Русский
Русский
English
Статистика
Реклама

Bme280

Мультисенсорный беспроводной микро DIY датчик

08.10.2020 12:16:26 | Автор: admin
DIY, как говорит Википедия, это уже давно субкультура. В этой статье хочу рассказать о своем diy проекте небольшого беспроводного мультисенсорного датчика, и это будет моим небольшом вкладом в данную субкультуру.

История этого проекта началась с корпуса, это звучит по-дурацки, но именно так этот проект и начался. Корпус был куплен на сайте Алиэкспресс, надо отметить что качество отливки пластика у этого корпуса отличное. После недолгой переписки с продавцом на почту был выслан чертеж и данный проект начался.



Сам чертеж был очень плохо образмерен и половину измерений для границ, вырезов и технологических отверстий будущей печатной платы пришлось делать с помощью штангенциркуля. Получив все внутренние размеры корпуса стало понятно что радио чип придется разводить непосредственно на печатной плате, так как высота от верха печатной платы до внутренней поверхности корпуса составляла 1.8 мм, а минимальная высота готового среднестатистического радио модуля обычно составляет 2 мм (без экрана).




Для датчика был выбран SoC nRF52 в корпусе QFN48. В этом корпусе в серии nRF52 у Nordic есть три варианта: nRF52810, nRF52811(новое), nRF52832. Параметры чипов: 64 MHz Cortex-M4, 2.4 GHz transceiver, 512/256 KB Flash, 64/32 KB RAM у nRF52832 и 192 KB Flash, 24 KB RAM у nRF52810, nRF52811, чипы мультипротокольные, поддерживают Bluetooth Low Energy, Bluetooth mesh, ESB, ANT, а nRF52811 помимо перечисленного еще и Zigbee и Thread, а так же Bluetooth Direction Finding.


Сам датчик решил делать мультисенсорным, что бы его можно было использовать под разные задачи. Разводку чипа по этой причине нужно было сделать как можно компактнее, с учетом того что минимальные размеры компонентов не должны быть меньше 0603, что бы устройство можно было бы спаять вручную. После того как чип был разведен на плате занялся подбором сенсоров. Основное на что ориентировался при подборе это размеры корпуса сенсора и возможность пайки сенсора в домашних условиях с минимальным набором оборудования (паяльник и фен).


Для датчика были выбраны следующие сенсоры: SHT20,SHt21, Si7020, Si7021, HTU21D (сенсор температуры и влажности), все эти сенсоры имеют один корпус и одинаковые выводы ножек, HDC2080(сенсор температуры и влажности) так же имеет аналогичный корпус, как и ранее перечисленные, но имеет дополнительный выход прерывания, более энергоэффективный, BME280(сенсор температуры, влажности и давления), LMT01(сенсор температуры), TMP117(высокоточный сенсор температуры), высокая энергоэффективность, выход прерывания, установка верхних и нижних пределов температур, LIS2DW12(акселерометр) высокая энергоэффективность, один из лучших в своем сегменте или LIS2DH12.



Так же в первой версии датчика в списке был геркон, но в последующих ревизиях был исключен, так как герконовому датчику размером 1.6 см со стеклянной колбой не хватало места, и пару таких датчиков я расколол устанавливая готовую плату в корпус, так же из-за квадратного вида корпуса и его небольшой высоты устройство не очень подходило на роль магнитного датчика открытия и закрытия.


Помимо сенсоров на датчике размешены 2 светодиода, один из них rgb размещенный на нижней стороне датчика. Две smd кнопки, одна подключенная к reset, вторая пользовательская для реализации каких то сценариев работы датчика. Корпус датчика состоит из трех частей, основной корпус, внутренняя вставка с отверстием удерживающим батарейку и крепящаяся к основному корпусу четырьмя винтами, и нижней крышкой, которая защелкивается в отверстия на внутренней вставке. Так же выведены 4 аналоговый пина, 2 цифровых и так же еще два пина которые могут быть NFC антеной или цифровыми пинами, порт SWD.

Rgb светодиод и кнопки размещены на pcb плате таким образом, что к ним есть открытый доступ при снятой нижней крышке через отверстия во внутренней вставке, которые предназначены для защелкивания задней крышки.


Устройство пережило две ревизии, так же ранее на месте сенсора TMP117 был установлен сенсор освещенности MAX44009, который позже был заменен сенсором температуры, оба сенсора имеют одинаковый корпус, но разные выводы на ножках, может быть и зря что был заменен, возможно стоит вернуть.





