This paper answers these questions affirmatively
with a communication system that provides strong privacy
guarantees, even against active, global adversaries.

While the questions we consider are decades old [32],
there is a renewed interest motivated by an increase in
service providers disclosing their users’ information with-
out consent [7, 13, 16, 83, 90, 109], as well as question-
able mass surveillance practices [15, 27, 50, 62, 63] that
defy existing privacy laws and long-held beliefs [44, 116,
128, 129, 133]. In response, companies have mobilized
to deploy end-to-end encryption solutions to safeguard
the privacy of users’ communications [1–3, 5, 61]. While
end-to-end encryption protects the content of the mes-
sages exchanged, it does not hide their existence nor other
metadata (e.g., identity of participants, duration), which
can be just as sensitive [38, 88, 117, 120].

Fortunately, the threat of metadata leakage has not been
lost on academics and practitioners; there is a vast liter-
ature on preventing such disclosures [22, 25, 31–33, 40–
43, 47, 51, 75, 79, 81, 82, 92, 93, 98, 113, 114, 119, 121,
130, 136]. While these works make great strides toward
providing strong guarantees and supporting many users,
we find that most require trusting one or more entities

in the communication infrastructure (e.g., proxy servers,
ISPs, large coalitions of users) to achieve their goals. In
many contexts, such assumptions can be sensible. How-
ever, deployment considerations such as “where to find
a trusted entity or an incorruptible consortium to run
the system” are often left unspecified and are arguably
hard to answer. Furthermore, there is enough precedent
to think that private communication is a setting where
trustworthiness can be subverted by financial and polit-
ical interests [13, 39, 83, 90, 118]. There are proposals
that do not require trusting the communication infras-
tructure [26, 33, 42, 60, 66, 131], but they have been
primarily theoretical since the resulting systems support
only dozens of concurrent users.

This tension between trust and performance drives our
work. Our view is that private communication can be
achieved with reasonable performance, even in the pres-
ence of strong adversaries. To substantiate this position
we build Pung, a system that provably hides all metadata
associated with users’ conversations—even against adver-
saries who control all the communication infrastructure
(ISPs, cloud providers, etc.) and arbitrary coalitions of
users. We find that a 4-server deployment of Pung sup-
ports 135K messages/minute with 32K active users: 105×
more messages and 103× more users than any prior sys-
tem that withstands a similar adversary (§7.3). When we
extend this comparison to systems under weaker threat
models we find that Pung is promising but is not yet a
replacement: Pung handles 85× fewer users (§7.2).

To support tens of thousands of users at modest costs,
Pung addresses two challenges. The first is architectural:
devising a way for users to send and receive messages
without a trusted proxy. Our proposal is simple, and con-
sists of combining untrusted servers and powerful cryp-
tography through a synthesis of known ideas (§3). The
second, and more salient aspect of Pung is reducing the
costs of its cryptographic machinery. Our contributions
here include algorithms that amortize expensive opera-
tions when users send and receive multiple messages (§4).

In more detail, Pung is an untrusted key-value store that
exposes private deposit and retrieval procedures to users.
Pung’s deposit procedure is based on the ability of com-
municating users to agree on a shared label (or “key” in
the key-value store) under which to store a message (§3.1).
Pung’s retrieval procedure builds on a powerful—but
expensive—cryptographic primitive: private information
retrieval (PIR) [36]. PIR allows clients to fetch items from
a server without revealing to the server which items were

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 551

fetched. While PIR has been used in other private commu-
nication systems [79, 92, 119], its interface is not a good
fit for Pung: PIR requires clients to know the exact index
of the items they wish to retrieve in a data structure stored
at the server. In Pung, this data structure is continuously
modified, and clients know only a label (§3.1).

To improve the performance of PIR, Pung targets ap-
plications where users retrieve multiple messages: email,
group chats, bug reporting, and sensor data collection (§8).
Pung then introduces a private multi-retrieval scheme that
departs from most prior approaches (e.g., [18, 64, 67, 86])
in two ways. First, instead of modifying the design or
implementation of PIR, Pung encodes the underlying data
structures; these techniques are independent of the PIR
scheme used (§4.1). Second, Pung leverages an inher-
ent property of private communication systems: to re-
sist traffic analysis they operate in rounds in which a
bounded number of messages is sent and received by each
user (§3.1). Users who wish to send or receives messages
past this limit must wait several rounds to do so. Pung
exploits this restriction with a multi-retrieval scheme that
is probabilistically—rather than perfectly—complete: in
a few cases clients can only retrieve a fraction of the
items they wish to retrieve, but they can try again later.
This results in a more efficient scheme than all prior PIR
schemes that support multi-retrievals (§4.2).

To integrate PIR with Pung, we adapt an existing obliv-
ious search technique [35] that allows clients to retrieve
messages with labels (§3.3), and extend it to work on
the encoded data structures that Pung uses for multi-
retrieval (§4.4). Pung also introduces several other fea-
tures. First, Pung supports group communication. Second,
Pung provides a service that allows users to privately
derive a shared secret to bootstrap their conversations,
provided they know each other’s public keys (§6). Last,
messages in Pung are long-lived and can be retrieved at a
later time by clients who participate infrequently (§8).

Nonetheless, our work has several limitations. While
we reduce costs compared to prior approaches, these
costs—especially network costs—remain high (§7.4). Fur-
thermore, many of our techniques are only beneficial
when clients retrieve multiple messages. Like all past pri-
vate communication systems, Pung does not hide the fact
that users are part of the system (it only hides if and with
whom they are communicating); users are also required
to participate even when they have nothing to send or
retrieve. Pung does not provide liveness guarantees (cen-
sorship resistance) in the face of malicious servers or ISPs.
This is fundamental since an ISP could simply refuse to
route network packets. Lastly, Pung does not currently
support an efficient dialing protocol to enable clients to
“cold-call” one another (§5). Despite these limitations, we
believe that Pung takes an important step toward enabling
untrusted private communication.

2 Goals and threat model
In this section we discuss our goals and assumptions, and
the general ecosystem that Pung targets.

2.1 Private communication over the Internet

Our objective is to develop a messaging system that al-
lows two or more users to communicate over the Internet
(or any other public network) while hiding the content
of all messages exchanged in addition to the metadata
of the exchange. The types of metadata that we wish to
keep hidden from anyone—except from the users directly
involved—include the start and end time of a conversa-
tion, the number of messages exchanged, the identity of
the participants, etc. Some of this information is diffi-
cult to keep private since many existing services rely on
it for their proper functioning. For instance, ISPs need
to know destinations to route packets, email and chat
service operators—who would in principle deploy and
manage Pung—need to know the messages that make up
a conversation, etc. Consequently, Pung must balance the
requirements of existing services and infrastructure with
the preservation of the following security goals:

Message integrity and privacy. The content of a mes-
sage must be intelligible only to its intended recipient. Fur-
thermore, no one should be able to tamper with a message
while it is in transit without the recipient being able to de-
tect alterations. Specifically, we target the strongest cryp-
tographic properties that capture these goals, namely in-
tegrity of ciphertexts under chosen plaintext attacks (INT-
CTXT) [21, 70], and indistinguishability under adaptive
chosen ciphertext attacks (IND-CCA2) [99, 110].

Metadata privacy. An adversary must not be able to de-
termine if (or when) a user sent or received a message.
Furthermore, an adversary must not be able to link a
message exchange with the users that participated in that
exchange. Specifically, we target the privacy notion of
relationship unobservability as defined by Pfitzmann and
Hansen [105]. Informally, relationship unobservability
states that an adversary does not learn useful information
from observing (or actively interfering with) all network
traffic, provided that the sender and the recipient are not
compromised. In the case of such compromise, relation-
ship unobservability offers little value: the sender could
trivially disclose that it is sending a message and to whom;
a receiver could similarly leak the sender’s identity.

The above restriction is consistent with our setting of
two-way communication. However, as we note in Sec-
tion 9, relationship unobservability is not a panacea. For
instance, it is not on its own sufficient to protect whistle-
blowers who wish to remain anonymous from everyone—
including all recipients. We give a formal definition of
metadata privacy and provide proofs of security for all of
our techniques in our extended report [12, Appendix A].

552 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2 Security assumptions

Pung achieves the security properties above under the
following set of assumptions.

Cryptographic assumptions. Pung requires an authen-
ticated encryption scheme (e.g., [21, 53]) to meet our
goals of message integrity and privacy. Pung also relies
on a computational private information retrieval (CPIR)
scheme (e.g., [10, 58, 73]) and a pseudorandom function
(e.g., [19, 20]) for ensuring metadata privacy (§3.1–§3.3).

Trust assumptions. Pung assumes that users who wish
to communicate know their peer’s public key (or can
exchange a secret through and out-of-band channel). Pung
provides privacy guarantees only to pairs (or groups) of
users who communicate through Pung while following
the prescribed protocol. However, these guarantees are
not predicated on the behavior of any other user in the
system, or the communication channel between users.
In particular, Pung’s guarantees hold even if all of the
infrastructure that Pung uses (servers, ISPs, DNS, etc.) is
compromised and operates arbitrarily.

Liveness assumption. Pung assumes that services used
by clients to communicate with each other do not deny
service. That is, we expect ISPs to carry traffic, DNS to
provide name resolution, and servers to process requests.
While this assumption is not needed for Pung to meet our
security goals (§2.1), it is essential for Pung to be usable.

3 Design and architecture
Pung adopts a client-server architecture in which third-
party servers mediate the exchange of messages between
users. Figure 1 depicts this architecture. From the perspec-
tive of end users, a Pung cluster acts as a storage service.
This parallels services like Gmail or Outlook that store
messages on behalf of users.

Users exchange messages via a Pung client application
that deposits the messages into mailboxes in the Pung
cluster. These mailboxes are addressed by a label that is
known to both the sender and the recipient. Recipients can
access a message sent to them by retrieving the contents
of a mailbox from the Pung cluster using an appropriate la-
bel. Pung’s “mailbox” architecture is borrowed from prior
systems [25, 40, 75, 79, 119, 130]. A key difference is
which entities run the storage nodes, the kinds of process-
ing that these nodes do, and the mechanisms for storing
and retrieving messages. We discuss each of these com-
ponents in the following sections, but we first highlight
how this architecture fits within our target ecosystem.

Pung’s mailbox architecture forces all messages sent
and retrieved to go through entities like ISPs and the
Pung cluster. These services rely on (or can easily in-
fer) the types of metadata that we wish to hide, since
they process all network traffic. Consequently, protect-

Pung cluster

Retrieve(0x12)

FIGURE 1—Client applications issue send and retrieve requests
to the Pung cluster at a given rate, introducing fake requests
whenever the user is idle (or issues fewer requests than the rate).

ing metadata without harming the functioning of these
services requires that the rate at which clients send and
receive network packets be disentangled from the rate
at which they send and retrieve messages in Pung. This
requirement is key to preventing many types of traffic
analysis attacks [68, 96, 112]. Unfortunately, it results in
an unavoidable inefficiency: clients must send and retrieve
messages at an independent (e.g., constant, Poisson) rate,
even when the user is idle. This requires that clients queue
excess requests and add cover traffic or chaff [115] (fake
requests that are indistinguishable from real ones).

We now discuss how mailbox labels are derived, and
how clients can use them to send and retrieve messages.

