Два года назад в космосе завершилась работа российского спутника Спектр-Р основы астрофизического проекта РадиоАстрон. Сейчас ему на смену пришел космический телескоп Спектр-РГ, а в разработке находятся еще две обсерватории Спектр-УФ и Миллиметрон. Давайте посмотрим зачем Роскосмос и Российская академия наук создают эти телескопы, и как движется их реализация.
Начнем издалека, чтобы разобраться почему астрономам недостаточно обычных телескопов на Земле.
Что такие могоспектральная астрономия?
Как и в древности, сегодня для человека главный метод получения знаний об окружающей Вселенной это наблюдения колебаний электромагнитного поля или, электромагнитного излучения. Сначала человек просто изучал окружающее пространство уникальным природным средством глазами. Но наши глаза видят очень узкий диапазон длинн волн электромагнитных колебаний, в том диапазоне, в котором наше Солнце излучает ярче всего, а атмосфера Земли лучше всего пропускает видимом.
Наука открыла людям возможность смотреть вокруг себя и в других диапазонах. В зависимости от длины волны электромагнитные колебания мы называем по разному. Длинные волны от километров до сантиметров это радио. Например FM радиоволна имеет длину около 3 метров, сотовая связь 16 см, микроволновки 12 см, а экспериментальная сеть 5G в Сколково 6 см.
Если длина волны укорачивается меньше сантиметра, и составляет миллиметры или их доли это уже миллиметровый диапазон излучения. Это такое переходное состояние между радио и светом. Если укорачивать волны дальше, то получим инфракрасное тепловое излучение, потом видимый свет, потом ультрафиолет, рентген и самое жесткое и энергичное излучение гамма. Всё это и называется спектр электромагнитного излучения. Наверно у всех в школьных кабинетах физики висели такие графики:
Из них хорошо видно насколько малую часть реальной информации об этом мире воспринимают наши глаза всего семь цветов, которые мы видим как радугу. Всё остальное и без науки во тьме.
Электромагнитные волны создаются в процессах связанных с выделением и передачей энергии, а из далекого космоса к Земле долетает только то, что было выброшено какими-то масштабными событиями: взрывами сверхновых, аккреционными дисками черных дыр, воздействием космической радиации на газ и пыль И каждое событие соответствует своей спектральной подписи. Излучение звезды зависит от её температуры и состава, например, Солнце имеет пик яркости в диапазоне видимого света, а в гамма-диапазоне почти черное. Молодые звезды синие, старые красные. Далёкие квазары светят практически во всём спектре.
То, что мы воспринимаем глазами как цвета, это просто электромагнитные колебания разной длины волны, например длина волны красного света 650 нанометров, а синего 400 нанометров. По такому же принципу ученые создают цветные картинки из снимков в тех диапазонах излучения, в котором наши глаза не видят вообще, например в инфракрасном или ультрафиолете, или даже рентгене.
Центр галактики Млечный путь в различных диапазонах рентгеновского света и радиоизлучения
Излучение, которое достигает Земли, далеко не всегда прямо совпадает с тем, которое покинуло источник. Разница зависит от скорости источника относительно приемника, расстояния и свойств среды между ними. И только учет всего комплекса факторов позволяет извлекать огромный объем данных о близком и далёком космосе: изучать строение, движение и эволюцию звезд, находить экзопланеты и черные дыры, наблюдать процессы в ядрах галактик, измерять расстояние в галактических и галактических масштабах, изучать свойства межгалактического и межзвездного пространства, заглядывать в прошлое галактик на миллиарды лет В конечном счёте, лучше понимать Вселенную, в которой мы живём. Поэтому нам и нужны многоспектральные глаза. (Крайне рекомендую книгу на эту тему Многоканальная астрономия).
Зачем запускать телескопы в космос?
В межзвездном пространстве электромагнитные волны переживают воздействия от гравитационных волн, межзвездной плазмы, газа и пыли, но самое серьезное препятствие на пути к Земле это наша атмосфера. Её плотность сопоставима с десятью метрами воды, поэтому нам не страшна космическая радиация, но астрономам интересна именно она. Даже если в небольшой телескоп взглянуть на звёзды с Земли, то можно увидеть рассеивающий эффект воздуха, а для некоторых электромагнитных волн (жесткий УФ, рентген, гамма) воздух вообще непрозрачен.
Для снижения воздействия атмосферы, астрономы стараются забраться как можно выше в горы, чтобы сократить слой воздуха. Кроме того, приходится скрываться от цивилизации, которая поднимает пыль, светит в небо прожекторами, шумит в радиодиапазоне, а сейчас ещё заваливает небо сотнями рукотворных звёзд спутниками.
Пролёт спутников Starlink в поле зрения одного из телескопов обсерватории CTIO
Поэтому только космонавтика дает наилучшую среду для изучения свойств обозримой Вселенной космоса во всех доступных диапазонах.
Спектры
Ученые Советского Союза в 80-е годы прошлого века запланировали масштабную астрофизическую программу Спектр, которая предполагала запуск целой серии тяжелых космических телескопов. Наблюдение планировалось в радио, миллиметровом, инфракрасном, ультрафиолетовом, рентген и гамма диапазонах. Соответственно телескопы получили литеры: Р, М, ИК, УФ, РГ. К сожалению, в приоритетах советской космонавтики 80-х гг была гонка с Америкой: станции Мир, Энергия-Буран, безумное количество спутников-шпионов СССР запускал по две ракеты в неделю, но не для науки. Лишь пара телескопов была запущена в 80-х: Астрон, и Гранат, но Спектры оставались только в мечтах наших астрономов.