Сейчас у меня дома работают 4 таких устройства, два из них это датчики температуры и влажности с сенсорами Si7021(один на nRF52832, второй на nRF52811), один это датчик удара реализованный на акселерометре LIS2DW12(nRF52810) и датчик контроля температуры на сенсоре LMT01(nRF52810).

Беспроводной датчик работает на батарейке cr2032, потребление во сне составляет 1.8мкА для nRF52810, nRF52811 и 3.7мкА для nRF52832. Потребление в режиме передачи данных 8мА.



Описание используемого протокола, разработки софта для этого датчика под разные сценарии использования думаю выходит за рамки данной статьи.

Тест работы датчика с системой умного дома можно посмотреть в небольшом видеоролике ниже.


Проект данного датчика является открытым, все материалы по проекту вы можете получить на моем GitHub.

Спасибо за внимание, всем добра!



Подробнее..

Миниатюрный датчик качества воздуха на батарейке с e-ink экраном

21.06.2021 12:17:59 | Автор: admin
Приветствую всех читателей Habr! В своей сегодняшней статье, хочу рассказать вам о своем новом DIY беспроводном устройстве датчике качества воздуха. Помимо оценки качества воздуха, датчик может оценивать уровень освещенности в помещении, температуру, влажность и атмосферное давление, на основе данных атмосферного давления, устройство может предсказывать прогноз погоды. Это полностью открытый проект.



Внутреннее устройство


Датчик работает на микроконтроллерах nRF52, были разработаны 4 версии плат датчика под радиомодули nRF52 разных производителей. Одна основная и еще три расширенные версии (пояснения будут чуть ниже по тексту).

Используемые в проекте модели радиомодулей:

  • основной MINEW MS88SF3 (nRF52833, nRF52840)
  • дополнительные: MINEW MS50SFA1 (nRF52810, nRF52811), MINEW MS50SFA2 (nRF52832), EBYTE E73-2G4M08S1C (nRF52840) и EBYTE E73-2G4M08S1E (nRF52833)

Используемые в проекте сенсоры:

  • сенсор качества воздуха в помещении для измерения ЛОС SGP40
  • сенсор давления, температуры и влажности BME280
  • сенсор освещенности MAX44009

Позднее, из-за проблем с производством электронных компонентов и невероятном росте цен на многие компоненты, в проект были добавлены сенсоры BMP280 и SHTC3 которые по функционалу способны заменить сенсор BME280. По этой причине, были сделаны три дополнительные модификации плат, так же добавлена поддержка дополнительных радиомодулей, добавлена защита от переполюсовки, доработан дизайн плат.

Устройство может выводить данные на экране и передавать данные в системы Умного Дома, так же может работать в режиме без сети.

Для вывода информации использовался e-ink дисплей со сверхнизким потреблением и диагональю 2.13 дюймов компании WaveShare.



Характеристики дисплея:

  • Разрешение: 250x122
  • Диапазон рабочих температур: 0 50 C
  • Потребление в рабочем режиме: 3мА
  • Потребление в режиме глубокого сна: 1мкА
  • Минимальное время обновления экрана: 0.3 сек.

В ближайшее время в проект будет добавлена поддержка дисплея DES e-Ink 2.13 c рабочим температурным режимом -20C~60C (что такое DES).
..upd Пока статья писалась сделал драйвер, дисплей протестирован, в морозильнике работает :), из минусов разрешение 212х104, но зато морозов не боится, в общем рабочий вариант.


Основная версия PCB датчика:

Дополнительные версии:



Основным сенсором в данном проекте является сенсор качества воздуха в помещении SGP40. Можно сказать что это новинка на рынке от компании Sensorion c весьма неплохими характеристиками.


Сенсор измеряет общую концентрации летучих органических веществ (TVOC). В сравнении с предыдущим датчиком этой компании SGP30 потребление было значительно снижено, 48 мА при измерении у SGP30 и 2.6мА у SGP40. Правда предыдущий датчик мог отдавать уже готовые значения VOC и эквивалента СО2, в то время как новинка отдает сырые данные которые в дальнейшем надо обрабатывать на стороне МК при помощи поставляемой с датчиком библиотеки с алгоритмом расчета качества воздуха. Даташит на датчик SGP40.


Для работы в батарейном и низко потребляющем устройстве пришлось доработать библиотеку Adafruit_SGP40. Была добавлена работа с нагревателем сенсора, получение, сохранение, выгрузка текущих состояний алгоритма для быстрого старта датчика, например после замены батарейки, минуя режим обучения. Почему-то никто не озадачился этими моментами, найти готовую библиотеку поддерживающую полный функционал сенсора мне не удалось. Модифицированная библиотека находится на моем GitHub.