3.1 Mailbox labels and discretized rounds

The Pung protocol proceeds in discretized rounds or time
epochs. Round duration is configurable and depends on
the use case. The Pung cluster acts as a point of synchro-
nization for clients and dictates when a new round starts.
While this allows the Pung cluster to force clients out
of sync, doing so results in a denial of service but does
not violate our goals (§2.1). During each round, client
applications issue exactly one send and one retrieve. This
ensures that clients issue requests at a constant rate (§3).
In Section 4 we relax this model and let clients issue
multiple send and retrieve requests per round, enabling
several applications (§8) and achieving lower (amortized)
costs (§7.3). Finally, Section 5 discusses how clients can
manage existing connections, and how they can agree on
a round on which to start a new conversation.

Deriving mailbox labels. The Pung cluster is effectively
a key-value store that treats mailbox labels as keys, and
(encrypted) messages as values. This means that users’
communication depends on their ability to agree on a la-
bel under which to store and retrieve messages. This label
should be unique (to avoid multiple pairs of users over-
writing each other’s messages), and it must also be inde-
pendent of the users communicating (otherwise an adver-
sary could link a label to a conversation). Pung achieves
both of these properties through a combination of shared
secrets and a pseudorandom function (PRF).

Recall from Section 2.2 that we assume that users who
wish to communicate have access to each other’s public
key (e.g., RSA key), or have exchanged a secret through
an out-of-band channel. In Section 6 we present a direc-
tory service that allows users to derive a shared secret

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 553

directly from public keys. Consequently, the rest of this
section assumes that users have a shared secret which acts
as a master key. This master key is used to derive two addi-
tional keys, kL and kE, with a key derivation scheme [76].
The derived keys are used for mailbox label generation
and message encryption, respectively. We also assume
that users have a unique identifier, uid, within each pair of
communicating users. For example, if Alice and Bob wish
to communicate with each other, Alice could be “0” and
Bob could be “1”. This information need not be private,
so users could choose any identification scheme including
using their names or public keys.

Each user can derive the corresponding labels for the
current round r, labelS(r) and labelR(r), by invoking the
pseudorandom function (PRF) keyed with kL:

labelS(r) = PRFkL(r || uidpeer)

labelR(r) = PRFkL(r || uidown)

where r is a fixed-width integer and || is the concatenation
operator when r and uid are treated as binary strings.
Note that labels need not be symmetric: a user can send a
message to Alice and retrieve one from Bob in the same
round. In such cases, the labels would be generated using
different keys and uids. If a user is idle and has nothing
to send or retrieve, it generates random mailbox labels.

3.2 Sending messages in Pung

Sending a message in Pung consists of deriving the recip-
ient’s mailbox label (labelS), and encrypting the message
with an authenticated encryption scheme (§2.2) using
key kE. The client then sends the resulting ciphertext,
c = AE(kE, m), along with the mailbox label, to the Pung
cluster as a (labelS, c)-tuple. Idle users send a tuple that
consists of a random label and an encryption of a random
message instead. We assume that all messages are the
same size or that padding is applied.

3.3 Retrieving messages from the Pung cluster

Observe that if the Pung cluster were to broadcast to all
users the (label, c)-tuples received during a round, users
could iterate through the list locally and find the tuple
with the label that is of interest to them (or determine
that it is not present). Intuitively, this operation would not
leak any information about which label (if any) was of
interest to a retriever, and would not allow the adversary
to determine with whom a user is communicating (or if
the user is idle). Of course, broadcasting all tuples would
incur prohibitive network costs. Fortunately, retrieving an
item from an untrusted server without revealing which
item was retrieved is the problem addressed by private
information retrieval (PIR) [36]. PIR protocols trade off
computation at the server to achieve lower network costs
than the above broadcast scheme. We summarize PIR
next, since it is the basis of message retrieval in Pung.

Private information retrieval (PIR). We focus on com-
putational PIR (CPIR) schemes [10, 28, 30, 57, 58, 73, 77,
135] that hide users’ access patterns under cryptographic
hardness assumptions.1 At a high level, a CPIR scheme
operates over a collection DB of n items held by a server,
and consists of three procedures: QUERY, ANSWER, DE-
CODE. The QUERY(idx, n) procedure is run by the client; it
outputs a query q that encodes the index, idx, in DB of the
desired element. The ANSWER(q, DB) procedure is run by
the server; it returns an encrypted response a that contains
the element in DB at the index encoded in q. This step
requires the server to perform cryptographic operations
over all elements in DB. The DECODE(a) procedure is run
by the client; it decrypts a to recover the desired element
in DB. Below we describe a simple CPIR scheme based
on an additively homomorphic cryptosystem.2

The client first generates a query vector q of length n
by calling the QUERY(idx, n) procedure. Every entry in
q is a different encryption of 0, except for the entry at
position idx which is an encryption of 1. The client sends
this query to the server, who executes ANSWER(q, DB) to
produce a ciphertext c that encrypts the element in DB
at position idx. To do this, the server creates a vector x
by interpreting every entry ei ∈ DB as an integer, and
computing the product of ei and the ciphertext qi. This
can be accomplished through repeated additions of qi

by leveraging the additive homomorphic property of the
cryptosystem: xi =

∏ei
1 qi. The server then adds up every

entry in x to obtain a. This procedure works because the
vector x consists of n−1 ciphertexts that encode 0, and
one ciphertext that encodes eidx. Adding all of them results
in an encryption of eidx, without the server learning which
index was requested. Lastly, the client runs DECODE(a) to
decrypt a and get the desired element.

All of the CPIR schemes to which we refer (and on
which we rely) are more efficient than the above straw
man, but they have a similar flavor. Crucially, they enjoy
communication costs sublinear in n (i.e., they are cheaper
than transferring the entire collection). Furthermore, some
CPIR schemes (e.g., [10]) have low enough computational
costs that their processing latency is actually lower than
transferring the entire collection over today’s networks
(this was believed to be an unlikely scenario [125]).

Retrieving messages. Since PIR allows clients to pri-
vately retrieve an item from the server at some index, one
possibility is to use labels as indices: clients can retrieve
a message from labelR(r) with q = QUERY(labelR(r)).
However, the size of the collection would need to match

1IT-PIR schemes [36, 48, 59] are an efficient alternative to CPIR but
rely on multiple servers, at least one of which must be correct. This
conflicts with our goals and threat model (§2).

2An additively homomorphic cryptosystem supports an operation “·”
that can be used on ciphertexts to produce a new ciphertext encoding
the sum of their plaintexts. That is, Enc(x) · Enc(y) = Enc(x + y).

554 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3 10 150 200 370

3 10 150 200 370

3 10 150 200 370

Idx = 2, Cost = 6

Idx = 1, Cost = 6

Idx = 0, Cost = 6

240

240

240

FIGURE 2—A client wishing to retrieve an item with label “3”
from a server holding a sorted list of 6 items would need to
perform three rounds of probing. During each probe, the client
guesses an index, uses PIR to retrieve the (label, c)-tuple at that
index, and refines the guess accordingly. “Cost” indicates the
number of items processed by the server in each probe.

the range of the labels (§3.1), which is 256 bits in our
implementation (§6). This would require Pung servers to
materialize and operate over a collection of 2256 items!

Instead, we can arrange for Pung servers to insert all
(label, c)-tuples sent by clients in some search data struc-
ture (e.g., sorted list, search tree) and present them as
a collection DB of size n (where n is the total number
of nodes in the data structure). This enables clients and
Pung servers to perform PIR directly on DB, but there
is a problem: clients know from which label they wish
to retrieve, but they do not know the mapping between
labels and the index of the desired tuple in the data struc-
ture representing DB, or if the tuple even exists. This can
easily be addressed by having clients obtain this label-
to-index mapping from the Pung cluster. However, when
the collection is large (n>100K), clients can use a search
scheme to reduce network costs. We discuss this below.

The key idea is that clients can find their desired ele-
ment in DB via an “oblivious” search. Figure 2 depicts an
example of this search when DB is stored as a sorted list.
In this case, the client performs log(n) probes to locate its
desired element (or determine that it is not present). Even
if the client gets lucky and finds its element early, it must
continue until the end to preserve privacy; the remaining
probes can just use any indices. Since each probe is a PIR
query to the entire collection DB, the server must process
n elements each time; the time complexity of this search is
therefore Θ(n log(n)). However, this scheme has a lot of
redundancy: the server processes each item log(n) times.
Chor et al. [35] show that one can eliminate this “double
counting” overhead by using data structures that can be
(logically) split into independent chunks while retaining
the search capability. We elaborate on this idea below in
the context of the specific construction that Pung uses.

BST retrieval. We choose to use a complete3 binary
search tree (BST) as our underlying data structure for sev-
eral reasons. First, a complete BST is balanced, enabling
search in O(log(n)) probes. Second, for any dataset there
is a unique complete BST, so the Pung cluster need not

3A k-ary tree is complete if all of its levels (except possibly the last) are
full, and the last level is filled from left to right.

200

10 370

3 150

200

10 370

3 150240 240

Idx = 0, Cost = 1

Idx = 0, Cost = 2

Idx = 0, Cost = 3

FIGURE 3—The Pung cluster can store (label, c)-tuples in a
complete BST, allowing clients to treat each level as an indepen-
dent collection. Clients can issue a PIR query for the top level,
and can recursively derive the index of lower levels using BST
semantics. This figure depicts the search for label “3”.

1: function BST-RETRIEVAL(L⋆, n)
2: h← ⌊log2(n)⌋ // last level of the BST
3: c⋆ ← ⊥ // target ciphertext (⊥ means not yet found)
4: idx← 0 // index of the current level
5: len← 1 // length of the current level
6: lenh ← n− (2h − 1) // length of the last level
7:
8: for i = 0 to h do
9: // use PIR to get element at position idx from collection at level i

10: q← QUERY(idx, len)
11: a← send i and q to server and get answer
12: (L, c)← DECODE(a)
13:
14: if c⋆ == ⊥ then
15: if L⋆ < L then // access left child next
16: idx← 2 · idx
17: else if L⋆ > L then // access right child next
18: idx← 2 · idx + 1
19: else // L⋆ == L, found target ciphertext
20: c⋆ ← c
21:
22: len← 2i+1 or lenh // length of the next level
23:
24: if idx ≥ len or c⋆ ̸= ⊥ then
25: idx← random index between 0 and len− 1
26: return c⋆

FIGURE 4—Client procedure for retrieving an encrypted mes-
sage c⋆ from a mailbox with label L⋆. The server holds a collec-
tion of n (label, c)-tuples in a complete binary search tree.

communicate the structure to clients (aside from n). Last,
since every level of a complete BST is full (except for pos-
sibly the last) and every node contains an actual data item,
there is no need for padding or auxiliary elements; it can
be represented as a contiguous array without overhead.

Based on this, we set up the Pung cluster to store the
collection of (label, c)-tuples in a complete BST, and have
clients treat all the nodes at the same depth in the tree
(i.e., on the same level) as a (logically) separate collection.
As depicted in Figure 3, clients can then process each of
the log(n) collections sequentially from top to bottom,
deriving the index of the next level from the semantics
of the BST. The pseudocode for this procedure is listed
in Figure 4. Since each collection (and therefore each
element) is accessed exactly once, there is no overhead
due to double counting. Indeed, the time complexity of
this BST-based retrieval scheme is Θ(n), which is the
same as if the clients had known the index in the first place.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 555

Compared to performing PIR over a known index, clients
do incur a log(n)× higher network cost due to retrieving
a tuple at every level. As an optimization, clients could
fetch (non-privately) all of the tuples of the first few levels,
saving both bandwidth and CPU. This is because CPIR
queries and answers are typically much larger than the
elements in the collection; when the collection is small,
it is more efficient to download all elements (i.e., naive
PIR) than to use a CPIR scheme (§7.4).

