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Abstract
Large service providers use load balancers to dispatch

millions of incoming connections per second towards
thousands of servers. There are two basic yet critical
requirements for a load balancer: uniform load distribution
of the incoming connections across the servers and
per-connection-consistency (PCC), i.e., the ability to map
packets belonging to the same connection to the same
server even in the presence of changes in the number of
active servers and load balancers. Yet, meeting both these
requirements at the same time has been an elusive goal.
Today’s load balancers minimize PCC violations at the price
of non-uniform load distribution.

This paper presents CHEETAH, a load balancer that supports
uniform load distribution and PCC while being scalable,
memory efficient, resilient to clogging attacks, and fast at
processing packets. The CHEETAH LB design guarantees
PCC for any realizable server selection load balancing
mechanism and can be deployed in both a stateless and
stateful manner, depending on the operational needs. We im-
plemented CHEETAH on both a software and a Tofino-based
hardware switch. Our evaluation shows that a stateless version
of CHEETAH guarantees PCC, has negligible packet process-
ing overheads, and can support load balancing mechanisms
that reduce the flow completion time by a factor of 2−3x.

1 Introduction

The vast majority of services deployed in a datacenter need
load balancers to spread the incoming connection requests
over the set of servers running these services. As almost
half of the traffic in a datacenter must be handled by a
load balancer [41], the inability to uniformly distribute
connections across servers has expensive consequences for
datacenter and service operators. The most common yet cost-
ineffective way of dealing with imbalances and meet stringent
Service-Level-Agreements (SLAs) is to over-provision [13].

Existing LBs rely on a simple hash computation of the
connection identifier to distribute the incoming traffic among

the servers [3, 13, 15, 20, 37, 41, 53]. Recent measurements
on Google’s production traffic showed that hash-based load
balancers may suffer from load imbalances up to 30% [13].

A natural question to ask is why existing load balancers do
not rely on more sophisticated load balancing mechanisms,
e.g., weighted round robin [51],“power of two choices” [33],
or least loaded server. The answer lies in the extreme
dynamicity of cloud environments. Services and load bal-
ancers “must be designed to gracefully withstand traffic
surges of hundreds of times their usual loads, as well as
DDoS attacks” [3]. This means that the number of servers
and load balancers used to provide a service can quickly
change over time. Guaranteeing that packets belonging
to existing connections are routed to the correct server
despite dynamic reconfigurations requires per-connection-
consistency (PCC) [32] and has been the focus of many
previous works [3, 13, 15, 20, 32, 37, 41]. When only the
number of load balancers change, hash-based load balancing
mechanisms guarantee PCC as packets reach the correct
server even when hitting a different LB [3, 37]. To deal with
changes in the numbers of servers, existing LBs either store
the “connection-to-server” mapping [13, 20, 32, 41] or let the
servers reroute packets that were misrouted [3, 37]. In both
cases, a hash function helps mitigate PCC violations, though
it cannot completely avoid them (more details in Sect. 2).
To summarize, existing load balancers cannot uniformly
distribute connections across the servers as they rely on hash
functions to mitigate (but not avoid) PCC violations.

This paper presents the design and evaluation of CHEETAH,
a load balancer (LB) system with the following properties:
• dynamicity, the number of LBs and servers can increase or

decrease depending on the actual load;
• per-connection-consistency (PCC), packets belonging to

the same connection are forwarded to the same server;
• uniform load distribution, by supporting advanced load

balancing mechanisms that efficiently utilize the servers;
• efficient packet processing, the LB should have minimal

impact on communication latency; and
• resilience, it should be hard for a client to “clog” the LB
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and the servers with spurious traffic.
CHEETAH takes a different approach compared to

existing LBs. CHEETAH stores information about the
connection mappings into the connections themselves. More
specifically, when a CHEETAH LB receives the first packet
of a connection, it encodes the selected server’s identifier
into a cookie that is permanently added to all the packet
headers exchanged within this connection. Unlike previous
work, which relies on hash computations to mitigate PCC
violations, the design of CHEETAH completely decouples
the load balancing logic from PCC support. This in turn
allows an operator to guarantee PCC regardless of the
“connection-to-server” mapping produced by the chosen load
balancing logic. The goal of this paper is not the design of
a novel load balancing mechanism for uniformly spreading
the load but rather the design of CHEETAH as a building
block to support PCC for any realizable load balancing
mechanisms without violating PCC. As for resilience, we
cannot expose the server identifiers to users as this would
open the doors to clogging a targeted server. CHEETAH
is designed with resilience in mind, thwarting resource
exhaustion and selective targeting of servers. To this end,
CHEETAH generates “opaque” cookies that can be processed
fast and can only be interpreted by the LB.

We present two different implementations of CHEETAH,
a stateless and a stateful version. Our stateless and stateful
CHEETAH LBs carefully encode the connection-to-servers
mappings into the packet headers so as to guarantee levels of
resilience that are no worse (and in some cases even stronger)
than existing stateless and stateful LBs, respectively. For
instance, our stateful LB increases resilience by utilizing
a novel and fast stack-based mechanism that dramatically
simplifies the operation of today’s cuckoo-hash-based stateful
LBs, which suffer from slow insertion times.

In summary, our contributions are:
• We quantify limitations of existing stateless and stateful

LBs through large-scale simulations. We show that the
quality of the load distribution of existing LBs is 40 times
worse than that of an ideal LB. We also show stateless LBs
(such as Beamer and Faild) can reduce such imbalances at
the price of increasing PCC violations.

• We introduce CHEETAH, an LB that guarantees PCC for
any realizable load balancing mechanisms. We present a
stateless and a stateful design of CHEETAH, which strike
different trade-offs in terms of resilience and performance.

• We implement our stateless and stateful CHEETAH LBs in
FastClick [5] and compare their performance with state-
of-the-art stateless and stateful LBs, respectively. We also
implement both versions of CHEETAH with a weighted
round-robin LB on a Tofino-based switch [6].

• In our experiments, we show the potential benefits of
CHEETAH with a non-hash-based load balancing mech-
anism. The number of processor cycles per packet for both
our stateless and stateful implementation of CHEETAH is

comparable to existing stateless implementations and 3.5x
less than existing stateful LBs.

2 Background and Motivation

Internet organizations deploy large-scale applications using
clusters of servers located within one or more datacenters
(DCs). We provide a brief background on DC load balancers,
discuss related work, and show limitations of the existing
schemes. We do not discuss geo-distributed load balancing
across DCs. Further, we distinguish between stateless LBs,
which do not store any per-connection state, and stateful LBs,
which store some information about ongoing connections.

Multi-tier load balancing architectures. Datacenter
operators assign a Virtual IP (VIP) address to each operated
service. Each VIP in a DC is associated with a set of servers
providing that service. Each server has a Direct IP (DIP)
address that uniquely identifies the server within the DC.

A LB inside the DC is a device that receives incoming
connections for a certain VIP and selects a server to provide
the requested service. Each connection is a Layer 4 connection
(typically TCP or QUIC). For each VIP, a LB partitions
the space of the connection identifiers (e.g., TCP 5-tuples)
across all the servers (i.e., DIPs) associated with that VIP. The
partitioning function is stored in the LB and is used to retrieve
the correct DIP for each incoming packet.

A large-scale DC may have tens of thousands of servers and
hundreds of LBs [13, 15, 32]. These LBs are often arranged
into different tiers (see Fig. 1). The 1st-tier of LBs are faster
and less complex than those in subsequent tiers. For example,
a typical DC would use BGP routers using ECMP forwarding
at the 1st-tier, followed by Layer 4 LBs, in turn followed by
Layer 7 LBs and applications [20]. Similar to previous work
on DC load balancing, we consider Layer 7 LBs to be at
the same level as the services [13, 20, 41]. Any 1st tier LB
receiving a packet directed to a VIP, performs a look up to
fetch the set of 2nd tier LBs responsible for that VIP. It then
forwards the packet towards any of these LBs. The main
goal of the 1st-tier is demultiplexing the incoming traffic at
the per VIP level towards their dedicated 2nd tier LBs. The
2nd-tier LBs perform two crucial operations: (i) guaranteeing
(PCC) [32] and (ii) load balancing the incoming connections.