Схема устройства:



Передача датчиком данных с сенсоров в системы Умного Дома реализована на открытом проекте MySENSORS.




Функционал датчика


Устройство, при подаче питания, осуществляет попытку поиска сети, если сеть не найдена, то устройство переходит в основной режим работы без работы в сети (не шлет данные), но периодически делает короткие запросы на поиск сети(~раз в 2 часа). Интервал опроса сенсора SGP40 3 секунды, чтение остальных сенсоров, отправка данных, основное обновление экрана раз в 1 минуту. Обновление экрана и отправка данных(если сеть доступна) происходит при изменении данных уровня качества воздуха (TVOC) на 10 единиц, температуры на 0.5C, влажности на 5%, давления на 1 единицу, при изменении уровня освещенности на 10 люкс, при изменении прогноза по погоде. Интервал опроса батарейки задается пользователем в интервале от 1 часа до 24 часов, по умолчанию опрос один раз в 6 часов.
Так же есть дополнительная подпрограмма для обновления экрана и отправка данных при резком повышении уровня TVOC на 30 единиц, интервал проверки раз в 6 секунд.

При первом включении устройства, происходит цикл обучения алгоритма расчета качества воздуха, в моей реализации максимальное время обучения 12 часов. После обучения, датчик начинает сохранять в памяти МК текущие состояния алгоритма с четырехчасовым интервалом. При сбросе устройства, при возобновлении работы после выключения устройства, при замене батареек происходит проверка наличия записей состояний алгоритма в памяти, если они есть то эти данные выгружаются, и устройство минует период обучения. Для удаления сохраненных данных, необходимо нажать на кнопку меню на устройстве и выбрать соответствующий пункт меню. сброс устройства.

Доступный функционал кнопки меню:

  1. Инверсия экрана
  2. Отправка презентации
  3. Вход в режим конфигурации внешними командами по радио
  4. Поиск сети
  5. Сброс устройства

Так же, помимо кнопки меню, датчик может настраиваться внешними командами из интерфейса УД. Для этого необходимо активировать нужный пункт меню конфигурация датчика нажатием кнопки меню. После активации режима конфигурации, датчик перейдет в режим прослушивания на 20 секунд. В этот интервал необходимо отправить команду. Внешними командами можно настроить интервал проверки батарейки, изменить вывод информации на экран в инверсии, выбор режима работы: LP (чтение сенсора SGP40 раз в 3 секунды) или ULP (чтение сенсора SGP40 раз в 5 секунд).

Датчик умеет анализировать данные атмосферного давления и рассчитывать по ним прогноз погоды, выводить на экран данные о прогнозе погоды и отправлять эти значения в УД. Описание алгоритма расчета прогноза погоды (NXP Application Note 3914 | John B. Young)

На экране рядом с каждым типом данных выводится индикация направления изменения значений.



Для компиляции нужной версии ПО необходимо сконфигурировать файл aConfig.h.

//#define MY_DEBUG#define LANG_RU // If this is not used the English localization will be displayed.#ifndef LANG_RU#define LANG_EN#endif#define SN "eON Air Quality Sensor"#define SV "0.99"#define MY_RADIO_NRF5_ESB#define MY_NRF5_ESB_PA_LEVEL (0x8UL)//#define MY_PASSIVE_NODE//#define MY_NODE_ID 151//#define MY_NRF5_ESB_MODE (NRF5_1MBPS)#define MY_NRF5_ESB_MODE (NRF5_250KBPS)#define ESPECIALLY#define SEND_RESET_REASON#define MY_RESET_REASON_TEXT

Потребление датчика в режиме сна составляет в среднем 33мкА (смотрите даташит на SGP40), в режиме считывания сенсоров и обновления экрана 4мА(среднее), в режиме передачи данных 8мА(среднее), время передачи одного сообщения 10мc (идеальные условия).
Датчик работает от батарейки CR2477 (950мА), среднее расчетное время работы устройства 1 год(зависит от конфигурации прошивки, установленных сенсорах на устройстве, больше сенсоров больше данных нужно будет отправлять, а передача по воздуху это основной потребитель), данных о реальном сроке работы пока нет, устройство пока работает 2 месяца.



Модели разработанного корпуса датчика я печатал на FDM 3D принтере, что бы добиться более или менее приличного вида, корпус после печати шлифовался и полировался. На задней крышке корпуса можно установить магниты.