The above sending and retrieval procedures are suffi-
cient to build a version of Pung that meets all of our se-
curity goals (§2.1): it enables users to communicate with
each other privately, hiding the content and preserving
the integrity of messages, without leaking any metadata
associated with a conversation. Furthermore, none of the
security guarantees depend on the correctness of the Pung
cluster. For instance, if the Pung cluster modifies the ci-
phertext associated with any tuple, clients can detect this
due to the integrity guarantees of the authenticated en-
cryption scheme. If the server drops tuples or stores them
in a data structure that is not a complete BST, clients will
be unable to find the tuple of interest to them (a denial of
service), but the integrity of the content and the privacy
of the communication is preserved. The drawback with
the above scheme is its costs: the server has to process
the entire collection for each client request. Additionally,
for applications where clients wish to retrieve more than
one message in a round (§8), costs scale linearly with the
number of messages retrieved. The next section describes
ways to significantly amortize costs for regimes in which
clients retrieve multiple messages simultaneously.

4 Reducing costs via multi-retrievals
This section describes how to reduce the CPU costs of the
Pung cluster when clients retrieve multiple messages.

4.1 Prior approaches to multi-retrieval

One approach to retrieving k items from the server is to
run the protocol in Section 3.3 k times, but this results in
costs that are linear in k. An alternative is to create new
PIR schemes that support a batch of k retrievals with sub-
linear costs. Groth et al. [64] achieve significant improve-
ments with this approach, but their focus is reducing net-
work costs—the resulting CPU overheads are prohibitive
in our context. Another approach is to modify the imple-
mentation, rather than the design, of existing PIR schemes.
In particular, as we discuss in Section 3.3, the query of
many PIR schemes is a vector of encrypted entries. The
server can aggregate the queries submitted by (potentially
different) users into batches of size k, and construct a ma-
trix. This enables the server to leverage fast matrix multi-
plication algorithms (e.g., Strassen’s algorithm [126]) to
evaluate PIR’s ANSWER procedure. Several works have
shown that this yields modest benefits [18, 67, 86].

In Pung, we take a different approach—inspired by
batch codes [69]—from the schemes above: instead of
modifying the design or the implementation of a particular
PIR protocol, we focus solely on changing the represen-
tation of the underlying data.4 We discuss batch codes in
detail in Section 4.4 since we use them as a final refine-
ment to our scheme. At a high level, they enable the server
to encode a collection into smaller subcollections, in such
a way that clients can retrieve any k items by querying
each subcollection at most once. Below we highlight sev-
eral reasons for designing a new mechanism rather than
directly applying batch codes.

Challenges and opportunities. First, many batch codes
suffer from a major drawback: the number of elements
that a client downloads increases rapidly with k. This
means that for small k (3 or 4), network costs are within
a small factor of retrieving items one by one; but they
quickly rise to untenable levels with larger k. Second,
batch codes’ perfect completeness guarantee (i.e., that
clients can retrieve any k items) is too conservative for
our setting. In particular, Pung does not require that clients
can always retrieve all k messages during a given round:
since messages in Pung are long-lived (§6), clients can
retry the next round. This behavior is actually inevitable
in systems resistant to traffic analysis, such as Pung: recall
that clients send and retrieve messages at some rate; any
client who receives messages in excess of this rate must
wait at least two rounds. Below we describe an alternative
that works well for larger k, but is probabilistic. That is,
a client can sometimes only retrieve a subset of the k
messages that it wished to retrieve in a given round.

4.2 Probabilistic private multi-retrieval

We now introduce a new probabilistic multi-retrieval
scheme. A multi-retrieval scheme allows a server to effi-
ciently process multiple retrievals from the same client
by amortizing costs. Our proposal is more efficient than
prior approaches, especially for larger values of k (> 4).

At the core of multi-retrieval is the observation that as
long as every item in the server’s collection is processed
at least once, the underlying PIR protocol will ensure that
the server does not learn which tuples were retrieved. As
we discuss in Section 3.3, one can take a collection and
structure it as a tree, allowing each level to be treated
independently. This results in clients retrieving log(n)
tuples, while the server processes each element just once;
incurring the same CPU costs as a single retrieval. The
reason that BST-RETRIEVAL (Fig. 4) is not technically
a multi-retrieval scheme is that clients have no control
over which tuples are fetched (they are forced to follow
BST semantics), and consequently the procedure can only

4Using PIR as a black box means that other optimizations (e.g., fast
matrix multiplication) benefit Pung as well.

556 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

output a single message. We now show a way to divide the
collection into smaller subcollections while still allowing
clients some control over which items to fetch.

Server setup. The server initially performs a static parti-
tioning of the label space (e.g., 2256) into B buckets (we
set B to the maximum number of messages that users
retrieve in a round, i.e. k). Each bucket holds all (label, c)-
tuples whose labels fall into its partition. At the end of the
send phase, the server takes all the (label, c)-tuples sent by
clients and distributes them across the B buckets based on
their label. Small buckets store tuples in an arbitrary order,
while larger buckets store tuples in an array that represents
a complete BST (§3.3). The latter enables clients to use
BST-RETRIEVAL (Fig. 4), which saves network resources.
Finally, the server sends clients the number of items in
each bucket, and awaits retrieval requests.

Client lookup. A client can retrieve multiple messages
simultaneously by treating each bucket as an independent
collection and retrieving one (label, c)-tuple from each
bucket. This is done by calling an appropriate retrieval
procedure on each bucket with a label that falls within the
bucket’s range and the size of the bucket: for BST-encoded
buckets, the client uses BST-RETRIEVAL; for other buck-
ets, the client requests the label-to-index mapping, and
retrieves a (label, c)-tuple by directly sending the output
of PIR’s QUERY procedure to the server. If a client does
not wish to retrieve a tuple from a particular bucket, it
performs the retrieval using a random label. Note that
since BST-RETRIEVAL (or PIR’s QUERY) is executed on
each bucket independently, the server’s CPU cost is still
the same as if the client had requested a single tuple from
the entire collection (as was the case in §3.3).

In the best case, since there are as many buckets as user
queries (B = k), clients can retrieve all of their desired
messages at once. However, this scenario presupposes
that all tuples that the client wishes to retrieve have labels
that fall in different buckets. But what if a client wished
to retrieve ρ tuples (1 < ρ ≤ k) from the same bucket?

Unfortunately this cannot be done privately as it would
require the client to interact with the same bucket ρ times,
leaking information about the requested labels. Instead,
the entire protocol must be rerun ρ times, allowing the
user to retrieve one message from the contested bucket on
each run. There is one caveat: the number of times that the
protocol is rerun during a round must not depend on the
user’s choice of labels; this too would leak information.
Instead, the number of reruns must be set a priori.

But how common is it for clients to want to retrieve
multiple tuples from the same bucket? This is a standard
balls-and-bins scenario, since the client’s labels are gen-
erated from a pseudorandom function, and the buckets’
range is statically and independently partitioned. We can
thus bound the number of tuples that fall in any bucket

by ρ ≤ 3 ln(k)
ln(ln(k)) [95, Lemma 5.1]; this bound fails to hold

with probability ≤ 1
k . Unfortunately, this is a fairly large

number (9–11, for k ≤ 512), especially since we require
rerunning the entire protocol ρ times to guarantee that
clients can retrieve k messages with high probability.

Below we describe how Pung reduces the bound on ρ
exponentially by reaping the load balancing benefits of
giving clients multiple choices to retrieve tuples [94].

4.3 Fewer reruns with the power of two choices

Azar et al. [14] show that in a k balls and k bins scenario,
if each ball maps to d random bins (d > 1), and balls are
placed in the bin least full, the highest load in any bin is
bounded by ln(ln(k))

ln(d) +Θ(1) with high probability.
We observe that if clients had multiple buckets from

which to retrieve a message, we could apply this re-
sult to decrease the bound on ρ, and consequently the
number of reruns that clients must perform during multi-
retrieval (§4.2). However, this kind of load balancing is
typically applied from the producer’s perspective (e.g.,
choosing which server to issue a request, or on which
queue to place a packet); in our case, we are interested in
enabling the consumer (i.e., the recipient of a message).

This raises the following question: how can we enable
a client to be able to retrieve a message under two labels?
We propose a seemingly bad idea: have senders derive
two labels for each message, and have the server store
messages under both labels. This of course doubles the
already large number of messages in the system (n). Con-
sidering that all PIR costs scale linearly with n, and the
BST retrieval scheme (§3.3) adds a multiplicative log(n)
factor to network costs, this is a cause for concern. How-
ever, the exponential decrease in the number of reruns
that clients will have to perform (i.e., ρ), far outweighs the
costs associated with doubling all messages. Ultimately,
this simple approach results in significant savings.

We implement the above scheme by extending Pung’s
send and retrieve procedures (§3.2). Recall that clients
derive two keys from their shared secret, and use one of
them (with a PRF) to generate a label under which to store
a message. Under the modified protocol, clients derive
a third key that they use in combination with a second
PRF to generate the extra label.5 Clients can then send
(L1, L2, c) to the server, which then stores c under two dif-
ferent (label, c)-tuples. During retrieval, clients generate
both labels for each message they wish to retrieve (§3.3)
and follow the lookup scheme (§4.2) using the label that
leads to fewer bucket collisions. Note that collisions are
defined with respect to a client’s other labels. They are
independent of the actions of other clients or the server;
they are therefore a notion local to each client.

5Clients need to ensure that both labels do not map to the same bucket.
This can be done by using a counter as a nonce to the PRF, incrementing
it until both labels map to different buckets.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 557

4.4 Probabilistic multi-retrieval with batch codes

The above bucket-based scheme makes progress toward
lowering CPU and network costs, but still requires the
protocol to be rerun ρ times. In this section we further
refine the scheme by composing it with batch codes, dis-
cussed next, to achieve a hybrid scheme that has lower
CPU costs than either mechanism, fewer round trips than
the bucket-based scheme, and lower network costs than
applying existing batch codes in isolation.

Batch codes. A (n, N, k, m)-batch code [69] takes as in-
put a collection of n items and the number of desired
retrievals k (k > 1), and outputs N items (n < N < n · k)
distributed across m subcollections (m > 2) that have
a useful load-balancing property: any k items from the
original collection can be retrieved by querying each of
the subcollections at most once. In our context, this means
that a Pung server that encodes n (label, c)-tuples with
a batch code can process k simultaneous queries from
the same client, while only paying the processing cost
required to answer one query to a collection of N tuples.

We now give an example of a (n, 3
2 n, 2, 3)-batch code

scheme that supports k = 2 retrievals. A collection DB of
n items, is split into 3 subcollections db1, db2, db3, such
that db1 has the first half of the items, db2 has the second
half of the items, and db3 has db1 ⊕ db2 (where ⊕ is
the element-wise XOR operator). A single PIR query to
each subcollection is thus sufficient to privately retrieve
any two items from DB (we provide details later in this
section). Furthermore, the CPU cost of answering all three
queries (one for each subcollection) is the same as that
of processing one PIR query over a collection of N =
3
2 n items. Therefore, this scheme is 25% cheaper than
running PIR twice on DB to retrieve 2 items (since that
would require processing 2n items).

Subcube batch codes [69] are a generalization of this
scheme and allow clients to retrieve any k items at once
by recursively performing the above encoding (e.g., to
support k = 4, one encodes each of db1, db2, db3 to ob-
tain a total of m = 9 subcollections). Consequently, large
values of k significantly amortize the CPU cost of retriev-
ing k items. A disadvantage is that clients always have
to retrieve an element from each of the m subcollections,
where m = 3log(k) in the above scheme. This is acceptable
for small k, but for large k the network overheads are enor-
mous: for k = 128, clients retrieve 17× more elements
than running 128 instances of the scheme in Section 3.3.6

On the other hand, our probabilistic bucket-based
scheme allows clients to retrieve k messages at once with
lower CPU and network overhead, but requires ρ reruns
of the protocol (ρ is roughly 3–4 with our refinement in
§4.3). The rationale behind rerunning the protocol is that

6Other batch codes exist [69, 104, 111, 123], but their concrete costs are
significantly higher than those of subcube batch codes in all our cases.

clients might need to retrieve up to ρ items from the same
bucket. Observe that retrieving a few items (e.g., k ≈
2–4) is a strength of subcube batch codes. It therefore
makes sense to hybridize the two techniques. However,
subcube batch codes are not compatible with BST-based
retrieval (which reduces network costs for large buckets
as discussed in §3.3). We address this with the following
technique, which might be of independent interest.

BST retrieval with subcube batch codes. We now
adapt BST-RETRIEVAL (Fig. 4) to work on encoded collec-
tions. We focus on the (n, 3

2 n, 2, 3)-subcube batch code
described earlier but our approach generalizes.

Server setup. The server starts with a collection of n
(label, c)-tuples, which it sorts based on labels. Analogous
to the batch code scheme described earlier, the server
splits the collection into two halves, and stores them as
two complete BSTs, b1 and b2. Finally, the server creates
a third binary tree, b3, from b1 and b2 as follows: for every
level i and index j, b3(i, j) = b1(i, j)⊕ b2(i, j). The server
then indicates to clients the collection size (n) and the
lowest label in b2, Lmid; tuples with labels lower than Lmid,
if they exist, would be found in b1.

Client lookup. A client wishing to retrieve two tuples
labeled L1 and L2 can do so as follows. Assume without
loss of generality that L1 < L2. There are two cases:
• If L1 < Lmid and L2 ≥ Lmid: the client calls BST-

RETRIEVAL(L, n
2) on each tree independently, passing

L1 for b1, L2 for b2, and a random label for b3.
• If L1 < Lmid and L2 < Lmid, the client calls BST-

RETRIEVAL(L1, n
2) on b1, and performs a joint tree

traversal on b2 and b3 to retrieve L2 (the case where
both L1 ≥ Lmid and L2 ≥ Lmid is symmetric and simply
requires exchanging the role of b1 and b2).
Joint tree traversal. Since b3 is not a BST (i.e., the

order of its elements does not respect BST semantics),
it cannot be used directly for search. However, it can be
jointly traversed with the help of another tree. We describe
this for the case where L1 < Lmid and L2 < Lmid. A client
starts by retrieving the tuples at level 0 and index 0 for
both b2 and b3 in parallel. This is equivalent to lines 10–
12 in Figure 4 (during the first iteration of the loop). The
result of the two separate calls (one for each tree) to the
DECODE procedure in line 12 is the pair of tuples t2 and t3.
While the label of t3 is unintelligible (since it is encoded)
and the label of t2 is irrelevant to the client’s search, they
can be combined to compute (L, c) = t1 = t2 ⊕ t3, which
is the corresponding tuple in b1. This yields a way to
jointly traverse the trees: the client can compare L2 to L
and choose whether to go left or right on both b2 and b3
for the next level. If L2 = L, the client can save c (as this is
the desired ciphertext), and continue with random indices
for the remaining levels. The above steps are analogous
to lines 14–25 in Figure 4 when one replaces L⋆ with L2.

558 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A hybrid scheme. As before, the server partitions the
label space into B buckets. For each bucket b, the server
encodes all the corresponding tuples with a (nb, Nb, ρ, m)-
subcube batch code. Here, nb is the initial number of
tuples in b, ρ is the number of reruns required after deriv-
ing two labels per tuple (§4.3), Nb is the total number of
tuples in b after encoding, and m is the number of subcol-
lections per bucket (m = 3log(ρ)). If nb is large enough,
the server uses the BST-aware batch code presented above
so clients can benefit from the lower network cost of BST-
based retrieval. The upshot is that combining batch codes
with probabilistic multi-retrieval lets clients retrieve up to
ρ tuples from each bucket, without rerunning the protocol.

5 Operational challenges
A key challenge in any communication system is manag-
ing user connections. In particular, how do clients deter-
mine when and for how long to communicate? In Pung,
the answer depends on the type of pre-existing relation-
ship that users have: symmetric, where users already know
each other and have already derived a shared secret (§3.1),
and asymmetric, where one user wishes to “cold call”
another for the first time. We now describe both cases.

Managing symmetric connections. Client applications
of users who already know each other can exchange con-
trol messages through Pung. Control messages have a
special structure that client applications can recognize
and automatically act upon, so they are transparent to
actual users. Control messages are sent over Pung like
any other message—so they too are private—and include
statements like “END” to indicate that a conversation is
over, or “START [round]” to indicate the round when a
conversation should start. These messages are sent period-
ically (e.g., every 20 rounds), but can also be sent during
an active communication in response to events (e.g., END
is sent when the application is placed in the background
or when the user stops typing for a few minutes).

The frequency of control messages is initially config-
ured the first time that two users communicate with each
other, but it can be adjusted dynamically with the “FREQ
[rounds]” control statement. Higher frequency leads to
smoother operation (e.g., client applications can agree
on a round to start a conversation faster), but like any
other message, they count toward the send and retrieve
rate limit chosen by the user (§3.1). Pung’s multi-retrieval
optimizations (§4) make sending and receiving control
messages more efficient, and enable clients to fetch con-
trol messages from several known peers at once.

Initiating asymmetric connections. The exchange of
control messages described above presupposes an estab-
lished relationship between clients. But how does Pung
bootstrap this interaction in the first place? One option
is for clients to use control messages to introduce their

peers to others. A more realistic alternative is for clients
to use a dialing protocol, as proposed by Vuvuzela [130]
and Alpenhorn [80]. In a dialing protocol, clients send
invitations (messages stating the desire of a user to start
a conversation, and information about a round on which
to do so) to mailboxes with labels derived from users’
email addresses [80] or public keys [130]. Clients can
then periodically check their corresponding mailboxes for
invitations, without leaking metadata in the process.

Unfortunately, Pung does not currently support an effi-
cient dialing protocol. We attempted to adapt Vuvuzela’s
dialing scheme, but due to Pung’s threat model and ar-
chitecture, we found that it degenerates into each client
having to download the invitations sent by all users.
The precise issue is that Pung does not provide sender
anonymity [105]. Incidentally, all existing systems that
provide sender anonymity without trusted infrastructure
are fully peer-to-peer and broadcast messages to every-
one [33, 42, 60, 66, 131]. This makes dialing gratuitous
since all users already know each other (i.e., relation-
ships are symmetric), and they actively communicate with
everyone in every round. Designing an efficient dialing
scheme under our setting (§2)—or proving that it cannot
exist—remains an open question.

6 Implementation
We implement Pung in 5,800 lines of Rust and C++ bind-
ings. We express the server-side computation of Pung in
Naiad’s timely dataflow model [97], and use the Timely
Dataflow library [89] written in Rust, to create, run, and
coordinate dataflow workers. Each worker processes send
and retrieve requests issued by clients, encodes the tu-
ple collections, and invokes the PIR procedures exposed
by XPIR [11]. Finally, we derive keys from secrets with
HKDF [76], generate labels with HMAC-SHA256, and
encrypt messages with ChaCha20-Poly1305. All of these
operations are supported by the Rust-Crypto library [8].

Additional features. Our prototype supports:
• Long-lived messages. The Pung cluster maintains a slid-
ing window of messages, regardless of the number of
rounds over which they were sent. This allows users to
retrieve messages sent to them during past rounds. This
requires dataflow workers to mix new and existing mes-
sages, garbage collect the messages that outlive the sliding
window, and reconstruct buckets and BSTs.
• Group communication. Pung provides privacy to groups
if all users in the group follow the protocol. Suppose a
group G has derived a shared key kL, then: (1) user i ∈ G
can send its message to G under label PRFkL(r || uidi)
during round r; (2) users in G can simultaneously retrieve
all messages sent in round r using a multi-retrieval query
with labels PRFkL(r || uidj) for all j ∈ G.
• Directory service. If users know each others’ public

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 559

keys pki (e.g., RSA keys), they can derive a shared secret
through a standard Diffie-Hellman key exchange [49] via
Pung. User i can send the tuple (PRF0(pki),{pubi,σi}) to
the server, where pubi corresponds to i’s public Diffie-
Hellman parameters (g, p, ga mod p), and σi is a signature
of pubi under i’s private key. Notice that the tuple’s label
depends only on pki; anyone with access to pki can derive
the label and retrieve the tuple. Clients can retrieve each
other’s public components (pubi), verify their authenticity,
and derive the shared secret independently. Clients send
these tuples to Pung servers when they first register, or via
a special message that flags them so they are not garbage
collected by dataflow workers. Pung stores these tuples in
the same collection as other messages, so their access is
kept private. If the tuples are larger than regular messages,
they are split into chunks; clients can retrieve these chunks
over several rounds or with multi-retrieval.

Compressing explicit label mappings. Recall that for
large collections BST retrieval incurs less network costs
than explicitly downloading the label-to-index mappings
and performing PIR with a known index (§3.3). We now
describe how to delay the breakeven point (i.e., the col-
lection size at which BST retrieval is better than explic-
itly downloading labels) by using a Bloom filter [24]. A
Bloom filter is a probabilistic data structure that encodes a
compressed representation of a set, and is widely used to
reduce network costs in many settings, including private
communication [80, 108] (although our use case is differ-
ent). It exposes a check procedure that allows anyone to
check whether some element is in the set (false positives
are possible and occur with small probability).

In our implementation, the Pung server adds to a Bloom
filter the element index||label for each tuple in the col-
lection, and sends it to clients. Clients can then find the
index of their desired label L⋆ by testing for set mem-
bership locally while varying the index until a match is
found: check(0||L⋆), . . . , check(n − 1||L⋆). While stan-
dard Bloom filters require computing a large number of
hash functions for each add and check operation, there
exist constructions that require only two [74]. Thus, with
little computation, clients can locally derive their desired
index while saving network resources. For larger collec-
tions, retrieval via BST (Fig. 4) remains more efficient.

7 Experimental evaluation
Our evaluation answers four main questions. First, what
is the cost of the cryptographic primitives used in
Pung (§7.1)? Second, what is the concrete performance of
Pung, and how does it compare to prior systems (§7.2)?
Third, what are the benefits of multi-retrieval (§7.3)? Last,
what are the costs that Pung imposes on clients (§7.4)?

Setup and metrics. We deploy Pung’s server logic on
timely dataflow workers running on Microsoft Azure

H16 instances (16-core Intel Xeon E5-2667 with 112 GB
RAM) with Ubuntu 16.04. Our performance metrics are
throughput (in messages/minute) and end-to-end latency
(in seconds). Note that all entities run on the same data
center, so our results do not capture the effects of wide
area networking. In all cases we report the mean over 10
trials; standard deviations are less than 10% of the means.

We run clients and dataflow workers in a closed loop
and let round duration be as low as possible: a new round
starts as soon as all current requests are fulfilled. To keep
the number of messages constant across rounds, we con-
figure Pung’s garbage collection window to be the number
of messages sent in one round (§6).

Baselines. We compare Pung to two prior systems: Dis-
sent [42] and Vuvuzela [130]. They represent the state-
of-the-art in private communication under the anytrust7

(Vuvuzela) and no-trust (Dissent) models. We want to
emphasize that our comparison to Dissent is not apples-to-
apples: Dissent achieves an additional privacy property—
sender anonymity (§2, §9)—that Pung does not provide.
However, we are not aware of a system with the same
guarantees as Pung under our threat model.

7.1 Microbenchmarks

To understand the costs of Pung we start with a series of
microbenchmarks. The network and CPU costs of many
of Pung’s operations depend on the size of the collection
(n = # of tuples) held by the Pung cluster and the size
of each (label, c)-tuple. We report the results for several
collection sizes, and tuple sizes (288 bytes, 1 KB). We
choose these tuple sizes to match our baselines: Vuvuzela
clients exchange 256-byte encrypted messages (Pung’s
32-byte labels account for the difference), while Dissent
targets larger messages (≥ 1 KB). The costs of PIR op-
erations depend on two parameters: aggregation (α) and
dimension (d) [10]. They control the number of cipher-
texts that make up a PIR query and answer (higher α and
d lead to smaller queries but larger answers). For each
collection and tuple size, Pung dynamically chooses the
parameters that minimize total network costs.

Figure 5 tabulates our results. We find that client-side
operations incur little CPU costs aside from generating a
PIR query. This operation is performed once by clients
when retrieving a message, or several times (on smaller
collections) when traversing a BST (§3.3). The network
and CPU cost of generating and sending a PIR query
depend on the number and the size of the ciphertexts that
make up the query; for the PIR parameters that Pung uses
(last two rows of Figure 5), these costs are sublinear in the
size of the collection (i.e.,

√
n). We discuss more about

client-to-server network costs in Section 7.4.

7The anytrust model [137] states that out of a set of servers one is
assumed to be correct; clients need not know which is the correct one.

560 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tuples in Pung cluster (n)

2,048 8,192 32,768

client-side CPU costs
Key derivation 6.05 µs 6.05 µs 6.05 µs
Label generation 1.60 µs 1.60 µs 1.60 µs
Message encryption 1.56 µs 1.56 µs 1.56 µs
Message decryption 1.37 µs 1.37 µs 1.37 µs
Bloom filter lookup 0.15 ms 0.47 ms 2.02 ms
PIR query (288 B tuples) 0.86 ms 1.91 ms 3.35 ms
PIR query (1 KB tuples) 1.68 ms 3.36 ms 5.02 ms
PIR decode (288 B tuples) 0.62 ms 0.69 ms 0.70 ms
PIR decode (1 KB tuples) 0.68 ms 0.69 ms 1.35 ms

server-side CPU costs
PIR setup (288 B tuples) 4.52 ms 16.01 ms 68.73 ms
PIR setup (1 KB tuples) 15.64 ms 63.86 ms 255.38 ms
PIR answer (288 B tuples) 6.05 ms 14.91 ms 36.81 ms
PIR answer (1 KB tuples) 14.72 ms 37.87 ms 143.38 ms

network costs
PIR query (288 B tuples) 256 KB 512 KB 1024 KB
PIR query (1 KB tuples) 512 KB 1,024 KB 1,536 KB
PIR answer (288 B tuples) 432 KB 464 KB 464 KB
PIR answer (1 KB tuples) 464 KB 464 KB 912 KB

PIR parameters (α, d) [10]
288 B tuples (32, 2) (32, 2) (32, 2)
1 KB tuples (8, 2) (8, 2) (16, 2)

FIGURE 5—Microbenchmarks for Pung’s operations under vary-
ing collection sizes (n), and tuple sizes (288 bytes and 1 KB).

Unlike clients’ CPU costs, the server’s costs are signifi-
cant. One of the most expensive operation is the one-time
setup of a PIR collection. In Pung, this procedure needs
to be performed once at the beginning of every round
following the send phase (§3.3). The other major source
of overhead is answering PIR queries. In general, this cost
scales linearly with n, though fixed costs make process-
ing several small collections (n < 8K) relatively more
expensive than processing a single large one. We return to
this point in Section 7.3 when we discuss the theoretical
versus actual benefits of our optimizations.

7.2 End-to-end performance of single retrievals

We focus on two end-to-end metrics: latency observed by
a client and throughput achieved by Pung servers. Here
we test the version of Pung that we describe in Section 3
without any of the multi-retrieval optimizations (§4).

Latency. To measure the end-to-end latency perceived
by clients in Pung, we set up a single dataflow worker that
is under-utilized and that can immediately handle a user’s
request. We then have a single client send its message and
perform a retrieval. To experiment with large collection
sizes we populate the server with up to 1 million 288-byte
tuples. We experiment with three different methods that
clients can use to retrieve their desired tuples from the
server. The first has the client explicitly download all the
label-to-index mappings prior to retrieval, look up the
index of the corresponding label locally, and perform PIR

 0

 1

 2

1M0K 262K 524K 786K

en
d
-t

o
-e

n
d
 l

at
en

cy
 (

se
c)

number of messages at Pung cluster

label-to-index map
Bloom filter
BST

FIGURE 6—The end-to-end latency of sending and retrieving
one message when the Pung cluster is under-utilized is up to 1.3
seconds (when the server stores 1 million tuples).

with this index. The second downloads a Bloom filter that
succinctly encodes the label-to-index mappings (§6), and
performs the same steps as above. The last performs the
BST retrieval procedure listed in Figure 4.

Figure 6 depicts the results. As we expect from our mi-
crobenchmarks, the client latency grows linearly with the
number of messages at the server. Also, our low-latency
network allows us to confirm that the server-side CPU
costs associated with BST retrieval are negligibly higher
than explicitly fetching the label-to-index mapping. How-
ever, in wide area networks we expect to see added latency
due to log(n) round trips. The Bloom filter’s checks (§6)
also incur little CPU overhead, and its size is up to 10.4×
smaller than the associated label-to-index mapping. Fi-
nally, note that our prototype performs request-level—
rather than data-level—parallelism, so these latencies
could be reduced further by having dataflow workers pro-
cess fractions of a request. However, current latencies are
already comparable to those achieved by Vuvuzela, where
even a two-client scenario requires 20-second rounds due
to the addition and serial processing of cover traffic.

Throughput. To measure Pung’s peak throughput, we
run experiments where clients send and retrieve a 256-
byte message per round, for a total of 10 rounds. We then
vary the number of clients (n) and measure the number of
messages processed per minute. We distribute 64 timely
dataflow workers across 4 VMs to run Pung’s server-side
computation. Since we cannot run tens of thousands of
clients in our infrastructure, we employ a combination of
real and simulated clients. We configure 512 real clients
across 8 VMs (4 clients per core). We then have each
client send a single message and instruct dataflow work-
ers to make up the difference by injecting the remaining
messages (n−512) at the end of the send phase, simulat-
ing additional clients. Finally, during the retrieve phase,
each real client fetches a message from a random mailbox.

We also run both baselines in our cluster, with 256-byte
messages. Since Dissent is a peer-to-peer system and does
not use servers, we spread out its peers across our VMs.
We run only its shuffle protocol as that is more efficient
than full Dissent for small fixed-sized messages [42, §3].

For Vuvuzela, we set up a 3-server chain in addition to

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 561

0

10
2

10
4

10
6

64 32K 65K 131K

th
ro

u
g
h
p
u
t

(m
es

sa
g
es

/m
in

)

clients (sending a single message)

Dissent Pung Vuvuzela

FIGURE 7—Pung can handle significantly more messages and
clients than Dissent but its throughput at 131K clients is 27.8×
lower than Vuvuzela’s. We do not report Dissent’s throughput
past 64 users (see text for details).

the entry server that proxies client requests, which mirrors
the arrangement evaluated by its authors [130, §7]. A
caveat is that our VMs have fewer CPU cores. We also
use the same parameters that characterize the distribution
from which Vuvuzela servers draw noise (µ = 300,000
and b = 13,800). We run 512 Vuvuzela clients and modify
the entry server [9] to make up for the remaining messages
(similar to how Pung’s dataflow workers inject messages).

Figure 7 depicts our results for 64, 32K, 65K, and
131K clients. We show Dissent’s throughput only with 64
clients because at higher peer counts it is less than one
message per minute with the prototype we use [6].

Pung and Vuvuzela achieve relatively low throughput—
far below their capacity—at very low client counts. This is
due to lack of work, since only 64 clients are sending and
retrieving messages in a given round. As a result, Pung
workers sit idle most of the time, while Vuvuzela servers
continue to generate and process significant cover traffic,
delaying the start of the next round. However, at higher
(and more realistic) client counts, there is enough work
to make long rounds a non-issue for Vuvuzela. Indeed,
Vuvuzela’s throughput is 27.8× higher than Pung at 131K
clients, and this gap grows even larger with more clients.

7.3 What are the benefits of multi-retrieval?

We now discuss how our techniques (§4) impact the per-
formance of Pung in terms of latency and throughput.
In both cases, we run the same experiments described
in Section 7.2, but configure clients to use the hybrid
scheme (§4.4) to retrieve multiple messages at once.

Latency. As with the single retrieval case, client latency
grows linearly with the number of messages at the server.
This is depicted in Figure 8. However, with one million
tuples, the multi-retrieval latency is 1.5×, 2.8×, and 4.6×
lower than running the single retrieval protocol (§7.2) k
times when retrieving k = 16, 64, and 128 messages re-
spectively. Note that in this experiment we have a single
dataflow worker respond to all of the client’s queries (re-
call that there is a query for each subcollection). However,
this is an embarrassingly parallel task since subcollections
are independent; different workers could be assigned to

 0

 15

 30

 45

1M0K 262K 524K 786K

en
d
-t

o
-e

n
d
 l

at
en

cy
 (

se
c)

number of messages at Pung cluster

k = 128

k = 64

k = 16

FIGURE 8—The end-to-end latency of sending one message and
retrieving k using Pung’s multi-retrieval. It takes 36.2 seconds
with k = 128 and 1M tuples. This is 4.6× faster than retrieving
128 messages using Pung’s single-retrieval (Fig. 6).

0

10
2

10
4

10
6

32K 65K 131K 262K

th
ro

u
g
h
p
u
t

(m
es

sa
g
es

/m
in

)

clients (sending a single message)

Pung Pung-M Vuvuzela

FIGURE 9—Pung’s multi-retrieval optimizations increase its
throughput by up to 5.2×. Pung-M represents a version of Pung
where clients retrieve k=64 messages simultaneously using our
hybrid scheme (§4.4). At 262K clients, Vuvuzela handles 84.9×
and 22.6× more messages than Pung and Pung-M, respectively.

each of them. Given enough workers, it is possible to drive
down the end-to-end latency of processing all k requests
to the level of processing a single request.

Throughput. We depict the throughput benefits of hav-
ing clients retrieve a batch of k = 64 messages in Figure 9.
We find that Pung’s hybrid scheme offers a throughput
boost of up to 5.2× over single retrieval. Based on our
cost model (available in our extended report [12, Ap-
pendix B]), the maximum gain that we can expect from
using our hybrid scheme over retrieving messages one
by one is 14.2× for k = 64. This large disagreement
(over 2×) with our experimental results comes from two
main sources. First, our end-to-end throughput measures
not only message retrieval but also Pung’s send phase—
including the expensive PIR setup step (§7.1) and the
encoding of buckets using batch codes (§4.4)—which
lowers our potential gains. Second, as we discuss in Sec-
tion 7.1, smaller collections are disproportionately more
expensive to serve than larger ones, owing to fixed costs.

Nevertheless, Pung’s multi-retrieval throughput is high
enough (5.9× lower than Vuvuzela’s at 131K clients)
that it can accommodate thousands of users and tens of
thousands of messages with sub-minute latencies. This
performance is sufficient to support many existing appli-
cations (§8). We also experiment with values of k ranging
from 4 to 128, and find gains between 1.52×–11×.

562 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

10
2

10
4

1 4 16 64 1 4 16 64 1 4 16 64

n
et

w
o
rk

 c
o
st

 (
M

B
)

tuple size

288 B 1 KB 10 KB

k =

FIGURE 10—Pung’s network costs (upload and download) for
n = 262K with varying k and tuple sizes. The dashed line rep-
resents the cost of naively downloading the entire collection,
which provides information-theoretic privacy. Pung’s single re-
trieval is cheaper than naively downloading the entire collection.
For k>1, Pung performs better than naive download only when
messages are large, or when k is moderate (see text for details).

7.4 What costs does Pung impose on clients?

Pung’s clients have to participate in every round to en-
sure unobservability (§3.1). Clients thus pay fixed CPU
and network costs regardless of their actions. Our mi-
crobenchmarks (§7.1) show that many of these costs are
small. Indeed, clients incur tens of milliseconds of CPU
time per round for the experiments in Sections 7.2 and 7.3.

Network costs. To better understand the network costs
incurred by clients, we run a set of experiments in which
we vary the collection sizes (n), the number of messages
retrieved by a client (k), and the size of tuples in the
collection. Figure 10 summarizes the results for n = 262K
tuples with varying k and the size of tuples.

We find that for single retrievals (k = 1), clients incur
3.8–11 MB of network costs for sending and receiving a
message, depending on the tuple size. This cost is 3–4
orders of magnitude higher than retrieving the tuple from
the server non-privately. However, compared to down-
loading the entire collection (which would also meet our
privacy goals), it is 19× lower for 288 byte tuples, 45×
lower for 1 KB tuples, and 230× lower for 10 KB tuples.

For k>1, we find that clients incur 4.5–36 MB per mes-
sage depending on k and tuple size. Perhaps surprisingly,
we find that under certain regimes (e.g., small tuple sizes,
high k), it is beneficial for clients to simply download the
entire collection instead of using Pung’s multi-retrieval.
The reason is that clients have to retrieve tuples from
many subcollections—the number of which depends on
k (§4.4)—by sending PIR queries and receiving PIR an-
swers (several ciphertexts). With the PIR construction
that we employ (i.e., XPIR [10]), ciphertexts are rather
large (128 Kbits), so these overheads are more than the
size of the collection for smaller tuple sizes and large k.
While we can use a different cryptosystem with smaller
ciphertexts (e.g., Paillier [101]) to reduce network costs
by orders of magnitude, it incurs much higher server-side
CPU costs [10]. We are investigating ways to resolve this
conflict between network and CPU costs.

Admittedly, this is the primary limitation of Pung’s cur-
rent design. However, there are certain regimes in which
Pung’s multi-retrieval outperforms downloading the en-
tire collection: larger messages (e.g., ≥1 KB), or medium
k (e.g., ≤64). For example, with k = 16 and 10 KB mes-
sages, the total network cost is 7× lower than download-
ing the entire collection. Finally, while these costs may
be considered modest for well-connected devices, they
remain high for many settings (e.g., mobile devices).

8 Applicable scenarios
Section 7.3 demonstrates that Pung’s optimizations can
substantially increase its throughput, but they incur ad-
ditional network resources and require clients to retrieve
many messages at once. We now discuss applications that
can benefit from Pung’s privacy guarantees as well as its
multi-retrieval—high network costs remain an issue.

First, participants in a dark pool (a private stock ex-
change) could hide their orders using Pung, prevent-
ing market speculation and predatory tactics by high-
frequency traders [85, 103]. Second, email, group chats,
and collaboration tools such as Slack [4] are all a natu-
ral fit for Pung: they use larger messages (>1 KB), and
require (or benefit from) multi-retrieval.

Finally, several applications with many-to-one commu-
nication can use Pung. For instance, health/embedded
devices can send diagnostic information to medical
providers using Pung, preserving the privacy of the com-
munication. Similarly, Pung enables private collection of
data from sensors (e.g., Internet of things), or corporate
software (e.g., bug reports). While these devices have lim-
ited resources (e.g., power, bandwidth) they can still use
Pung, since they can choose (a priori) how often to partici-
pate (e.g., every 5 rounds). They can then leverage Pung’s
multi-retrieval to “catch up” by simultaneously retrieving
all messages sent to them during the last 5 rounds. Of
course, if a client rarely participates, its messages might
be garbage collected before it can catch up (§6).

9 Related work
This section discusses related systems, and their compari-
son to Pung. (Danezis et al. [45] provide a more thorough
discussion of many of these systems.)

Mix networks. The earliest private messaging systems
employ mix networks [22, 23, 31, 32, 47, 65, 72, 81, 82]:
they rely on a set of servers (called mixes) to shuffle
messages before delivering them to recipients. This shuf-
fling is often accompanied by encryption, batching, and
chaffing (the addition of dummy traffic) to prevent traffic
analysis. Since all operations are relatively lightweight,
these systems enjoy lower latency and higher throughput
than many other works in the literature—including Pung.
However, malicious mixes can replay, duplicate, or drop

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 563

messages, violating these systems’ guarantees via known
attacks [84, 87, 100, 106, 107, 112, 122, 134]. Indeed,
Kesdogan et al. [71] show that many of these attacks are
fundamental. Consequently, systems like Aqua [82] and
Herd [81] sidestep these attacks by targeting scenarios
where particular mixes with critical roles are trusted. The
use of such trusted mixes contradict our goals (§2).

There are works with a decentralized architecture: peer-
to-peer mix networks [114, 138] and peer-to-peer rout-
ing [17, 37, 46, 55, 56, 98, 113, 121]. These systems have
high network costs, and rely on a threshold of peers being
correct. Furthermore, they are susceptible to strong ad-
versaries [54, 91, 124] and Sybil attacks [52]. Salsa [98]
combats these issues by making an additional assumption:
fewer than 20% of all nodes are malicious. Blindspot [56]
and Drac [46] suggest peering only with contacts from
existing social networks, but this leaks information about
users’ relationships and results in small anonymity sets.

Onion routing. Works based on onion routing [51, 92,
93, 127], especially Tor [51], are widely adopted due to
their relative low latency and ability to support millions of
users. However, these systems are unable to resist traffic
analysis attacks [68, 96, 112], even those performed by
local adversaries [29, 78, 102, 132]. While future Inter-
net architectures may address many of these shortcom-
ings [34], we target a system that is deployable today.

DC networks. Another line of work is based on Dining
Cryptographers (DC) networks [33, 42, 66]. They pro-
vide stronger guarantees than Pung under the same threat
model, but they are peer-to-peer (requiring all users to
know each other) and are based on all-to-all broadcast of
messages. This results in high costs. Consequently, these
systems typically accommodate only dozens of users. Ver-
dict [43] and Dissent’s successor [136] make great strides
to reduce these costs and support thousands of users, but
in the process introduce trusted infrastructure (under the
anytrust model) which differs from our goals (§2).

Mailbox systems. Finally, there are a number of sys-
tems [25, 40, 41, 75, 79, 119, 130] that employ an archi-
tecture and techniques similar to Pung’s (clients retrieve
messages from per-round mailboxes kept at third-party
servers). The key differences between these works and
Pung is their reliance on at least one correct server, and
the mechanisms that follow from that assumption. We
elaborate on the most related ones below.

P3 [75], like Pung, employs a key-value store from
which users can privately pull messages. While P3’s focus
is a retrieval mechanism that supports general queries
when fetching a message (e.g., prefix search), Pung’s
primary goal is to drive down the cost of retrieval by
introducing several batching optimizations (§4).

Riposte [41] targets a setting more fitting for whistle-
blowers and informants where the sender wishes to remain

anonymous from everyone (including all recipients). In
contrast, Pung’s goal is hiding the communication pattern
between users who already know each other’s identities.
The Pynchon Gate [119] provides anonymity by compos-
ing a mix network with an IT-PIR scheme (§3.3). How-
ever, these guarantees hold only for passive adversaries
who do not compromise mixes; under our threat model
several attacks exist [100, 106, 107, 134]. Riffle [79] ad-
dresses this limitation by enhancing mixes with a ver-
ifiable shuffle, but retains the IT-PIR substrate and the
anytrust model, which requires at least one correct server.

Vuvuzela [130] provides privacy through request shuf-
fling and the careful addition of cover traffic rather than
through PIR. Vuvuzela achieves significantly better per-
formance than Pung (§7.2, §7.3), and it proposes an ef-
ficient dialing protocol, which Alpenhorn [80] enhances
further. In contrast, Pung is not compatible with either
dialing scheme, and we have not yet identified a suitable
substitute (§5). However, Pung does introduce some bene-
fits. In Vuvuzela, messages are ephemeral and can only be
accessed during a single round; Pung supports long-lived
messages that can be retrieved anytime prior to garbage
collection (§6). Vuvuzela does not support group commu-
nications since it is based on point-to-point exchanges.
Finally, the guarantees of a Vuvuzela deployment are
based on differential privacy and are valid only for a cer-
tain number of rounds (based on a privacy budget). Pung’s
guarantees hold for any number of rounds.

10 Summary and conclusion
Our goal was to eliminate trust assumptions in private
communication. To accomplish this goal, we leverage
powerful cryptography and build Pung. Pung supports
103× more users than prior systems in a similar threat
model but falls short of systems that make trust assump-
tions. To improve performance, Pung targets a setting
where clients retrieve multiple messages at once (§8). In
this regime, Pung introduces new techniques that heav-
ily amortize the costs of its cryptographic machinery.
Our evaluation confirms that Pung reduces computational
costs by up to 11×, at the expense of higher network costs.
With these improvements, Pung presents an attractive de-
sign point for private communication systems.

Acknowledgments

Careful comments from Trinabh Gupta, Michael Lee, Josh
Leners, Jay Lorch, Manos Kapritsos, Bryan Parno, Riad
Wahby, the anonymous reviewers, and our shepherd Ger-
not Heiser made this paper better. We thank Michael Wal-
fish for his thorough comments, which greatly improved
this work. We also thank Carlos Aguilar Melchor for help
with XPIR, and Frank McSherry for help with dataflow
operators that Pung uses. Sebastian Angel was supported
by NSF grants CNS-1055057 and CNS-1514422.

564 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Bleep. http://www.bleep.pm.
[2] ChatSecure. https://chatsecure.org.
[3] Open Whisper Systems.

https://whispersystems.org.
[4] Slack: Be less busy. https://slack.com/.
[5] Telegram. https://telegram.org.
[6] Dissent: Provably anonymous overlay. https:

//github.com/dedis/Dissent/tree/95f73, Apr.
2010.

[7] Google says anything flowing across open WiFi is fair
game. https://goo.gl/fjOW2A, Jan. 2014. Privacy
SOS.

[8] Rust-crypto.
https://github.com/dagenix/rust-crypto/,
2016.

[9] Vuvuzela: Private messaging system that hides metadata.
https://github.com/davidlazar/vuvuzela, Sept.
2016.

[10] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.
Killijian. XPIR: Private information retrieval for
everyone. In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS), July 2016.

[11] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.
Killijian. XPIR: Private information retrieval for
everyone. https://github.com/xpir-team/xpir/,
2016.

[12] S. Angel and S. Setty. Unobservable communication
over fully untrusted infrastructure (extended version).
Technical Report TR-16-16, The University of Texas at
Austin, Oct. 2016.

[13] J. Angwin, C. Savage, J. Larson, H. Moltke, L. Poitras,
and J. Risen. AT&T helped U.S. spy on Internet on a
vast scale. http://goo.gl/Jfsm18, Aug. 2015. The
New York Times.

[14] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced allocations. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), May 1994.

[15] J. Ball. GCHQ captured emails of journalists from top
international media. http://goo.gl/YzXnYK, Jan.
2015. The Guardian.

[16] J. Bamford. Shady companies with ties to Israel wiretap
the U.S. for the NSA. http://goo.gl/bdi7w4, Apr.
2012. Wired.

[17] A. Beimel and S. Dolev. Buses for anonymous message
delivery. Journal of Cryptology, 16(1), Jan. 2003.

[18] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers
computation in private information retrieval: PIR with
preprocessing. In Proceedings of the International
Cryptology Conference (CRYPTO), Aug. 2000.

[19] M. Bellare, R. Canetti, and H. Krawczyk.
Pseudorandom functions revisited: The cascade
construction and its concrete security. In Proceedings of
the IEEE Symposium on Foundations of Computer
Science (FOCS), Oct. 1996.

[20] M. Bellare and A. Lysyanskaya. Symmetric and dual
PRFs from standard assumptions: A generic validation
of an HMAC assumption. Cryptology ePrint Archive,

Report 2015/1198, Dec. 2015.
http://eprint.iacr.org/2015/1198.pdf.

[21] M. Bellare and C. Namprempre. Authenticated
encryption: Relations among notions and analysis of the
generic composition paradigm. In International
Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT), Dec. 2000.

[22] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes:
A system for anonymous and unobservable Internet
access. In Proceedings of the International Workshop on
Designing Privacy Enhancing Technologies: Design
Issues in Anonymity and Unobserbability, July 2000.

[23] O. Berthold and H. Langos. Dummy traffic against long
term intersection attacks. In Proceedings of the
Workshop on Privacy Enhancing Technologies (PET),
Mar. 2002.

[24] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7),
July 1970.

[25] N. Borisov, G. Danezis, and I. Goldberg. DP5: A private
presence service. In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS), June 2015.

[26] J. Brickell and V. Shmatikov. Efficient
anonymity-preserving data collection. In Proceedings of
the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), Aug. 2006.

[27] S. Buttar. Dragnet NSA spying survives: 2015 in review.
https://goo.gl/JsNgS7, Dec. 2015. Electronic
Frontier Foundantion.

[28] C. Cachin, S. Micali, and M. Stadler. Computationally
private information retrieval with polylogarithmic
communication. In Proceedings of the International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), May 1999.

[29] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching
from a distance: Website fingerprinting attacks and
defenses. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), Oct.
2008.

[30] Y.-C. Chang. Single database private information
retrieval with logarithmic communication. In
Proceedings of the Australasian Conference on
Information Security and Privacy, July 2004.

[31] D. Chaum, F. Javani, A. Kate, A. Krasnova, J. de Ruiter,
and A. T. Sherman. cMix: Anonymization by
high-performance scalable mixing. Cryptology ePrint
Archive, Report 2016/008, Jan. 2016.
http://eprint.iacr.org/2016/008.pdf.

[32] D. L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of
the ACM, 24(2), Feb. 1981.

[33] D. L. Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability.
Journal of Cryptology, 1(1), 1988.

[34] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and
A. Perrig. HORNET: High-speed onion routing at the
network layer. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), Oct.
2015.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 565

http://www.bleep.pm
https://chatsecure.org
https://whispersystems.org
https://slack.com/
https://telegram.org
https://github.com/dedis/Dissent/tree/95f73
https://github.com/dedis/Dissent/tree/95f73
https://goo.gl/fjOW2A
https://github.com/dagenix/rust-crypto/
https://github.com/davidlazar/vuvuzela
https://github.com/xpir-team/xpir/
http://goo.gl/Jfsm18
http://goo.gl/YzXnYK
http://goo.gl/bdi7w4
http://eprint.iacr.org/2015/1198.pdf
https://goo.gl/JsNgS7
http://eprint.iacr.org/2016/008.pdf

[35] B. Chor, N. Gilboa, and M. Naor. Private information
retrieval by keywords. Cryptology ePrint Archive,
Report 1998/003, Feb. 1998.
http://eprint.iacr.org/1998/003.

[36] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In Proceedings of the IEEE
Symposium on Foundations of Computer Science
(FOCS), Oct. 1995.

[37] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Proceedings of the International
Workshop on Designing Privacy Enhancing
Technologies: Design Issues in Anonymity and
Unobserbability, July 2000.

[38] D. Cole. We kill people based on metadata.
http://goo.gl/LWKQLx, May 2014. The New York
Review of Books.

[39] T. Cook. A message to our customers.
http://www.apple.com/customer-letter/, Feb.
2016.

[40] D. A. Cooper and K. P. Birman. Preserving privacy in a
network of mobile computers. In Proceedings of the
IEEE Symposium on Security and Privacy, May 1995.

[41] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:
An anonymous messaging system handling millions of
users. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2015.

[42] H. Corrigan-Gibbs and B. Ford. Dissent: Accountable
anonymous group messaging. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), Oct. 2010.

[43] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford.
Proactively accountable anonymous messaging in
Verdict. In Proceedings of the USENIX Security
Symposium, Aug. 2013.

[44] Council of Europe. European Convention on Human
Rights: Article 8. http://www.echr.coe.int/
Documents/Convention_ENG.pdf, Nov. 1950.

[45] G. Danezis, C. Diaz, and P. Syverson. Systems for
anonymous communication.
https://securewww.esat.kuleuven.be/cosic/
publications/article-1335.pdf, Aug. 2009.

[46] G. Danezis, C. Diaz, C. Troncoso, and B. Laurie. Drac:
An architecture for anonymous low-volume
communications. In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS), July 2010.

[47] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: Design of a type III anonymous remailer
protocol. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2003.

[48] C. Devet, I. Goldberg, and N. Heninger. Optimally
robust private information retrieval. In Proceedings of
the USENIX Security Symposium, Aug. 2012.

[49] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, 22(6), Nov. 1976.

[50] R. Dingledine. Did the FBI pay a university to attack Tor
users? https://goo.gl/NB3hSR, Nov. 2015. Tor
Project.

[51] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In Proceedings of the
USENIX Security Symposium, Aug. 2004.

[52] J. R. Douceur. The sybil attack. In Proceedings of the
International Workshop on Peer-to-Peer Systems, Mar.
2002.

[53] M. Dworkin. Recommendation for block cipher modes
of operation: Galois/Counter Mode (GCM) and GMAC.
Technical Report SP 800-38D, National Institute of
Standards and Technology, Nov. 2007.

[54] C. Egger, J. Schlumberger, C. Kruegel, and G. Vigna.
Practical attacks against the I2P network. In Proceedings
of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), Nov. 2013.

[55] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), Nov. 2002.

[56] J. Gardiner and S. Nagaraja. Blindspot:
Indistinguishable anonymous communications.
arXiv:1408/0784v2, Aug. 2014.
http://arxiv.org/abs/1408.0784.

[57] W. Gasarch and A. Yerukhimovich. Computationally
inexpensive cPIR. https://www.cs.umd.edu/
~arkady/papers/pirlattice.pdf, 2006.

[58] C. Gentry and Z. Ramzan. Single-database private
information retrieval with constant communication rate.
In Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP), July
2005.

[59] I. Goldberg. Improving the robustness of private
information retrieval. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2007.

[60] P. Golle and A. Juels. Dining cryptographers revisited.
In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), May 2004.

[61] A. Greenberg. Whatsapp just switched on end-to-end
encryption for hundreds of millions of users.
http://www.wired.com/2014/11/whatsapp-
encrypted-messaging/, Nov. 2014.

[62] G. Greenwald and R. Gallagher. New Zealand launched
mass surveillance project while publicly denying it.
https://goo.gl/UwNpwV, Sept. 2014. The Intercept.

[63] G. Greenwald and E. MacAskill. NSA Prism program
taps in to user data of Apple, Google and others.
http://goo.gl/qETWUq, June 2013. The Guardian.

[64] J. Groth, A. Kiayias, and H. Lipmaa. Multi-query
computationally-private information retrieval with
constant communication rate. In Proceedings of the
International Conference on Practice and Theory in
Public Key Cryptography (PKC), May 2010.

[65] C. Gülcü and G. Tsudik. Mixing E-mail with Babel. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 1996.

[66] E. Gün Sirer, S. Goel, M. Robson, and D. Engin.
Eluding carnivores: File sharing with strong anonymity.
In Proceedings of the ACM SIGOPS European
Workshop, Sept. 2004.

566 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://eprint.iacr.org/1998/003
http://goo.gl/LWKQLx
http://www.apple.com/customer-letter/
http://www.echr.coe.int/Documents/Convention_ENG.pdf
http://www.echr.coe.int/Documents/Convention_ENG.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-1335.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-1335.pdf
https://goo.gl/NB3hSR
http://arxiv.org/abs/1408.0784
https://www.cs.umd.edu/~arkady/papers/pirlattice.pdf
https://www.cs.umd.edu/~arkady/papers/pirlattice.pdf
http://www.wired.com/2014/11/whatsapp-encrypted-messaging/
http://www.wired.com/2014/11/whatsapp-encrypted-messaging/
https://goo.gl/UwNpwV
http://goo.gl/qETWUq

[67] T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi,
and M. Walfish. Scalable and private media
consumption with Popcorn. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Mar. 2016.

[68] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How
much anonymity does network latency leak? In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Oct. 2007.

[69] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
Batch codes and their applications. In Proceedings of the
ACM Symposium on Theory of Computing (STOC), June
2004.

[70] J. Katz and M. Yung. Unforgeable encryption and
chosen ciphertext secure modes of operation. In
Proceedings of the Fast Software Encryption Workshop
(FSE), Apr. 2000.

[71] D. Kesdogan, D. Agrawal, V. Pham, and D. Rautenbach.
Fundamental limits on the anonymity provided by the
MIX technique. In Proceedings of the IEEE Symposium
on Security and Privacy, May 2006.

[72] D. Kesdogan, J. Egner, and R. Büschkes.
Stop-And-Go-MIXes providing probabilistic anonymity
in an open system. In Proceedings of the International
Workshop on Information Hiding, Apr. 1998.

[73] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and
Q. Tang. Optimal rate private information retrieval from
homomorphic encryption. In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS), July 2015.

[74] A. Kirsch and M. Mitzenmacher. Less hashing, same
performance: Building a better Bloom filter. Journal of
Random Structures and Algorithms, 33(2), Sept. 2008.

[75] L. Kissner, A. Oprea, M. K. Reiter, D. Song, and
K. Yang. Private keyword-based push and pull with
applications to anonymous communication. In
Proceedings of the International Conference on Applied
Cryptography and Network Security (ACNS), June 2004.

[76] H. Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In Proceedings of the
International Cryptology Conference (CRYPTO), Aug.
2010.

[77] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: Single database, computationally-private
information retrieval. In Proceedings of the IEEE
Symposium on Foundations of Computer Science
(FOCS), Oct. 1997.

[78] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and
S. Devadas. Circuit fingerprinting attacks: Passive
deanonymization of Tor hidden services. In Proceedings
of the USENIX Security Symposium, Aug. 2015.

[79] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An
efficient communication system with strong anonymity.
In Proceedings of the Privacy Enhancing Technologies
Symposium (PETS), July 2016.

[80] D. Lazar and N. Zeldovich. Alpenhorn: Bootstrapping
secure communication without leaking metadata. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Nov. 2016.

[81] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and

N. Merritt. Herd: A scalable, traffic analysis resistant
anonymity network for VoIP systems. In Proceedings of
the ACM SIGCOMM Conference, Aug. 2015.

[82] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel,
H. Ballani, and P. Francis. Towards efficient
traffic-analysis resistant anonymity networks. In
Proceedings of the ACM SIGCOMM Conference, Aug.
2013.

[83] R. Lenzner. ATT, Verizon, Sprint are paid cash by NSA
for your private communications.
http://goo.gl/x7Cz1m, Sept. 2013. Forbes.

[84] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright.
Timing attacks in low-latency mix systems. In
Proceedings of the International Financial
Cryptography Conference, Feb. 2004.

[85] M. Lewis. Flash Boys: A Wall Street Revolt. W.W.
Norton & Company, Mar. 2014.

[86] W. Lueks and I. Goldberg. Sublinear scaling for
multi-client private information retrieval. In Proceedings
of the International Financial Cryptography and Data
Security Conference, Jan. 2015.

[87] N. Mathewson and R. Dingledine. Practical traffic
analysis: Extending and resisting statistical disclosure.
In Proceedings of the Workshop on Privacy Enhancing
Technologies (PET), May 2004.

[88] J. Mayer, P. Mutchler, and J. C. Mitchell. Evaluating the
privacy properties of telephone metadata. Proceedings of
the National Academy of Sciences of the United States of
America (PNAS), 113(20), May 2016.

[89] F. McSherry. Timely dataflow.
https://github.com/frankmcsherry/timely-
dataflow/, 2016.

[90] J. Menn. Yahoo secretly scanned customer emails for
U.S. intelligence. https://goo.gl/KZuUYo, Oct.
2016. Reuters.

[91] P. Mittal and N. Borisov. Information leaks in structured
peer-to-peer anonymous communication systems. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Oct. 2008.

[92] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and
I. Goldberg. PIR-Tor: Scalable anonymous
communication using private information retrieval. In
Proceedings of the USENIX Security Symposium, Aug.
2011.

[93] P. Mittal, M. Wright, and N. Borisov. Pisces:
Anonymous communication using social networks. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 2013.

[94] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 12(10), Oct. 2001.

[95] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, Jan. 2005.

[96] S. J. Murdoch and G. Danezis. Low-cost traffic analysis
of Tor. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2005.

[97] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 567

http://goo.gl/x7Cz1m
https://github.com/frankmcsherry/timely-dataflow/
https://github.com/frankmcsherry/timely-dataflow/
https://goo.gl/KZuUYo

system. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), Nov. 2013.

[98] A. Nambiar and M. Wright. Salsa: A structured
approach to large-scale anonymity. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), Nov. 2006.

[99] M. Naor and M. Yung. Public-key cryptosystems
provably secure against chosen ciphertext attacks. In
Proceedings of the ACM Symposium on Theory of
Computing (STOC), May 1990.

[100] L. Nguyen and R. Safavi-Naini. Breaking and mending
resilient mix-nets. In Proceedings of the Workshop on
Privacy Enhancing Technologies (PET), Mar. 2003.

[101] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Proceedings of the
International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), May 1999.

[102] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel.
Website fingerprinting in onion routing based
anonymization networks. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society (WPES),
Oct. 2011.

[103] D. C. Parkes, C. Thorpe, and W. Li. Achieving trust
without disclosure: Dark pools and a role for
secrecy-preserving verification. In Proceedings of the
Conference on Auctions, Market Mechanisms and Their
Applications (AMMA), Aug. 2015.

[104] M. B. Paterson, D. R. Stinson, and R. Wei.
Combinatorial batch codes. Advances in Mathematics of
Communications (AMC), 3(1), Feb. 2009.

[105] A. Pfitzmann and M. Hansen. A terminology for talking
about privacy by data minimization: Anonymity,
unlinkability, undetectability, unobservability,
pseudonymity, and identity management.
http://dud.inf.tu-dresden.de/literatur/
Anon_Terminology_v0.34.pdf, Aug. 2010.

[106] B. Pfitzmann. Breaking an efficient anonymous channel.
In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), May 1995.

[107] B. Pfitzmann and A. Pfitzmann. How to break the direct
RSA-implementation of mixes. In Proceedings of the
International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), Apr. 1989.

[108] A. Piotrowska, J. Hayes, N. Gelernter, G. Danezis, and
A. Herzberg. AnoNotify: A private notification service.
Cryptology ePrint Archive, Report 2016/466, May 2016.
http://eprint.iacr.org/2016/466.pdf.

[109] E. Protalinski. Facebook scans chats and posts for
criminal activity. http://goo.gl/pfV9XE, July 2012.
CNET.

[110] C. Rackoff and D. R. Simon. Non-interactive
zero-knowledge proof of knowledge and chosen
ciphertext attack. In Proceedings of the International
Cryptology Conference (CRYPTO), Aug. 1991.

[111] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gál. Batch
codes through dense graphs without short cycles. IEEE

Transactions on Information Theory, 62(4), Apr. 2016.
[112] J.-F. Raymond. Traffic analysis: Protocols, attacks,

design issues and open problems. In Proceedings of the
Workshop on Privacy Enhancing Technologies (PET),
May 2001.

[113] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for
web transactions. ACM Transactions on Information and
System Security, 1(1), Nov. 1998.

[114] M. Rennhard and B. Plattner. Introducing MorphMix:
Peer-to-peer based anonymous Internet usage with
collusion detection. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society (WPES),
Nov. 2002.

[115] R. L. Rivest. Chaffing and winnowing: Confidentiality
without encryption. CryptoBytes Technical Newsletter
(RSA Laboratories), 4(1), July 1998.

[116] P. Rogaway. The moral character of cryptographic work.
Cryptology ePrint Archive, Report 2015/1162, Dec.
2015. http://eprint.iacr.org/2015/1162.pdf.

[117] A. Rusbridger. The Snowden leaks and the public.
http://goo.gl/VOQL86, Nov. 2013. The New York
Review of Books.

[118] D. Rushe. Yahoo $250,000 daily fine over NSA data
refusal was set to double ’every week’.
http://goo.gl/FZGfTT, Sept. 2014. The Guardian.

[119] L. Sassaman, B. Cohen, and N. Mathewson. The
Pynchon Gate: A secure method of pseudonymous mail
retrieval. In Proceedings of the ACM Workshop on
Privacy in the Electronic Society (WPES), Nov. 2005.

[120] B. Schneier. Data and Goliath: The Hidden Battles to
Collect Your Data and Control Your World. W.W.
Norton & Company, Mar. 2015.

[121] R. Sherwood, B. Bhattacharjee, and A. Srinivasan. P5: A
protocol for scalable anonymous communication. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 2002.

[122] V. Shmatikov and M.-H. Wang. Timing analysis in
low-latency mix networks: Attacks and defenses. In
Proceedings of the European Symposium on Research in
Computer Security (ESORICS), Sept. 2006.

[123] N. Silberstein and A. Gál. Optimal combinatorial batch
codes based on block designs. Designs, Codes and
Cryptography, 78(2), Feb. 2016.

[124] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach.
Eclipse attacks on overlay networks: Threats and
defenses. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM),
Apr. 2006.

[125] R. Sion and B. Carbunar. On the computational
practicality of private information retrieval. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 2007.

[126] V. Strassen. Gaussian elimination is not optimal.
Numerische Mathematik, 13(4), Aug. 1969.

[127] P. F. Syverson, D. M. Goldschlag, and M. G. Reed.
Anonymous connections and onion routing. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 1997.

[128] United Nations General Assembly. The Universal

568 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://eprint.iacr.org/2016/466.pdf
http://goo.gl/pfV9XE
http://eprint.iacr.org/2015/1162.pdf
http://goo.gl/VOQL86
http://goo.gl/FZGfTT

Declaration of Human Rights: Article 12.
http://www.un.org/en/universal-
declaration-human-rights/, Dec. 1948.

[129] United States Congress. Electronic Communications
Privacy Act of 1986 (ECPA). https://it.ojp.gov/
privacyliberty/authorities/statutes/1285,
Oct. 1986.

[130] J. van den Hooff, D. Lazar, M. Zaharia, and
N. Zeldovich. Vuvuzela: Scalable private messaging
resistant to traffic analysis. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
Oct. 2015.

[131] M. Waidner and B. Pfitzmann. The dining
cryptographers in the disco: Unconditional sender and
recipient untraceability with computationally secure
serviceability. In Proceedings of the International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), Apr. 1989.

[132] T. Wang and I. Goldberg. Improved website
fingerprinting on Tor. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society (WPES),
Nov. 2013.

[133] S. Warren and L. Brandeis. The right to privacy.
Harvard Law Review, 4(5), Dec. 1890.

[134] D. Wikström. Five practical attacks for “optimistic
mixing for exit-polls”. In Proceedings of the Conference
on Selected Areas in Cryptography (SAC), Aug. 2003.

[135] P. Williams and R. Sion. Usable PIR. In Proceedings of
the Network and Distributed System Security Symposium
(NDSS), Feb. 2008.

[136] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson. Dissent in numbers: Making strong
anonymity scale. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2012.

[137] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson. Scalable anonymous group communication
in the anytrust model. In Proceedings of the European
Workshop on System Security (EUROSEC), Apr. 2012.

[138] B. Zantout and R. A. Haraty. I2P data communication
system. In Proceedings of the International Conference
on Networks, Jan. 2011.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 569

http://www.un.org/en/universal-declaration-human-rights/
http://www.un.org/en/universal-declaration-human-rights/
https://it.ojp.gov/privacyliberty/authorities/statutes/1285
https://it.ojp.gov/privacyliberty/authorities/statutes/1285