Потом Советский Союз распался, пришли лихие девяностые, в которые каждый лихачил как мог. Например специалисты Астрофизического центра Физического института имени Лебедева собрали прототип телескопа КРТ-10 в Пущино, и приступили к наземным испытаниям.
Технически это был РТ-10, поскольку К значит космический, а наземный прототип в космос не летел. Но работа была вознаграждена. Астрофизикам, физикам и инженерам удалось-таки создать и запустить в 2011 году первый из Спектров Р, т.е. радио.
Его запуск открыл международную программу исследований методом радиоинтерферометрии со сверхдлинной базой РадиоАстрон. Главное преимущества такого метода, в возможности наблюдать с беспрецедентным угловым разрешением наиболее яркие в видимой Вселенной источники радиоизлучения. Семь с половиной лет исследований дали свои результаты в исследованиях квазаров, пульсаров, межзвездной и межгалактической среды.
На мой взгляд, главная уникальность РадиоАстрона была в том, что он в принципе полетел несмотря на обстоятельства, в которых создавался в 90-е и 2000-е. Наиболее важную роль в этом достижении сыграл Николай Кардашев, который в 50-х годах был соавтором работы теоретически обосновавшей создание гигантских радиотелескопов-интерферометров, а в последние десятилетия своей жизни весь свой авторитет вложил в запуск РадиоАстрона. Разработанная с участием Кардашева технология РСДБ значительно расширила возможности радиотелескопов за счет их объединения в решетки-интерферометры. Теперь много антенн могли работать как одна большая.
Причем их можно объединять не только напрямую, но и удаленно, т.е. создавать радиотелескопы-интерферометры диаметром 12 тысяч километров. Это не опечатка, всё правильно: радиотелескоп размером 12 тыс км. РСДБ позволяет объединять антенны размещенные по всей Земле, а значит пределом выступает только её диаметр.
Космический РадиоАстрон позволил увеличить размер радиоинтерферометра до 340 тыс км, и Кардашев стал свидетелем его успешной работы. Позже, та же технология, примененная уже европейскими и американскими учеными дала фотографию тени черной дыры.
Другие Спектры тоже двигались вперед, например 1,7-метровое зеркало для ультрафиолетового телескопа уже изготовлено на Лыткаринском заводе оптического стекла, а его гигантская труба, размером с автобус, не первый год ждет своего часа на НПО им. С.А. Лавочкина. Правда были проблемы с финансированием и санкционной электроникой, но, вроде бы, их смогли решить.
Рентгеновский Спектр-РГ, после многочисленных задержек и проблем полетел-таки в 2019 г. и сейчас радует мировую науку. Это тоже телескоп с тяжелой судьбой, которая требует отдельного рассказа. Сложности в его создании привели в выпадению Г из его научной программы, т.е. он наблюдает только в рентгене, а для гамма-диапазона не предназначен, но название решили не менять, чтобы не получился второй Спектр-Р.
В отличие от РадиоАстрона рентгеновский телескоп наблюдает не отдельные источники излучения, а ведет картографирование всего видимого небосвода.
Спектр-РГ это тоже международный проект, но если у РадиоАстрона иностранное участие заключалось в наземной поддержке, то в рентгене наблюдает два телескопа: российский и германский. За каждые полгода работы Спектра-РГ составляется полная карта небосвода, и чем дольше ведутся наблюдения, тем большего проникновения добьются телескопы и больше источников рентгеновского излучения будет картографировано.
Про Спектр-РГ мы обязательно поговорим отдельно. Нам же осталось упомянуть о самом сложном, и самом долгом Спектре Миллиметроне. Его разработкой сегодня заняты создатели РадиАстрона, которым помогает накопленный в прежнем проекте опыт.
Рендер Миллиметрона на фоне снимка инфракрасного телескопа Herschel. Снимки Миллиметрона должны выглядеть примерно так.
Миллиметровый диапазон не менее важен для изучения космоса, в нем светятся облака межзвездной пыли, и другие холодные объекты. Удобство миллиметрового диапазона ещё и в том, что в телескоп может наблюдать как самостоятельно, так и применяя технологию РСДБ. Пока наблюдения в миллиметровом диапазоне ведутся с Земли из высокогорных районов, например в Чилийских Андах расположен массив миллиметровых телескопов ALMA.
Если запустить Миллиметрон, то совместно с ALMA он сможет на порядки повысить детализацию наблюдений. С ним или отдельно можно намного точнее рассмотреть окрестности черных дыр и определить ли нет ли среди них кротовьих нор; измерить спектральные искажения реликтового излучения и заглянуть в ранее недоступное наблюдению прошлое Вселенной; определить содержание сложных органических молекул в соседних звездных системах, и даже попытаться найти сферы Дайсона, т.е. более развитые и древние инопланетные цивилизации Каждое из этих направлений отдельный прорыв в знаниях о свойствах Вселенной, и поучаствовать в исследованиях уже сейчас готовы европейцы, корейцы и китайцы, несмотря на довольно ранний этап готовности проекта. О том, как сегодня создается Миллиметрон будет наш следующий рассказ.