GitHub проекта github.com/smartboxchannel/

В файле readme находится инструкция по установке и настройке среды для редактирования и компиляции ПО для датчика.

OPEN SOURCE HARDWARE CERTIFICATION
OSHWA UID: RU000004


В завершении, уже как обычно, сделаю небольшой фото анонс проектов с которыми в скором времени поделюсь и о которых расскажу (Датчики влажности почвы Zigbee, Уличный датчик температуры и влажности Zigbee Long Range, Датчик качества воздуха bme680 c e-ink3.7).

Новые проекты на стадии тестирования












Если вам интересно все, что связано с DIY, вы являетесь DIY разработчиком или хотите только начать, вы заинтересованы в использовании DIY девайсов, а так же хотите узнавать первыми о моих проектах, то приглашаю всех в телеграм чат DIYDEV.

Если вы как и я, хотите понять что такое Zigbee, попытаться сделать свои первые DIY Zigbee устройства, то приглашаю вас в чат для разработчиков zigbee девайсов/прошивок ZIGDEV

Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм-чат MySensors

А тех кто смотрит в будущее IOT приглашаю в телеграм-чат Open Thread (Matter, Project CHIP). (что такое Thread?, что такое Matter?)

Спасибо за внимание, всем добра!


Подробнее..

Беспроводной DIY датчик тепрературы и влажности с e-paper дисплеем

26.09.2020 22:13:23 | Автор: admin
Всем привет! Сегодня хочу рассказать читателям о своем DIY проекте датчика температуры и влажности с e-ink дисплеем. Это будет некая обзорная статья об этапах создания устройства, будет много картинок. Идея этого проекта родилась около двух лет назад, примерно тогда я увлекся беспроводными автономными устройствами. Целью проекта было создание небольшого девайса для знакомства и изучения дисплеев на электронных чернилах. Было решено на плату добавить датчик температуры, что бы можно было выводить какие то полезные данные на экран, ну и передавать данные далее в систему умного дома.




Первая версия устройства была сделана на микроконтроллере atmega328 и радио-модуле nRF24L01. Очень быстро стало понятно что для работы с e-ink дисплеем не хватает памяти, а энергопотребление устройства довольно большое.


Тест первой версии устройства

Используется датчик температуры и влажности SHT20. Питание от трех батареек CR2430 (6V) через step down converter.

Следующая версия устройства, была разработана на nRF52832. Для этой версии был выбран радио-модуль от компании Holyiot YJ-16048. Характеристики радио-чипа: ARM Cortex-M4F с ОЗУ 512кб 64кб. Встроенный приемопередатчик 2,4 ГГц, поддержка BLE, ANT, ESB (совместимо с nRF24L01). Подробнее об этой версии рассказано тут.

В этом варианте, проблем с хранением в памяти микроконтроллера большого количества данных не было. Наличие в nRF52 режима DC-DC, для работы радио в режиме с оптимизацией питания (экономия до 40%), позволило сократить максимальное пиковое потребление до 7-8мА. Вторая версия датчика, как и первая планировалась как модуль для разработки, поэтому вопрос выбора корпуса не ставился.


Тест работы прототипа второй версии.

Так же используется датчик температуры и влажности SHT20. Питание от двух батареек CR2450 через step down конвертер TPS62745DSSR с малым энергопотреблением.

Вторая версия датчика показала хорошие результаты: низкое потребление, длительное время работы на одном комплекте батареек, возможность хранения и вывода тяжелой графики.

Естественно проект захотелось довести до состояния законченного устройства. Поэтому первым этапом, стал корпус. Для возможности установки в корпус был переработан дизайн платы. Модель корпуса была разработана в программе SolidWorks. Первые корпуса я печатал на бытовом SLA принтере Anycubic Foton. Плюсами была высокая точность печати и простота пост-обработки корпуса (полировка). Из минусов (на тот момент) печати корпуса полимерной смолой была хрупкость. Не то чтобы напечатанная модель разваливалась в руках, но если собранное устройство (с батарейками) уронить, то скорее всего корпус треснет (что и случилось однажды).

Так же из за этого свойства материала, были проблемы с закручиванием винтов для соединения двух частей корпуса. После нескольких десятков вкручиваний выкручиваний винтов в отверстиях под резьбу выработался материал стенок и винты стали прокручиваться. Выше в скобках я написал на тот момент, так что сейчас дела обстоят гораздо лучше. На рынке стали появляться смолы, по вполне разумной цене и с отличными прочностными характеристиками.