2.1 Limits of Stateless Load Balancers

Traditional stateless LBs cannot guarantee PCC. A
stateless LB partitions the space of connection identifiers
among the set of servers. The partitioning function is
stored in the LB and does not depend on the number of
active connections. Most stateless LBs, e.g., ECMP [9, 19]
& WCMP [53], store this partitioning in the form of an
indirection table, which maps the output of a hash function
modulo the size of the table to a specific server [3, 19, 37, 53].
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Figure 1: A traditional datacenter load balancing architecture.

A uniform hash scheme maps each server to an equal number
of entries in the indirection table. When a LB receives a
packet, it extracts the connection identifier from the packet
and feeds it as input to a hash function. The output of the hash
modulo the size of the indirection table determines the index
of the entry in the table where the LB can find to which server
the packet should be forwarded. If the number of servers
changes, the indirection table must be updated, which may
cause some existing connections to be rerouted to the new
(and wrong) server that is now associated with an entry in the
table, i.e., a PCC violation.

Advanced stateless LBs cannot always guarantee PCC.
Beamer [37] and Faild [3] introduced daisy-chaining to
tackle PCC. They encapsulate in the header of the packet
the address of a “backup” server to which a packet should be
sent when the LB hits the wrong server. This backup server
is selected as the last server that was assigned to a given
entry in the indirection table before the entry was remapped.
PCC violations are prevented as long as (i) one does not
perform two reconfigurations that change the same entry in
the table twice (as only one backup server can be stored in
the packet) and (ii) one can simultaneously reconfigure all the
LBs (see [37] for an example).

Fig. 2a shows the percentage of broken connections
(i.e., PCC violations) with and without daisy chaining in
our large-scale simulations. We used the same parameters,
traffic workloads, and cluster reconfiguration events derived
from previous work on real-world DC load balancing, i.e.,
SilkRoad [32]. Namely, we simulated a cluster of 468
servers and we generated a workload using the same traffic
distribution of a large web server service. We performed DIP
updates, i.e. removal or additional of servers from the cluster,
using different frequency distributions. SilkRoad reports that
95% of their clusters experience between 1.5 and 80 DIP
updates/minute and provide distributions for the update time.
We define the number of broken connections as the number of

connections that have been mapped to at least two different
servers during their starting and ending times. Fig. 2a shows
that Beamer and Faild (plotted using the same line) still break
almost 1% of the connections at the highest DIP update
frequency, which may lead to an unacceptable level of service
level agreement (SLA) violations [32].

Hash-based LBs cannot uniformly spread the load. We
now investigate the ability of different load balancing mech-
anisms to uniformly spread the load across the servers for
a single VIP. Similarly to the Google Maglev work [13],
we define the imbalance of a server as the ratio between
the number of connections active on that server and the
average number of active connections across all servers.
We also define the system imbalance as the maximum
imbalance of any server. The imbalance of a simulation
run is the average imbalance of the system during the
entire duration of the simulation. We discuss different load
metrics in Sect. 4. Using the same simulation settings as
described above, we compare (i) Beamer [37]/Faild [3],
which use a uniform hash, (ii) Round-Robin [50], which
assigns each new connection to the next server in a list,
(iii) Power-Of-Two [33], which picks the least loaded among
two random servers, and (iv) Least-Loaded [50], which
assigns each new connection to the server with fewest active
connections. We note that Round-Robin, Power-Of-Two,
and Least-Loaded require storing the connection-to-server
mapping, hence they cannot be supported by Beamer/Faild.
In this simulation, we do not change the size of the cluster
but rather vary only the number of connections that are active
at the same time in the cluster between 20K and 200K. We
choose this range of active connections to induce the same im-
balances (15%-30%) observed for uniform hashes in Google
Maglev [13]. Fig. 2b shows the results of our simulations. We
note that Beamer-like hash-based LBs outperform consistent
hashing by a factor of 2x. Round-Robin outperforms a
Beamer-like LB by a factor of 1.2x. When comparing these
schemes with Power-Of-Two, we observe a reduction in
imbalance by a factor of 10x. Finally, Least-Loaded further
reduces the imbalance by an additional factor of 4x. These
results show that a more uniform distribution of loads can be
achieved by storing the mapping between connections and
servers, though one still has to support PCC when the LB pool
size changes. We note that today’s stateful LBs [13,20,32,41]
rely on different variations of uniform-hash, thus suffer from
imbalances similarly to Beamer.

Beamer can reduce imbalance at the cost of a greater
number of PCC violations. We tried to reduce the
imbalances in Beamer by monitoring the server load
imbalances and modify the entries in the indirection
table accordingly. We extended Beamer with a
dynamic mechanism that gets as input an imbalance
threshold and remove a server from the indirection table
whenever its load is above this threshold. The server is
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Figure 2: Analysis of PCC-violations and load imbalances of state-of-the-art load balancers. To ease visibility, points are
connected with straight lines along the x-axis.

re-added to the table when its number of active connections
drops below the average. Note that, if an entry in the
indirection table changes its server mapping twice, Beamer
will break those existing connections that were relying on
the initial state of the indirection table. Fig. 2c shows the
percentage of broken connections for increasing imbalance
thresholds. We set the number of active connections to 70K
(corresponding to an average 30% imbalance in Fig. 2b).
We note that guaranteeing an imbalance of at most 10%
would cause 3% of all connections to break. Even with an
imbalance threshold of 40% one would still observe 0.1%
broken connections because of micro-bursts. Hence, even
this extended Beamer cannot guarantee PCC and uniform
load balancing at the same time.

2.2 Limits of Stateful Load Balancers
Stateful LBs store the connection-to-server mapping in a
so-called ConnTable for two main reasons: (i) to preserve
PCC when the number of servers changes and (ii) to enable
fine-grain visibility into the flows.

Today’s stateful LBs cannot guarantee PCC. Consider
Fig. 1 and the case in which we add an additional stateful LB
for a certain VIP. The BGP routers, which rely on ECMP, will
reroute some connections to a LB than does not have the state
for that connection. Thus, this LB does not know to which
server the packet should be forwarded unless all LBs use an
identical hash-based mechanism (and therefore experience
imbalances). Therefore, existing LBs (including Facebook
Katran [20], Google Maglev [13], and Microsoft Ananta [41])
rely on hashing mechanisms to mitigate PCC violations.
However, this is not enough if the number of servers also
changes, then some existing connections will be routed to
an LB without state, hence it will hash the connection to the
wrong server, thus breaking PCC.

Today’s stateful LBs rely on complex and slow data
structures. State-of-the-art LBs rely on cuckoo-hash
tables [40] to keep per-connection mappings. These data
structures guarantee constant time lookups but may require
non-constant insertion time [43]. These slow insertions may
severely impact the LB’s throughput, e.g., a throughput
loss by 2x has been observed on OpenFlow switches when
performing ∼ 60 updates/second [34].

2.3 Service Resilience and Load Balancers

Load balancers are an indispensable component against
clogging Distributed Denial of Service (DDoS) attacks, e.g.,
bandwidth depletion at the server and memory exhaustion at
the LB. Dealing with such attacks is a multi-faceted problem
involving multiple entities of the network infrastructure [30],
e.g., firewalls, network intrusion detection, application gate-
ways. This paper does not focus on how the LB fits into this
picture but rather studies the resilience of the LB itself and
the resilience its design provides to the service operation.

LBs shield servers from targeted bandwidth depletion
attacks. An LB system should guarantee that the system
absorb sudden bursts due to DDoS attacks with minimal
impact on a service’s operation. Today’s LB mechanisms
rely on hash-based load balancing mechanisms to provide a
first pro-active level of defense, which consists in spreading
connections across all servers. As long as an attacker does
not reverse engineer the hash function, multiple malicious
connections will be spread over the servers. A system should
not allow clients to target specific servers with spurious traffic.

Stateful LBs support per-connection view at lower re-
silience. Stateful LBs provide fine-grained visibility into
the active connections, providing resilience to the service
operation, e.g., by selectively rerouting DDoS flows. At the
same time, stateful LBs are a trivial target of resource deple-
tion clogging DDoS attacks: incoming spurious connections
add to the connection table rapidly exhaust the limited LB
memory (e.g., [37]) or grow the connection table aggres-
sively, rapidly degrading performance even with ample mem-
ory [34]. Stateless LBs can inherently withstand clogging
DDoS, sustaining much higher throughput, but can only offer
per-server statistics visibility to the service operation.

Having analyzed the above limitations of existing load bal-
ancers, we conclude this section by asking the following ques-
tion: “Is it possible to design a DC load balancing system that
guarantees PCC, supports any realizable load balancing
mechanism, and achieves similar levels of resiliency of today’s
state-of-the-art LBs?”
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3 The CHEETAH Load Balancer

In this section, we present CHEETAH, a load balancing
system that supports arbitrary load balancing mechanisms and
guarantees PCC without sacrificing performance. CHEETAH
solves many of the today’s load balancing problems by
encoding information about the connection into a cookie that
is added to all the packets of a connection.1 CHEETAH sets the
cookie according to any chosen and realizable load balancing
mechanism and relies on that cookie to (i) guarantee future
packets belonging to the same connection are forwarded to
the same server and (ii) speed up the forwarding process in
a stateful LB, which in turn increases the resilience of the
LB. Understanding what information should be encoded into
the cookie, how to encode it, and how to use this information
inside a stateless or stateful LB is the goal of this section. We
start our discussion by introducing the stateless CHEETAH
LB, which guarantees PCC and preserves the same resilience
and packet processing performance of existing stateless LBs.
We then introduce the stateful CHEETAH LB, which improves
the packet processing performance of today’s stateful LBs,
and present an LB architecture that strikes different tradeoffs
in terms of performance and resilience. We stress the fact
that CHEETAH does not propose a novel LB mechanism but
is a building block for supporting arbitrary LB mechanisms
without breaking PCC (we show the currently implemented
LB mechanisms in Sect. 4).

A naïve approach. We first discuss a straightforward
approach to guarantee PCC that would not work in practice
because of its poor resiliency. It entails storing the identifier
of a server (i.e., the DIP) in the cookie of a connection. In
this way, an LB can easily preserve PCC by extracting the
cookie from each subsequent incoming packet. We note that
such naïve approaches are reminiscent of several previous
proposals on multi path transport protocols [10, 39], where
the identifiers of the servers are explicitly communicated
to the clients when establishing multiple subflows within
a connection. There is at least one critical resiliency issue
with this approach. Some clients can wait to establish
many connections to the same server and then suddenly
increase their load. This is highly undesired as it leads to
cascade-effect imbalances and service disruptions [47].

3.1 Stateless CHEETAH LB

The stateless CHEETAH LB: encoding an opaque offset
into the cookie. We now discuss how we overcome the
above issues in CHEETAH. We aim to achieve the same
resiliency levels2 of today’s production-ready stateless LBs
(e.g., Faild [3]/Beamer [37, 47]) while supporting arbitrary
load balancing mechanisms and guaranteeing PCC. We

1We discuss legacy-compatibility issues in Sect. 4
2See Sect 2.3 for details of stateless/stateful load balancing resiliency.
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Figure 3: CHEETAH stateless LB operations.

assume a single tier LB architecture and defer the discussion
of multi-tier architectures to later in this section.

The CHEETAH stateless LB keeps two different types of
tables (see Fig. 3): an AllServers table that maps a server
identifier to the DIP of the server and a VIPToServers table
that maps each VIP to the set of servers running that VIP.
The AllServers table is mostly static as it contains an
entry for each server in the DC network. Only when servers
are deployed in/removed from the DC is the AllServers
table updated. The VIPToServers table is modified when
the number of servers running a certain service increases/
decreases, a more common operation to deal with changes in
the VIP current demands.

When the LB receives the first packet of a connection
(top part of Fig. 3), it extracts the set of servers running the
service (i.e., with a given VIP) from the VIPToServers table,
selects one of the servers according to any pre-configured load
balancing mechanism, and forwards the packet.3 For every
packet received from a server (middle part of Fig. 3), the LB
encodes an “opaque” identifier of the server mapping into the
cookie for this connection. To do so, CHEETAH computes the
hash of the connection identifier with a salt S (unknown to
the clients), XORs it with the identifier of the server, and adds
the output of the XOR to the packet header as the cookie. The
salt S is the same for all connections. When the LB receives
any subsequent packet belonging to this connection (bottom
part of Fig. 3), it extracts the cookie from the packet header,
computes the hash of the connection identifier with the salt
S, XORs the output of the hash with the cookie, and uses the
output of the XOR as the identifier of the server. The LB then
looks up the DIP of the server in the AllServers table.

Stateless CHEETAH guarantees PCC. CHEETAH relies
on two main design ideas to avoid breaking connections:

3How to implement different LB mechanisms in programmable hardware
and software LBs is shown in Sect. 4.
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(i) moving the state needed to preserve the mapping between
a connection and its server into the packet header of the
connection and (ii) using the more dynamic VIPToServers
table only for the 1st packet of a connection. Subsequently, the
static AllServers table is used to forward packets belonging
to any existing connection. This trivially guarantees PCC. We
defer discussion of multi-path transport protocols to Sect. 6.

Compared to existing stateless LBs Stateless CHEETAH
achieves similar resiliency. Binding the cookie with the
hash of the connection identifier brings one main advantage
compared to the earlier naïve scheme, as an attacker must first
reverse engineer the hash function of the LB in order to launch
an attack targeting a specific server. This makes CHEETAH
as resilient as other production-ready stateless LBs. We note
that CHEETAH is orthogonal to DDoS mitigation defence
mechanisms, especially when deployed in reactive mode. We
further discuss CHEETAH resilience, including support for
multi path transport protocols, in Sect. 6.

Stateless CHEETAH supports arbitrary load balancing
mechanisms. All the reviewed state-of-the-art LBs (even
stateful ones) are restricted to uniform hashing when it comes
to load balancing mechanisms — as any other mechanism
would break an unacceptable number of connections when the
number of servers/LBs changes. In contrast, whenever a new
connection arrives at a stateless CHEETAH LB, CHEETAH
selects a server among those returned from a lookup in the
VIPToServers table. The selected server may depend upon
the specific load balancing mechanism configured by the
service’s operator. We note that the selection of the server may
or may not be implementable in the data-plane. The CHEETAH
LB guarantees that once the mapping connection-to-server
has been established by the LB logic (not necessarily at the
data-plane speed), all the subsequent packets belonging that
that connection will be routed to the selected server. Since
the binding of the connection to the server is stored in the
packet header, CHEETAH can support LB mechanisms that go
well beyond uniform hashing. For instance, an operator may
decide to rely on “power of two choices” [33], which is known
to reduce the load imbalance by a logarithmic factor. Another
service operator may prefer a weighted round-robin load
balancing mechanism that uses some periodically reported
metrics (e.g., CPU utilization) to spread the load uniformly
among all the servers.

Lower bounds on the size of the cookie. In CHEETAH, the
size of the cookie has to be at least log2 k bits, where k is the
maximum number of servers stored in the AllServers table.
Therefore, the size of the cookie grows logarithmically in the
size of the number of servers. One question is whether PCC
can be guaranteed using a cookie whose size is smaller than
log2(k) and the memory size of the LB is constant. We defer
proof of the following theorem to App. A.

Theorem 1. Given an arbitrarily large number of connections,
any load balancer using O(1) memory requires cookies of

size Ω(log(k)) to guarantee PCC under any possible change
in the number of active servers, where k is the overall number
of servers in the DC that can be assigned to the service with a
given VIP.

In App. A, we generalize the above theorem to show
a certain class of advanced load balancing mechanisms,
including round-robin and least-loaded, requires cookies with
a size of at least log2(k) bits even in the absence of changes
in the set of active servers.

While the above results close the doors to any
sublogarithmic overhead in the packet header; in practice,
operators may decide to trade some PCC violations and load
imbalances for a smaller sized cookie. We refer the reader to
App. B for a discussion about how to implement CHEETAH
with limited size cookies.

3.2 Stateful CHEETAH LB

We also designed a stateful version of CHEETAH to support
a finer level of visibility into the flows than that offered by
stateless LBs. A stateful LB can keep track of the behaviour
of each individual connection and support complex network
functions, such as rate limiters, NATs, detection of heavy-
hitters, and rerouting to dedicated scrubbing devices (as in
the case of Microsoft Ananta [41] and CloudFlare [30]).
In contrast to existing LBs, our stateful LB guarantees
PCC (inherited from the stateless design) and uses a more
performant ConnTable that is amenable to fast data plane
implementations. In the following text we say that PCC is
guaranteed if a packet is routed to the correct server as long
as an LB having state for its connection exists.

The stateful CHEETAH load balancer: encoding table
indices in the packet header. As discussed in Sect. 2,
today’s stateful LBs rely on advanced hash tables, e.g.,
cuckoo-hashing [40], to store per-connection state at the
LB [32]. Such data structures offer constant-time data-plane
lookups but insertion/modification of any entry in the table
requires intervention of the slower control plane or complex &
workload-dependant data structures (e.g., Bloom filters [32],
Stash-based data structures [43]), which are both complex
and hard to tune for a specific workload.

We make a simple yet powerful observation about stateful
tables that any insertion, modification, or deletion of an
entry in a table can be greatly simplified if a packet carries
information about the index of the entry in the table where
its connection is stored. Since datacenters may have tens of
billions of active connections, we need to devise a stateful
approach where the size of the cookie is explicitly given as
input. In a stateful CHEETAH LB (see Fig. 4), we store a set of
m ConnTable tables that keep per-connection statistics and
DIP mappings. We also use an equal number of ConnStack
stacks of indices, each storing the unused entries in its
corresponding ConnTable.
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Figure 4: CHEETAH stateful LB operations for the 1st packet
of a connection. We do not show the stateless cookie for
identifying the stateful LB. The VIP-to-servers is included
within the LB-logic and not shown. The server performs
Direct Server Return (DSR) so the response packet does
not traverse the load balancers. Subsequent packets from the
client only access their index in the correspoding ConnTable.

For the sake of simplicity, we first assume there is only one
LB and one ConnTable with its associated ConnStack, i.e.,
m = 1. Whenever a new connection state needs to be installed,
CHEETAH pops an index from ConnStack and incorporates
it as part of the cookie in the packet’s header. It also stores the
selected server and the hash of the connection identifier with
a salt S into the corresponding table entry. This hash value
allows the LB to filter out malicious attempts to interfere with
legitimate traffic flows, similarly to SilkRoad [32]. Whenever
a packet belonging to an existing connection arrives at the
LB, CHEETAH extracts the index from the cookie and uses
it to quickly perform a lookup only in the ConnTable. Note
that insertion, modification, and deletion of connections can
be performed in constant time entirely in the data plane. We
explain details of the implementation in Sect. 4.

The number of connections that we can store within a single
ConnTable is equal to 2r, where r is the size of the cookie.
In practice, the size of the cookie may limit the number of
connections that can be stored in the LB. We therefore present
a hybrid approach that uses a hash function to partition the
space of the connection identifiers into m partitions. As for
any stateful table, m should be chosen high enough so the total
number of entries m∗2r is suitable. The same cookie can be
re-used among connections belonging to distinct partitions.

A hybrid datacenter architecture. Stateful LBs are
typically not deployed at the edge of the datacenter for two
reasons: they are more complex and slower compared to
stateless LBs. As such, they are a weak point that could

compromise the entire LB availability. Therefore, we propose
a 2-tier DC architecture where the first tier consists of
stateless CHEETAH LBs and the second tier consists of
stateful CHEETAH LBs. The stateless LB uses the first bytes
of the cookie to encode the identifier of a stateful load
balancer, thus guaranteeing a connection always reaches
the same LB regardless of the LB pool size. The stateful
load balancer uses the last bytes of the cookie to encode
per-connection information as described above.

4 Implementation

The simplicity of our design makes CHEETAH amenable
to highly efficient implementations in the data-plane. We
implemented stateful and stateless CHEETAH LBs on
FastClick [5], a faster version of the Click Modular
Router [26] that supports DPDK and multi-processing.
Previous stateless systems, such as Beamer [37], have also
relied on FastClick for their software-based implementation.
We also implemented stateless and stateful versions of
the CHEETAH LB with a weighted round-robin LB on a
Tofino-based switch using P4 [6].4 We can only make a
general P4 implementation available due to Tofino-related
NDAs. Both implementations are available at [4]. We first
discuss the critical question of where to actually store the
cookie in today’s protocols and then describe the FastClick
and P4-Tofino implementations.

Preserving legacy-compatibility. Our goal is to limit the
amount of modifications needed to deploy CHEETAH on
existing devices. Ideally, we would like to use a dedicated
TCP option for storing the CHEETAH cookie into the packet
header of all packets in a connection. However, this would
require modifications to the clients, which would be infeasible
in practice. We therefore identified three possible ways to
implement cookies within existing transport protocols without
requiring any modifications to the clients’ machines: (i)
incorporate the cookie into the connection-id of QUIC
connections, (ii) encode the cookie into the least significant
bits of IPv6 addresses and use IPv6 mobility support to
rebind the host’s address (the LB acts as a home agent),
and (iii) embed the cookie into part of the bits of the TCP
timestamp options. In this paper, we implemented a proof-
of-concept CHEETAH using the TCP timestamp option as
explained in App. C.5 . We note that similar encodings of
information into the TCP timestamp have been proposed in
the past but require modifications to the servers [39]. The
stateless CHEETAH LB can transparently translates the server
timestamps with the encoded timestamps without interfering

4Detailed performance benchmarking of CHEETAH on the Tofino switch
is subject to an NDA. The Tofino implementations follow the description
of the mechanisms presented in Sect. 3, use minimal resources, and incur
neither significant performance overheads nor require packet recirculation.

5We verified in App. C that the latest Android, iOS, Ubuntu, and MacOS
operating systems support TCP timestamp options but not Windows.
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with TCP timestamp related mechanisms (i.e., RTT estimation
and protections against wrapped sequences [8]). Therefore,
no modifications are required to the servers for stateless
mode unless the datacenter operator wants to guarantee Direct
Server Return (DSR), i.e., packets from the servers to the
client do not traverse any load balancer. In that case, the server
must encode the cookie into the timestamp itself. The cookie
must also be sent back by the server for stateful mode, as the
load balancer would not be able to find the stack index for
returning traffic. Server modifications are described in C.2.
We leave the implementation of CHEETAH on QUIC and IPv6
as future work. We note that a QUIC implementation would
be easier and more performant since parsing TCP options is
an expensive operation in both software and hardware LBs.

4.1 FastClick implementation
The FastClick implementation is a fully-fledged
implementation of CHEETAH that supports L2 & L3
load balancing and multiple load balancing mechanisms
(e.g., round-robin, power-of-2 choices, least-loaded server).
The LB supports different load metrics including number
of active connection and CPU utilization. The LB decodes
cookies for both stateless and stateful modes using the TCP
timestamp as described above, and can optionally fix the
timestamp in-place if the server is not modified to do it.

Parsing TCP options. Each TS option has a 1-byte identifier,
1-byte length, and then the content value. Options may
appear in any order. This makes extracting a specific option
a non-trivial operation [10]. We focus on extracting the
timestamp option T Secr from a packet. To accelerate this
parsing operation, we performed a statistical study over 798M
packets headers from traffic captured on our campus.

Table 1 shows the most common patterns observed across
the entire trace for packets containing the timestamp option.
The Linux Kernel already implements a similar fast parsing
technique for non-SYN(/ACK) packets. We first consider
non-SYN packets (i.e., “Other packets” in the table). Our
study shows that 99.95% of the packets have the following
pattern: NOP (1B) + NOP (1B) + TimeStamp (10B) possibly
followed by other fields. When a packet arrives, we can easily
determine whether it matches this pattern by performing a
simple 32-bit comparison and checking that the first two bytes
are NOP identiers and the third one is the Timestamp id. We
process the remaining 0.05% of the traffic in the slow path. We
now look at SYN packets. Consider the first row in the table,
i.e., MSS (4B) + SAckOK (2B) + TimeStamp (10B) + SAck
+ EOL. To verify if a packet matches this pattern, we perform
a 64-bit wildcard comparison and check that the first byte is
the MSS id, the fifth byte is the SAckOK id, and the seventh
byte is the TimeStamp id. We can apply similar techniques
for the remaining patterns matchable with 64 bits. Some types
of hosts generate packets whose patterns are wider than 64
bits, which is the limit of our x86_64 machine. We then rely

Table 1: TCP Options pattern

SYN packets
MSS SAckOK Timestamp [NOP WScale] 49.86%
MSS NOP WScale NOP NOP Timestamp [SAckOK EOL] 44.49%
MSS NOP WScale SAckOK Timestamp 4.53%
Slow path 1,12%

SYN-ACK packets
MSS SAckOK Timestamp [NOP WScale] 76.85%
MSS NOP WScale SAckOK Timestamp 18.79%
MSS NOP NOP Timestamp [SAckOK EOL] 1.69%
MSS NOP WScale NOP NOP Timestamp [SAckOK EOL] 1.55%
Slow path 1,12%

Other packets
NOP NOP Timestamp 98.46%
NOP NOP Timestamp [NOP NOP SAck] 1.49%
Slow path 0,05%

on one SSE 128bit integer wildcard comparison to verify
such patterns. The remaining 2.24% of patterns are handled
through a standard hop-by-hop parsing following the TCP
options Type-Length-Value chain. Finally, we note that we
can completely avoid the more complex parsing operations for
SYNs and SYN/ACKs if servers use TCP SYN cookies [12]
(see App. C for more details).

Load balancing mechanisms. CHEETAH supports any re-
alizable LB mechanisms while guaranteeing PCC. We im-
plemented several load balancing mechanisms that will be
evaluated using multiple workloads in Sect. 5.2. Among
the load-aware LB mechanisms, we distinguish between
metrics that can be tracked with or without coordination.
Without any coordination, the LB can keep track of the
number of packets/bytes sent per server and an estimate of the
number of open connections based on a simple SYN/FIN
counting mechanism.6 For LB approaches that require
coordination with the servers, our implementation supports
load distribution based on the CPU utilization of the servers.
Note that using a least-loaded server for coordination-based
approaches is a bad idea as a single server will receive all the
incoming connections until its load metric increases and is
reported to the LB, ultimately leading to instabilities in the
system. Therefore, we decided to implement the following
two load-aware balancing mechanisms, which we introduced
in Sect. 2: (i) power-of-2 choices and (ii) a weighted round
robin (WRR). For WRR, we devised a system where the
weights of the servers change according to their relative
(CPU) loads. We increase the weights for servers that are
underutilized depending on the difference between their load
and the average server load. More formally, the number
of buckets Ni assigned to server i is computed as Ni =

round(10 Lavg
(1−α)∗Li+α∗Lavg

) where Li is the load of a server, and
α is a factor that tunes the speed of the convergence, which
we set to 0.5. A perfectly balanced system would give N = 10
buckets to each server. An underutilized server gets more than

6We envision an ad-hoc mechanism to signal closed connection between
the LB and the server would make the estimate reliable in the future.
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N buckets (in practice limited to 3N) while an overloaded
server gets less than N buckets (lower bounded by 2).

4.2 P4-Tofino prototype
The stateless CHEETAH LB follows exactly the descrip-
tion from Sect. 3.1. We store the all-servers and the
VIP-to-servers tables using exact-match tables. We rely on
registers, which provide per-packet transactional memories, to
store a counter that implements the weighted-round-robin LB.
We note that implementing other types of LB mechanisms
such as least-loaded in the data-plane is non trivial in P4 since
one would need to extract a minimum from an array in O(1).
This operation will likely requires to process the packet on
the CPU of the switch. The insertion/deletion of the cookie on
any subsequent non-SYN packet can be performed in the data-
plane. The stateful CHEETAH LB adheres to the description
in Sect. 3.2. We use P4 registers to enable the insertion of
connections into the ConnTable at the speed of the data-plane.
We store the elements of the ConnStack stack in an array of
registers, the ConnTable into an array of registers, and the
pointer to the head of the stack in another register.

5 Evaluation

The CHEETAH LB design allows datacenter operators to
unleash the power of arbitrary load balancing mechanisms
while guaranteeing PCC, i.e., the ability to grow/shrink the
LB and DIP pools without disrupting existing connections.
In this section, we perform a set of experiments to assess
the performance achievable through our stateless and stateful
LBs. We focus only on evaluating the performance of the
FastClick implementation.7 All experiments scripts, including
documentation for full reproducibility are available at [4].

We pose three main questions in this evaluation:
• “How does the cost of packet processing in CHEETAH

compare with existing LBs?” (Sect. 5.1)
• “Can we reduce load imbalances by implementing more

advanced LB mechanisms in CHEETAH?” (Sect. 5.2)
• “How does the PCC support in CHEETAH compare with

existing stateless LBs?” (Sect. 5.3)

Experimental setting. The LB runs on a dual-socket, 18-
core Intel R©Xeon R©Gold 6140 CPU @ 2.30GHz, though only
8 cores are used from the socket attached to the NIC. Our
testbed is wired with 100G Mellanox Connect-X 5 NICs [48]
connected to a 32x100G NoviFlow WB5000 switch [36]. All
CPUs are fixed at their nominal frequency.

Workload generation. To generate load, we use 4 machines
with a single 8-core Intel R©Xeon R©Gold 5217 CPU @
3.00GHz with hyper-threading enabled using an enhanced
version of WRK [17] to generate load towards the LB. We also

7We argue that our Tofino implementation would perform similarly in
terms of ability to uniformly distribute the load.
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Figure 5: CPU cycles/packets for various methods. CHEETAH
achieves the same load balancing performance as stateful LBs
with 5x fewer cycles and only a minor penalty over hashing.

use four machines to run up to 64 NGINX web servers (one
per hyper-thread), isolated using Linux network namespaces.
Each NGINX server has a dedicated virtual NIC using SRIOV,
allowing packets to be switched in hardware and directly
received on the correct CPU core. We generate requests from
the clients using uniform and bimodal distributions, as well
as the large web server service distributions already used in
the simulations of Sect. 2.

Metrics. We evaluate the imbalance among servers using
both the variance of the server loads and the 99th percentile
flow completion times (FCTs), where the latter one is key for
latency-sensitive user applications. We measure the LB packet
processing time in CPU cycles per second. Each point is the
average of 10 runs of 15 seconds unless specified otherwise.

5.1 Packet Processing Analysis
We first investigate the cost in terms of packet processing
time for using stateless CHEETAH. We compare it against
stateful CHEETAH, a stateful LB based on per-core DPDK
cuckoo-hash tables, and two hashing mechanisms, one using
the hash computed in hardware by the NIC for RSS [21], and
one computed in software with DPDK [29]. We also compare
with a streamlined version of Beamer [38], without support for
bucket synchronization, UDP, and MPTCP, thus representing
a lower-bound on the Beamer packet processing cost.

Stateless CHEETAH incurs minimal packet processing
costs. Fig. 5 shows the number of CPU cycles consumed
by different LBs divided by the number of forwarded packets
for increasing number of requests per second. We tune the
request generation for a file of 8KB so that none of the
clients or servers were overloaded. The main result from this
experiment is that stateless CHEETAH consumes almost the
same number of CPU cycles per packet as the most optimized,
hardware assisted hash-based mechanism and significantly
fewer cycles than stateful approaches. Beamer consumes more
cycles than both CHEETAH LBs, still without bringing PCC
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Figure 6: 99th-perc. FCT for the increasing average server
load. CHEETAH achieves 2x−3x lower FCT than Hash RSS.

guarantee (see Sect. 5.3). This is mainly due to the operation
of encapsulating the backup server into the packet header and
the more compute-intensive operations needed by Beamer
to lookup into a bigger "stable hashing" table. Finally, we
note that, with the web service requests size distribution, each
methods only need 4 CPU cores to saturate the 100Gbps link.

Stateful CHEETAH outperforms cuckoo-hash based LBs.
We also note in Fig. 5 the improvements in packet process-
ing time of stateful CHEETAH (which uses a stack-based
ConnTable table) compared to the more expensive stateful
LBs using a cuckoo-hash table. Stateful CHEETAH achieves
performance close to a stateless LB and a factor of 2− 3x
better that cuckoo-hash based LBs.

Dissecting stateless CHEETAH performance. The key in-
sight into the extreme performance of CHEETAH is that the
operation of obfuscating the cookie only adds less than a
4-cycle hit. We in fact rely on the network interface card
hardware to produce a symmetric hash (i.e., using RSS).
We expect the advent of SmartNICs as well as QUIC and
IPv6 implementations, which have easier-to-parse headers,
to perform even better. We note that our stateless CHEETAH
implementation uses server-side TCP timestamp correction
(see Sect. 4), which only imposes a 0.2% performance hit
over the server processing time. If we were to use LB-side
timestamp correction, we observe that the stateless CHEETAH
modifies the timestamp MSB on the LB in just 30 cycles per
packet performance hit. To summarize, stateless CHEETAH
brings the same benefits as stateful LBs (in terms of load
balancing capabilities) in addition to PCC guarantees at
basically the same cost (and resilience) of stateless LBs.

5.2 Load Imbalance Analysis

We now assess the benefits of running CHEETAH using
a non-hash-based load balancing mechanism and compare
it to different uniform hash functions (similarly to those
implemented in Microsoft Ananta [41], Google Maglex [13],
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Figure 7: Variance among servers’ load of various methods
for an increasing number of servers. The average requests/s
is 100 per server. CHEETAH, though stateless, allows a near-
perfect load spreading.

Beamer [37], and Faild [3]). We stress that we do not propose
novel load balancing mechanisms but rather showcase the
potential benefits of a load balancer design that supports
any realizable load balancing mechanisms. We only evaluate
stateless CHEETAH as the load imbalance does not depend on
the stored state (and would result in similar performance).

In this experiment, each server performs a constant amount
of CPU-intensive work to dispatch a 8KB file. The generator
makes between 100 and 200 requests per server per second
on average depending on our targeted system load. Given this
workload and service type, we expect an operator to choose a
uniform round-robin LB mechanism to distribute the load.

CHEETAH significantly improves flow completion time.
Fig. 6 compares CHEETAH with round-robin and hash-
based LB mechanisms with 64 servers. We consider three
hash functions: Click [26], DPDK [29], and the hardware
hash from RSS. We stress the fact that these hash-based
functions represent the quality of load balancing achievable
by existing stateless (e.g., Beamer [37]) and stateful LBs
(e.g., Ananta [41]) LBs. We measure the 99th percentile
flow completion time (FCT) tail latency for the increasing
average server load. We note that CHEETAH reduces the 99th

percentile FCT by a factor of 2− 3x compared to the best
performing hash-based mechanism, i.e., Hash RSS.

CHEETAH spreads the load uniformly. To understand why
CHEETAH achieves better FCTs, we measure the variance of
the servers’ load over the experiment for an average server
load of 60% and 16, 32, and 64 servers. Fig. 7 shows that
(as expected) the variance of RR is considerably smaller
than hash-based methods. This is because the load balancer
iteratively spreads the incoming requests over the servers
instead randomly spreading them. In this specific scenario,
CHEETAH allows operators to leverage RR, which would
otherwise be impossible with today’s load balancers. Fig. 7
also shows that the quality of the hash function is important
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bimodal workload. Both AWRR and Pow2 outperform Hash
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as the default function provided in Click does not perform
well. In contrast, the CRC hash function used by DPDK is
comparable to the Toeplitz based function used in RSS [28].
Moreover, the RSS function has the advantage of being
performed in hardware.

CHEETAH improves FCT even with non-uniform work-
loads. Fig. 8 shows the tail FCT for a bimodal workload,
where 10% of requests take 500ms to be ready for dispatching
and the remaining ones take a few hundred microseconds. In
this scenario, some servers will be loaded in an unpredictable
way thus creating a skew that requires direct feedback from
the servers to solve. We can immediately see that RR with
64 servers leads to very high FCTs. We evaluate three
ways to distribute the incoming requests according to the
current load (see Sect. 4.1): automatic weighted round robin
(AWRR), power of two choices (Pow2), and the least loaded
server. Each server piggybacks its load using a monitoring
Python agent on the server that reports its load through an
HTTP channel to the LB at a frequency of 100Hz, though
experimental results showed similar performance at 10Hz.
Least loaded performs poorly since it sends all the incoming
requests to the same server for 10ms, overloading a single
server. Pow2 and AWRR spread the load more uniformly
as the LB penalizes those servers that are more overloaded.
Consequently, both methods reduce the FCT by a factor
of two compared to Hash RSS with 64 servers. These
experiments demonstrate the potential of deploying advanced
load balancing mechanisms to spread the service load.

5.3 PCC Violations Analysis
We close our evaluation by demonstrating the key feature of
the stateless CHEETAH LB, i.e., its ability to avoid breaking
connections while changing the server and/or LB pool sizes.
We compare CHEETAH against Hash RSS, consistent hashing,
and Beamer. We start our experiment with a cluster consisting
of 24 servers. We tune a python generator [4] to create 1500
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Figure 9: Percentage of broken requests while scaling the
number of servers. Cheetah guarantees PCC whereas hashing
breaks up to 11% of the connections, consistent hashing 3%
and Beamer up to 0.5%.

requests/s, increasing following a sinusoidal load to 2500
requests/s and descending back to 1500 over the 40 seconds
of the experiment. The size and duration of the requests are
served using the web server distribution. We iteratively add
7 servers to the pool as the load increases. We then drain 8
servers when the rate goes down. Fig. 9 shows the percentage
of broken requests over completed requests every second
over time. Some connections gets accounted as broken dozen
of seconds later as clients continue sending retransmission
before raising an error. Compared to Beamer, Cheetah not
only achieves better load balancing with AWRR (Sect. 5.2),
but it also does not break any connection.

6 Frequently Asked Questions

Does CHEETAH preserve service resilience compared to
existing LBs? Yes. We first discuss whether a client can clog
a server. A client generating huge amounts of traffic using the
same connection identifier can be detected and filtered out
using heavy-hitter detectors [41]. This holds for any stateless
LBs, e.g., Beamer [37]. A more clever attack entails reverse
engineering the salted hash function and deriving a large num-
ber of connection identifiers that the LB routes to the same
(specific) server, possibly with spoofed IP addresses. To do
so, an attacker needs to build the (conn.id,cookie) 7→ server
mapping. This requires performing complex measurements
to verify whether two connection IDs map to the same
server. Given that CHEETAH uses the same hash function
of any existing LB (which is not cryptographic due to their
complexity [3]), reverse engineering this mapping will be as
hard as reverse engineering the hash of the existing LBs. As
for the resilience to resource depletion, we note from Fig. 5
that stateless (stateful) CHEETAH has similar (better) packet
processing times of today’s stateless (stateful) LBs. Thus, we
argue that CHEETAH achieves the same levels of resilience of
today’s existing LB systems.
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Does CHEETAH make it easy to infer the number of
servers? Not necessarily. A 16-bit cookie permits at least an
order of magnitude more servers than the number of servers
used to operate the largest services [32]. If this is still a
concern, one can hide the number of servers by reducing the
size of the cookie and partitioning the connection identifier
space similarly to our stateful design of CHEETAH.

Does CHEETAH support multipath transport protocols?
Yes. In multipath protocols, different sub-connection identi-
fiers must be routed to the same DIP. Previous approaches
exposed the server’s id to the client [10, 39]; however, this
decreases the resilience of the system decreases. CHEETAH
can use a different permutation of AllServers for each
additional i’th sub-connection. Clients inform the server of
the new sub-connection identifier to be added to an existing
connection. The server replies with the cookie to be used
using the i’th AllServers table. This keeps the resilience of
the system unchanged compared to the single path case.

7 Related Work

There exists a rich body of literature on datacenter LBs [2, 7,
11, 13, 16, 18–20, 22–25, 32, 37, 41, 52, 53]. We do not discuss
network-level DC load balancers [2, 7, 16, 18, 22, 24, 25, 52],
whose goal is to load balance the traffic within the DC network
and do not deal with per-connection-consistency problems.

Stateless LBs. Existing stateless LBs rely on hash functions
and/or “daisy chaining” techniques to mitigate PCC violations
(2), e.g., ECMP [19], WCMP [53], consistent hashing [23],
Beamer [37], and Faild [3]. The main limitation of such
schemes is the suboptimal balancing of the server loads
achieved by the hash function, which is known to grow
exponentially in the number of servers [49]. Shell [42]
proposed a similar use of the timestamp option as a reference
to an history of indirection tables, which comes at both the
expense of memory and low-frequency load rebalancing.

QUIC-LB [11] is a high-level design proposal at the IETF
for a stateless LB that leverages the connection-id of the
QUIC protocol for routing purposes. While sharing some
similarities to our approach, QUIC-LB (i) does not present a
design of a stateful LB that would solve cuckoo-hash insertion
time issues, (ii) does not evaluate the performance obtainable
on the latest generation of general-purpose machines, (iii)
relies on the modulo operation with an odd number to hide
the server from the client, an operation that is not supported
in P4, and (iv) does not discuss multi path protocols. We
note that our cookie can be implemented as the 160-bit
connection-id in QUIC, which is also easier to parse than
the TCP timestamp option. Encoding the connection-to-
server mapping has recently been briefly discussed in an
editorial note without discussing LB resilience, stateful LBs,
or implementing and evaluating such a solution [31].

Several stateless load balancers that support multi path
transport protocols have been proposed in the past. Such load

balancers guarantee all the subflows of a connection are routed
to the same server by explicitly communicating an identifier
of the server to the client [10, 39]. These approaches may be
exploited by malicious users to cause targeted imbalances in
the system, which is prevented in CHEETAH thanks to using
distinct hashes for the subflows (see Sect. 6).

Stateful LBs. Existing stateful LBs store the connection-
to-server mapping in a cuckoo-hash table [13, 15, 20, 32,
41] (see Sect. 2). These LBs still rely on hash-based LB
mechanisms — as these lead to fewer PCC violations when
changing the number of LBs. In contrast, CHEETAH decouples
PCC support from the LB logic, thus allowing operators to
choose any realizable LB mechanism. Moreover, cuckoo-
hash tables suffer from slow (non-constant) insertion time.
FlowBlaze [43] and SilkRoad [32] tackled this problem
using a stash-based and bloom-filter-based implementations,
respectively. Yet, both solutions cannot guarantee insertions
in constant-time: FlowBlaze relies on a stash that may be
easily filled by an adversary while SilkRoad is limited by
both the size of the Bloom Filter and the complexity of
the implementation. CHEETAH uses a constant-time stack
that is amenable to fast implementation in the dataplane.
Existing stateful LBs also suffer from the fact that the 1st-tier
of stateless ECMP LBs reshuffle connections to the wrong
stateful LB when the number of LBs changes. In contrast,
1st-tier stateless CHEETAH guarantees connections reach the
correct stateful LB regardless of changes in the LB pool size.

8 Conclusions

We introduced CHEETAH, a novel building block for load
balancers that guarantees PCC and supports any realizable LB
mechanisms. We implemented CHEETAH on both software
switches and programmable ASIC Tofino switches. We
consider this paper as a first step towards unleashing the power
of load balancing mechanisms in a resilient manner. We leave
the question of whether one can design novel load balancing
mechanisms tailored for Layer 4 LBs as well as deployability
with existing middleboxes as future work.
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APPENDIX

A Proof of Theorem 1

Theorem 1. Given an arbitrarily large number of connections,
any load balancer using O(1) memory requires cookies of
size Ω(log(k)) to guarantee PCC under any possible change
in the number of active servers, where k is the overall number
of servers in the DC that can be assigned to the service with
a given VIP.

Proof sketch. We prove the statement of the theorem in
the widely adopted Kolmogorov descriptive complexity
model [27]. We leverage similar techniques used in the past
to demonstrate a variety of memory-related lower bounds for
shortest-path routing problems [14].

Let R be the set of all the possible connection identifiers.
Let C be the set of all possible cookies. Let S = {s1, . . . ,sk}
be the set of servers. We assume |R| � |S|, which is the
most interesting case in real-world datacenters. Suppose,
by contradiction, that there exists an LB which uses O(1)
memory with cookies of size smaller than log(k) bits that
guarantees under any arbtirary number of changes in the
subset of active servers A⊆ S. For any possible set of active
servers A, the LB maps a new incoming connection identifier
r∈R to a certain server s∈ S, i.e., the LB logic maps incoming
connections using an arbitrarily function f : R×2A→ S.

Let us now restrict our focus to the |S| distinct sets of
active servers in which only a single server is active, i.e., A1 =
{s1}, . . . ,Ak = {sk}. Depending on the time instance when a
connection r ∈ R arrives, the connection may be mapped to
any of these servers. The mapping must be preserved for the
entire duration of the connection, which means the LB must
be able to forward any future packet belonging to r regardless
of the current set of active servers. Therefore, the LB must be
able to distinguish among |R|×|S| distinct possible mappings
between connections and servers. Consider our cookie with
l bits, where l < |S|= log(k). This information allows us to
distinguish among |R|× l possible mappings, which leaves
|R|× (|S|− l) = O(|R||S|) mappings to the LB memory. This
is a contradiction since we assumed the LB uses a memory of
O(1).

It is trivial to verify that the above theorem holds even
if one wants to implement an advanced LB mechanism, e.g.
round-robin, least-loaded, even without allowing any changes
in the number of servers.

B Constant-size cookies

Minimizing PCC violations with constant-size cookies:
keeping a history at the LB. A simple way to deal with
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changes in the number of active servers when using a uniform-
hash load balancing mechanism is to encode in the cookie
a tag that can be used by the LB to uniquely identify a
previous configuration of active servers. The LB stores the last
n configurations of active servers and identifies them using
log2(n) bits, which are encoded into the cookie. Thus, as long
as a connection is mapped to a server that existed in any of
the last n configurations, the connection will be unbroken.
The LB can modify the cookie associated with a connection
to use “fresher” cookies. 8. Clearly, if an operator drains a
server, i.e., purposely does not assign new connections to it,
any remaining connections will be broken after n changes in
the tag.

Minimizing load imbalances using constant-size cookies:
adding a hash function index to the cookie. A common
technique to reduce load imbalances in a system is to rely
on “power-of-two” choices mechanisms to map a request to
a server. When the LB receives a new incoming connection,
it computes the hash of the connection identifier using two
different hash functions h1 and h2, whose outputs are used
to select two servers. The LB then compares the load of the
two selected servers and maps the incoming connection to
the least loaded server among these two (according to some
definition of “load”). The main issue in the DC context with
power-of-two choice load balancing mechanisms is that the
LB needs to remember for each connection, which of the two
servers was used to serve the connection, that is, the LB must
be stateful. CHEETAH can support a power-of-two choices LB
mechanism simply by storing in the cookie a single bit that
identifies which of the two hash functions is to be used for that
connection. Similarly, multiple hashes could be supported by
increasing the size of the cookie logarithmically in the number
of hash functions. We note that when the number of servers
change, connections may break. We refer the reader to the
previous paragraph on how to deal with PCC violations with
constant-size cookies.

C TCP timestamp encoding

We decided to encode the CHEETAH cookie into the 16
most significant bits of the TCP timestamp. We acknowledge
that alternative ways to encode information into the TCP
timestamps are possible [39] but require modifications to the
servers.

Encoding cookies in the TCP timestamp option. TCP end-
hosts use TCP timestamp options to estimate the RTT of the
connection. The timestamp consists of a 64-bit pair (T Sval ,
T Secr), where T Sval and T Secr are the 32-bit timestamps set
by the sender and receiver of the packet, respectively. When

8This operation requires a bit more than one Round-Trip-Time (RTT)
to update the client from the LB (the packet must first be processed by the
server, which has to send an acknowledgment to the client with the updated
cookie

an end-host receives a packet, it echoes the T Sval back to
the other end-host by copying it into the T Secr. We leverage
the T Sval to carry the CHEETAH cookie on every packet
directed towards the client, which will echo it back as the
T Secr. We encode the cookie in the 16 most significant bits of
the 32-bit T Sval for every packet directed towards a client.9

We must therefore fix the original 16 most significant bit of
the T Secr before it is processed by the TCP stack of the server.
This can be done in the load-balancer or on the server itself.
Our measurements of the top 100 ranked Alexa websites [1]
reported in App. D shows that the minimal unit of a timestamp
is 1 millisecond. This means that the least significant 16 bits
of the timestamp would wrap up every 216ms.

TCP timestamps are mostly supported in today’s OSes.
We ran a small experiment to verify whether today’s client
devices support the echoing of TCP timestamp options back
to the servers. We tested the latest OSes available in both
recent smartphones and desktop PCs: Google Android 9, iOS
13, Ubuntu 18.04, Microsoft Windows 10, and MacOS 10.14.
We observed that all except Microsoft Windows correctly
negotiate and echo the TCP timestamp option when the server
requires to use it. Based on some recent measurements, more
than 98% of the smartphone and tablet devices are either
using Android or iOS [46]. Smartphone devices are the most
common type of devices, representing 53% of all devices [45].
For desktop devices, Windows is the predominant OS with
over 75% of the desktop share whereas MacOS represent a
16% of this share [44]. For Windows desktop devices, a cloud
operator can either encode the cookie in the QUIC header
(69% of the Windows users use Google Chrome, compatible
with QUIC [35]), IPv6 address, or install stateful information
into the LB for these devices.

C.1 Fixing the timestamp in the load balancer

For each server, we keep in memory two versions of the
16 most significant bits (MSB) replaced by our cookie: the
current one and the previous one. We use one bit of the cookie
to remember the version of the original MSB for every given
packet sent to the client. When a wrap up of the timestamp
happens, we set the oldest MSB bucket to the new MSB
timestamp of the server, and we change the version bit of
outgoing packets to designate that one. When a packet is
received, the cookie is read, then the original MSB given by
the version bit found in the packet reader is rewritten back in

9Timestamp options have already been used in the past for protecting
against SYN flood attacks, e.g., TCP SYN cookies [12]. We note that several
large cloud networks completely disable TCP SYN cookies and rely on
different mechanisms to handle SYN flood attacks [30], thus CHEETAH would
not cause deployment issues. We note that an alternative implementation of
CHEETAH, in which the mapping with the server is only performed at the end
of the 3-way handshake does not prevent the cloud provider from using TCP
SYN cookies. This solution requires all the servers to use exactly the same
parameters when generating the TCP SYN cookies and is left as a minor
future work extension.

682    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



the timestamp of the packet. To avoid having clients sending
very old cookies, we rely on TCP keepalives set to 25 seconds,
which allows us to both detect timestamp wraps at the LB10

and deal with TCP PAWS packet filters11.

C.2 Fixing the timestamp on the server
We modified the Linux Kernel 5.1.5 (available at 12) to
enable the same mechanism directly on the server. Doing
so increase the server packet processing time by only 0.2%,
as the timestamp is parsed in any cases on the server. This
enables the server to keep the value of the cookie, and directly
encode the cookie in the T Sval . Such returning packet do not
need to go through the load balancer and allows the use of
DSR. Having the cookie on both sides of the load-balancer is
also needed for the stateful implementation.

D Alexa Top100 Timestamp Measurements

We ran a comprehensive set of measurements to determine the
granularity of the TCP timestamp unit utilized by the largest

10Detecting a wrap at the server is a straightforward operation. To detect
a wrap at the LB, we need to guarantee the server sends a packet at least
once every 215ms≈ 33s.This would typically be the case for every real-world
Internet service.

11We note that flipping the MSB of the timestamp (i.e. the version bit)
every time a wrap is detected may create problems with PAWS [8]. PAWS
is a TCP mechanism that discards packets with TCP timestamps that are
not “fresh”, i.e., a timestamp is considered old if the difference between the
latest received timestamp and the newest received timestamp is smaller than
231. To avoid enabling this condition, it is sufficient to guarantee the server
keeps a TCP keep-alive timer of (215−maxRT T ) milliseconds. Assuming a
maxRT T of 5 seconds, we set the keep-alive to a conservative value of 25
seconds. With 100K connections, the bandwidth overhead is just 0.00002%
on a 100Gbps server interface.

12https://github.com/cheetahlb/linux

service providers according to the Alexa Top100 ranking [1].
We downloaded large files from each the top 15 ranked web
sites and extracted both the TCP timestamp T Sval options and
the client side timestamp. We then computed the difference
between the TCP last and first timestamps and divided this
amount by the different between the client measured last and
first (non-TCP) timestamps. The result is the granularity of
the server-side TCP timestamp unit. We report the results in
Table 2. All the service providers using TCP timestamps have
a granularity of at least 1ms. This means the timestamp wraps
every 216 ≈ 65 seconds when using CHEETAH to support
these services.
Table 2: Measured TCP timestamp granularity for different
websited. Some service providers do not use TCP timestamp
options.

Web site TS granularity Method
drive.google.com 1ms gdown
dropbox.com 1ms wget
twitch.tv 1ms watch video
weobo.com 1ms watch video
bilibili.com N.A. -
pan.baidu.com N.A. -
reddit.com 4ms watch video
qq.com 4ms watch video
instagram.com 4ms watch video
onedrive.live.com N.A. -
facebook.com 1ms watch video
twitter.com N.A. -
imdb.com 10ms watch video
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