Тест работы прототипа третьей версии

В этой версии был расширен список сенсоров. Помимо SHT20, ПО может работать и с датчиками si7021, HTU21D, а так же с BME280 (отдельная версия платы).

Начиная с этой версии, устройство может работать от одной батарейки. Работа через step down конвертер или напрямую от батареек, устанавливается перемычками. Так же, с помощью перемычек, устанавливается последовательность подключения двух батареек: последовательное или параллельное. Плюс к этому, расширен список радио-модулей и разработаны версии плат под радио-модули EBYTE и MINEW.

Для работы в более экономичном режиме, была добавлена поддержка чипов nRF52810 и nRF52811, что позволило сократить потребление в спящем режиме до 1,7 2мкА.

Чтобы придать корпусу больше прочности, было решено разработать модель корпуса под печать на FDM принтере. Сама модель была упрощена, а из дизайна удалены грани.

Ввиду того, что прочность материалов для FDM печати выше, была уменьшена толщина стенок, а все зазоры между корпусом и платой были минимизированы.

В настоящий момент, разработаны 3 варианта корпуса, под разные батарейки. От самого тонкого, для батареек СК2430 до максимально прочного, под две батарейки CR2477. Все варианты моделей корпусов доступны на GitHub этого проекта.




Так же было переработано ПО, была добавлена функция конфигурирования устройства через систему Умного дома, что избавило от необходимости перепрошивать устройство.

В настоящий момент, можно настраивать:

  • интервалы опроса сенсора температуры и влажности
  • интервалы чтения уровня заряда батарейки
  • привязка к другим устройствам для передачи данных
  • включение режима автономной работы без интеграции в умный дом.
  • Так же, в интерфейс была добавлена поддержка нескольких языков и возможность инверсии цвета экрана .










Тест работы обновленной третьей версии.

В видеоролике демонстрируется работа устройства с радиосетью MySensors и конфигурирование устройства через отправку параметров из системы умного дома.

Данный проект и сейчас продолжает активно развиваться. Уже есть прототип четвертой версии, точнее наверное это уже ответвление, так как четвертая версия существенно переработана по железу. Также, на основе этого проекта родилось еще несколько аналогичных проектов под другие размеры экранов.

Информацию по данному проекту можно найти на GitHub. Проект открытый, на гитхаб доступы файлы для изготовления плат, схемы, модели корпусов и программный код.






По мере того, как мои проекты будут готовы, я обязательно буду о них рассказывать.

Если вам интересно все что связано с DIY, вы являетесть DIY разработчиком или хотите только начать, вам интересно использование DIY девайсов приглашаю всех заинтересованных в телеграм чат DIYDEV

Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм-чат MySensors

А тем кто ищет достаточно взрослые решения для домашней автоматизации приглашаю в телеграм-чат Open Thread. (что такое Thread?)

Всем, как всегда добра!
Подробнее..

Беспроводной DIY датчик температуры и влажности с e-paper дисплеем

27.09.2020 00:06:12 | Автор: admin
Всем привет! Сегодня хочу рассказать читателям о своем DIY проекте датчика температуры и влажности с e-ink дисплеем. Это будет некая обзорная статья об этапах создания устройства, будет много картинок. Идея этого проекта родилась около двух лет назад, примерно тогда я увлекся беспроводными автономными устройствами. Целью проекта было создание небольшого девайса для знакомства и изучения дисплеев на электронных чернилах. Было решено на плату добавить датчик температуры, что бы можно было выводить какие то полезные данные на экран, ну и передавать данные далее в систему умного дома.




Первая версия устройства была сделана на микроконтроллере atmega328 и радио-модуле nRF24L01. Очень быстро стало понятно что для работы с e-ink дисплеем не хватает памяти, а энергопотребление устройства довольно большое.


Тест первой версии устройства

Используется датчик температуры и влажности SHT20. Питание от трех батареек CR2430 (6V) через step down converter.

Следующая версия устройства, была разработана на nRF52832. Для этой версии был выбран радио-модуль от компании Holyiot YJ-16048. Характеристики радио-чипа: ARM Cortex-M4F с ОЗУ 512кб 64кб. Встроенный приемопередатчик 2,4 ГГц, поддержка BLE, ANT, ESB (совместимо с nRF24L01). Подробнее об этой версии рассказано тут.

В этом варианте, проблем с хранением в памяти микроконтроллера большого количества данных не было. Наличие в nRF52 режима DC-DC, для работы радио в режиме с оптимизацией питания (экономия до 40%), позволило сократить максимальное пиковое потребление до 7-8мА. Вторая версия датчика, как и первая планировалась как модуль для разработки, поэтому вопрос выбора корпуса не ставился.


Тест работы прототипа второй версии.

Так же используется датчик температуры и влажности SHT20. Питание от двух батареек CR2450 через step down конвертер TPS62745DSSR с малым энергопотреблением.

Вторая версия датчика показала хорошие результаты: низкое потребление, длительное время работы на одном комплекте батареек, возможность хранения и вывода тяжелой графики.

Естественно проект захотелось довести до состояния законченного устройства. Поэтому первым этапом, стал корпус. Для возможности установки в корпус был переработан дизайн платы. Модель корпуса была разработана в программе SolidWorks. Первые корпуса я печатал на бытовом SLA принтере Anycubic Foton. Плюсами была высокая точность печати и простота пост-обработки корпуса (полировка). Из минусов (на тот момент) печати корпуса полимерной смолой была хрупкость. Не то чтобы напечатанная модель разваливалась в руках, но если собранное устройство (с батарейками) уронить, то скорее всего корпус треснет (что и случилось однажды).

Так же из за этого свойства материала, были проблемы с закручиванием винтов для соединения двух частей корпуса. После нескольких десятков вкручиваний выкручиваний винтов в отверстиях под резьбу выработался материал стенок и винты стали прокручиваться. Выше в скобках я написал на тот момент, так что сейчас дела обстоят гораздо лучше. На рынке стали появляться смолы, по вполне разумной цене и с отличными прочностными характеристиками.





Тест работы прототипа третьей версии

В этой версии был расширен список сенсоров. Помимо SHT20, ПО может работать и с датчиками si7021, HTU21D, а так же с BME280 (отдельная версия платы).

Начиная с этой версии, устройство может работать от одной батарейки. Работа через step down конвертер или напрямую от батареек, устанавливается перемычками. Так же, с помощью перемычек, устанавливается последовательность подключения двух батареек: последовательное или параллельное. Плюс к этому, расширен список радио-модулей и разработаны версии плат под радио-модули EBYTE и MINEW.

Для работы в более экономичном режиме, была добавлена поддержка чипов nRF52810 и nRF52811, что позволило сократить потребление в спящем режиме до 1,7 2мкА.

Чтобы придать корпусу больше прочности, было решено разработать модель корпуса под печать на FDM принтере. Сама модель была упрощена, а из дизайна удалены грани.

Ввиду того, что прочность материалов для FDM печати выше, была уменьшена толщина стенок, а все зазоры между корпусом и платой были минимизированы.

В настоящий момент, разработаны 3 варианта корпуса, под разные батарейки. От самого тонкого, для батареек СК2430 до максимально прочного, под две батарейки CR2477. Все варианты моделей корпусов доступны на GitHub этого проекта.




Так же было переработано ПО, была добавлена функция конфигурирования устройства через систему Умного дома, что избавило от необходимости перепрошивать устройство.

В настоящий момент, можно настраивать:

  • интервалы опроса сенсора температуры и влажности
  • интервалы чтения уровня заряда батарейки
  • привязка к другим устройствам для передачи данных
  • включение режима автономной работы без интеграции в умный дом.
  • Так же, в интерфейс была добавлена поддержка нескольких языков и возможность инверсии цвета экрана .










Тест работы обновленной третьей версии.

В видеоролике демонстрируется работа устройства с радиосетью MySensors и конфигурирование устройства через отправку параметров из системы умного дома.

Данный проект и сейчас продолжает активно развиваться. Уже есть прототип четвертой версии, точнее наверное это уже ответвление, так как четвертая версия существенно переработана по железу. Также, на основе этого проекта родилось еще несколько аналогичных проектов под другие размеры экранов.

Информацию по данному проекту можно найти на GitHub. Проект открытый, на гитхаб доступы файлы для изготовления плат, схемы, модели корпусов и программный код.






По мере того, как мои проекты будут готовы, я обязательно буду о них рассказывать.

Если вам интересно все что связано с DIY, вы являетесть DIY разработчиком или хотите только начать, вам интересно использование DIY девайсов приглашаю всех заинтересованных в телеграм чат DIYDEV

Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors телеграм-чат MySensors

А тем кто ищет достаточно взрослые решения для домашней автоматизации приглашаю в телеграм-чат Open Thread. (что такое Thread?)

Всем, как всегда добра!
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru