Русский
Русский
English
Статистика
Реклама

Космический мусор

Лазер vs космический мусор оригинальные проекты очистки околоземного космического пространства

02.04.2021 20:22:21 | Автор: admin

Сегодня пятница, а значит, можно побеседовать на вечнозеленые темы. Одна из них космический мусор, которого становится все больше.

Только спутников на орбите сейчас около 5 000. Из них 2 000 функционирующие системы, а 3 000 уже вышедшие из строя или просто оставленные создателями. Плюс ко всему, есть разного рода обломки, ступени ракет и множество прочих элементов. И их не просто много, а ОЧЕНЬ много. Чуть подробнее об этом и возможных способах избавления орбиты Земли от хлама под катом.

Еще немного неприятных подробностей


Специалисты НАСА подсчитали, что на орбите сейчас свыше сотни миллионов разных объектов искусственного происхождения. Так, частиц размером меньше 1 см свыше 100 млн, размером около 10 см 21 тыс., объектов, сопоставимых с размером жемчужины (ну да, они могут быть разными, но усредним), 500 000 тыс.

А теперь давайте вспомним про спутники Starlink, One Web и все прочие аппараты связи, которые либо уже выведены на орбиту, либо их собираются вывести. Проблема становится не просто актуальной, а жизненно важной. Если, конечно, человечество планирует все же начать путешествовать к другим планетам на регулярной основе, а не тонуть в бульоне из мусора.

Кстати, большинство частиц и объектов движутся по предсказуемым траекториям. Но иногда случаются неожиданности. В 2007 году Китай решил поиграть мускулами и взорвал ракетой собственный метеорологический спутник Fengyun-1C. Все бы ничего твоя собственность, взрываешь и взрывай себе. Но проблема в том, что при взрыве спутник развалился на целую тучу разного обломков, крупных и мелких. Они начали сталкиваться друг с другом и другими объектами, спровоцировав цепную реакцию образования космического мусора.

Если вспомнить еще об Iridium-33 и Космосе-2251, то проблема становится еще более серьезной.

Представьте себе, что все морские корабли, потерянные за прошедшие века, дрейфовали бы на поверхности океанов. Это именно то, что сейчас происходит на орбите, и эта ситуация больше не может продолжаться. Поэтому все страны-члены ЕКА активно поддержали эту миссию, заявил глава ЕКА Йохан-Дитрих Вернер.

В итоге ситуация может стать настолько серьезной, что запуск ракет и спутников станет чем-то вроде игры в лотерею. Запуск ракеты и так очень сложная задача, а из-за космического мусора ситуация еще больше осложняется.

Уже сейчас современные космические аппараты используют для защиты от столкновений с мелкими объектами так называемые щиты Уиппла, состоящие из нескольких тонких слоев, расположенных на расстоянии друг от друга. При ударе самый внешний слой разбивает снаряд, тем самым распределяя его кинетическую энергию на большую площадь при прохождении через него. Чтобы избежать столкновения с более крупными объектами, космическим кораблям иногда приходится выполнять маневры уклонения.

МКС выполняет маневры уклонения в том случае, если вероятность столкновения с космическим мусором превышает 1/10,000. Это происходит в среднем раз в год. Исключение 2012 год, тогда пришлось выполнить сразу четыре маневра.

В общем, выход только один: нужно избавляться от всего этого наследия.

Всех посчитают. Как ученые следят за мусором?


Для того, чтобы хоть как-то обезопаситься от космических обломков, разработчики космических программ должны знать, где какой объект находится в конкретный момент времени. US Space Surveillance Network (SSN) наиболее полный каталог космического мусора. В нем сейчас содержится информация о местонахождении примерно 22 000 элементах космического мусора с размером от 10 см и выше.

На определенной высоте крупные объекты могут быть обнаружены наземными радиолокаторами и оптическими телескопами. Последние измеряют свет, отраженный обломками, вычисляя затем расстояние при помощи лазерного дальномера. Метод этот основан на измерении времени прохождения лазерного импульса от Земли и момента его отражения объектом. Но так можно поступить, если объекты крупные.

Мелкий космический мусор значительно сложнее обнаружить и затем отслеживать. Правда, методы обнаружения постепенно совершенствуются. Еще недавно использовать метод можно было лишь в сумерках, когда станция лазерной локации на Земле находится в темноте, а вот обломки еще освещены Солнцем. Благодаря технологическому прогрессу, включая методы получения изображений, австрийским ученым недавно удалось использовать лазер для определения местоположения мусора и днем. Соответственно, временное окно расширилось вдвое. Лазерные системы весьма эффективный метод отслеживания.

Насколько опасен космический мусор? Это показывает установка Long Duration Exposure Facility (LDEF) от НАСА, которая несколько лет находилась в космосе. С ее помощью агентство проводило эксперименты по изучению долгосрочного воздействия космической среды на разные материалы, электронику и биологические образцы.


Вот так выглядит панель с LDEF. Пятнышки представляют собой отверстия и вмятины, проделанные космическим мусором. Даже мелкие частицы опасны, не говоря уже о крупных обломках.

Околоземное пространство очищается само по себе рано или поздно любой космический мусор падает на Землю. Но для этого требуется очень много времени. Так, объекты, которые находятся на орбитах высотой около 800 км, будут снижаться несколько десятков лет. Объекты с более высоких орбит и вовсе будут находиться там сто лет и больше.

Человечество мусорит быстрее, чем Земля, вернее, ее орбита, очищается. И сам по себе этот процесс не остановится, если, конечно, космическая эра внезапно не закончится. Процесс образования и размножения космического мусора получил название синдром Кесслера.


Ну окей, а как это все убрать?


Все убрать вряд ли получится, но хотя бы частично очистить орбиту можно. Сейчас разрабатывается целый ряд проектов, реалистичность которых варьируется от скоро введут в строй до это фантастика.


В 2025 году ЕКА запустит зонд ClearSpace-1. Он предназначен для очистки орбиты от крупных объектов. Первой целью зонда станет отработанная ступень ракеты Vega. Это хороший объект для старта, поскольку он крупный и движется по предсказуемой траектории. Ступень находится на высоте 660-800 километров и весит около 100 килограммов. Еще один положительный момент форма ступени. Она очень удобна для захвата зондом, который имеет четыре манипулятора. ClearSpace-1 выведут на высоту примерно в 500 километров. После захвата зонд включит двигатели и опустится в нижние слои атмосферы.


RemoveDEBRIS еще один охотник за крупной добычей на орбите. Разработчики потратили 6 лет на испытания в специальных вышках и в термовакуумных камерах. Помимо сети, спутник RemoveDEBRIS оснащен гарпуном, который может пробивать корпус космических объектов. Несколько лет назад прототип испытали в космосе, доставив спутник на МКС.


Самые интересные проекты те, где предлагается задействовать мощный лазер. Причем установки могут быть такими же, как те, что уже используются для обнаружения и отслеживания мусора на орбите. Нужно просто увеличить мощность излучателя и вместо оценки отражения испарять обломки. С крупными спутниками такой номер не пройдет, а вот мелочь от 1 до 10 см вполне можно уничтожать. Лазер может быть наземным или же космическим в последнем случае на орбиту придется запускать отдельный спутник.

Кроме спутников, принимаются и другие меры например, разрабатываются методы снижения количества посторонних объектов в космосе при выводе ракеты. В США борьбу с космическим мусором сделали даже вопросом национальной важности. Правительство разработало документ, который получил название Space Policy Directive-3. В нем указывается необходимость модернизировать текущую систему мониторинга космического мусора, а также разрабатывать методы борьбы с ним.

Подробнее..

Ложная вспышка в самой далекой галактике GN-z11 оказалась отблеском разгонного блока. О проблеме космического мусора

14.06.2021 18:13:31 | Автор: admin

Ранняя Вселенная, вероятно, является одной из самых захватывающих космологических эпох, во время которой сформировался тот космос, который существует и поныне. Считается, что эта эпоха длилась около миллиарда лет, и за это время от Большого взрыва Вселенная успела выстроить нить галактик, пережить рождение и смерть первых звезд, а также засвидетельствовать появление первых крупных галактик и черных дыр. Историю той Вселенной мы знаем не по книгам, а наблюдаем воочию благодаря ограниченной скорости света вдалеке от нас расположен молодой космос, свет которого идет сквозь эпохи и расстояния.

Любой вопрос или замечания Вы можете написать в комментариях. Также я открыт для личного диалога втелеграмеили беседы внашем чате. А еще у меня естьтелеграм-канало космологии.

GN-z11 на фотографии обзора Great Observatories Origins Deep Survey (GOODS).Credit: NASA, ESA, P. Oesch (Yale University), G. Brammer (STScI), P. van Dokkum (Yale University), and G. Illingworth (University of California, Santa Cruz).GN-z11 на фотографии обзора Great Observatories Origins Deep Survey (GOODS).Credit: NASA, ESA, P. Oesch (Yale University), G. Brammer (STScI), P. van Dokkum (Yale University), and G. Illingworth (University of California, Santa Cruz).

Пионерия молодой Вселенной

1980-е годы ознаменованы началом ознакомления человечества с летописью Вселенной. Теория Большого взрыва (БВ) на тот момент не позволяла узнать течение эволюции Вселенной, момент появления в ней первых звезд и галактик. Это стало возможным лишь после запуска первых космических телескопов, в особенности телескопа им. Хаббла. С его помощью мы сумели наблюдать объекты на больших красных смещениях, соответствующих ранним эпохам Вселенной. И писали историю тоже мы, наблюдая наскальные рисунки древних цивилизаций: реликтового излучения, древних звезд и масштабных структур. Эмпирическим методом находились все более молодые галактики не менее молодой Вселенной, обрисовывалась картина формирования мира в первые миллиарды лет его существования. Появились первые предположения по распределению эпох во Вселенной, формированию физических законов в первые моменты ее жизни, первичному нуклеосинтезу основных элементов, отделению вещества от излучения и образованию первых звезд и галактик. Все это стало возможно благодаря обнаружению объектов на z ~ 7-8, что соответствует 600-700 млн после БВ. Уже к тому моменту сформировались скопления галактик, а сами галактики имели высокий уровень звездного населения.

Иллюстрация, показывающая историю Вселенной сверху вниз: 1) Большой взрыв и ионизация (0-300 тыс лет); 2) Темные века (300-500 000 тыс лет); 3) Конец Темных веков и эпоха реионизации (500-1000 млн лет); 4) Существование Вселенной, схожей с современной (1 млрд лет - настоящее время).Credit: Djorgovski et al. (Caltech).Иллюстрация, показывающая историю Вселенной сверху вниз: 1) Большой взрыв и ионизация (0-300 тыс лет); 2) Темные века (300-500 000 тыс лет); 3) Конец Темных веков и эпоха реионизации (500-1000 млн лет); 4) Существование Вселенной, схожей с современной (1 млрд лет - настоящее время).Credit: Djorgovski et al. (Caltech).

GN-z11

Человеку всегда мало. Мы хотели проникнуть еще глубже и узнать истоки. Для этого нам и пригодился космический телескоп имени Хаббла, главной фишкой которого стала заменяемость отдельных компонентов, в том числе цифровой камеры. Еще в 90-е, в связи с браком главного зеркала, на телескоп установили очки (COSTAR), а сняли их лишь в 2009 году, в ходе последней миссии обслуживания. Заменой стала цифровая камера, способная корректировать неисправность зеркала телескопа Wide Field Camera 3. Эти так называемые глаза телескопа наблюдают за небом в ближнем ИК- и среднем УФ-диапазонах, имеют фантастическое разрешение в 0,04 угловые секунды, что позволяет регистрировать даже самые крохотные объекты, попавшие в кадр. За 12 лет работы с новым оборудованием телескопу удалось обнаружить более 1000 галактик, облик которых соответствует облику из молодой Вселенной. Так и сегодняшний герой материала, галактика GN-z11, был обнаружен в 2016 году на красном смещении z = 11,1, что соответствует расстоянию в примерно 32 миллиарда световых лет и возрасту Вселенной всего 400 миллионов лет. Это самый далекий объект, что удалось найти на данный момент.

Галактика располагается в созвездии Большой Медведицы, ее диаметр составляет примерно 4000 световых лет, что в 25 раз меньше диаметра Млечного Пути. Соответственно оценке красного смещения, галактика удаляется от нас на скорости 295 000 км/с, т.е. 98% от скорости света! Звездообразование в ней оценивается как активное, в 20 раз превышающее звездообразование во Млечном Пути. Это делает ее в три раза более яркой, чем другие галактики на z ~ 6-8. Повышенный интерес к находке также объясняется тем, что мы видим ее такой, какой она была в эпоху реионизации, происходящей через 400-800 млн лет после БВ. GN-z11 обнаружила международная группа астрономов (Oesch et al.) в ходе обзора CANDELS/GOODS-N, проводящего поиск объектов, существовавших в Темные века. Этот объект привлек внимание мирового сообщества тем, что существовал он в еще не наблюдаемой доныне космологической эпохе.

Почему это так важно

По мере расширения Вселенной наступил такой момент, когда она охладилась до температуры, позволившей веществу отделиться от излучения (380 000 лет после БВ) тогда образовался реликтовый фон или же космический микроволновый фон (CMB). Вселенная стала прозрачной для излучения. Тогда она хоть и была анизотропной на малых масштабах, ее однородности была выше, чем сейчас, потому требовалось большее количество времени для фрагментации вещества и его скучивания и коллапса. Плазмы в то время уже не было, а первые звезды еще не появились данный этап жизни Вселенной называют Темными веками, тогда во Вселенной не существовало фотонов в видимом спектре. Именно в темные века, продлившиеся 150 миллионов лет, путем конденсации нейтрального газа сформировались первые звезды, галактики и квазары. Ультрафиолетовое излучение мощнейших квазаров осветило и даже ослепило Вселенную при попадании фотона этого излучения на атом водорода происходило возбуждение и отрыв электрона и его отрыв атома, порождая ион. При этом свободный электрон так и оставался свободным, не находя себе пары для создания стабильного атома водорода таким образом средняя плотности вещества стремительно падала, образовывалась плазма, что в совокупности ускоряло процесс коллапса вещества и создания звезд и галактик. Время, в ходе которого мощное излучение ионизировало водород и готовило Вселенную к образованию крупномасштабных структур, называют эпохой реионизации. Оно длилось с 400 до 800 лет после БВ.

 Реконструкция нити галактик: филаменты (слева вверху), узлы соединения (справа вверху), наслоение (слева внизу), воиды (справа внизу). По осям отмечены единицы SGX (Supergalactic coordinates, англ: межгалактические координаты)Credit: Sebastin E. Nuza Реконструкция нити галактик: филаменты (слева вверху), узлы соединения (справа вверху), наслоение (слева внизу), воиды (справа внизу). По осям отмечены единицы SGX (Supergalactic coordinates, англ: межгалактические координаты)Credit: Sebastin E. Nuza

Открытие GN-z11 и его изучение помогает уточнить природу образования галактик, ведь на этот счет все еще не существует единого мнения. Но радовались мы недолго. Еще в 2016 году д.ф-м.н Игорь Чилингарьян высказал свой скептицизм к данному открытию. В 2020 году появляется новость о том, что обсерваторией им. Кека обнаружен яркий сигнал так называемая ультрафиолетовая вспышка GN-z11-flash. По заверению ученых, она обусловлена гамма-всплеском или взрывной волной сверхновой III популяции; в этом же году выходит несколько работ, где авторы высказывают свои идеи по поводу происхождения этой вспышки, в их числе:

  1. The GN-z11 flash event can be a satellite glint, Nir et al. (arXiv.org: 2102.04466);

  2. GN-z11-flash was a signal from a man-made satellite not a gamma-ray burst at redshift 11, Michalowski et al. (arXiv.org: 2102.13164).

Рассмотрим тезисы этих двух работ:

  1. GN-z11-flash это отражение высокоорбитального спутника;

  2. Кратковременные гамма-вспышки свойственны не космическим объектам, а вращающимся телам по типу спутников. В качестве доказательства приводится также тот факт, что угловые размеры вспышки в галактике соответствуют размерам типичных вспышек-отражений от рукотворных космических тел.

РН Протон (слева) и РБ БризМ (справа спереди)РН Протон (слева) и РБ БризМ (справа спереди)

Такие выводы удалось сделать путем мониторинга местоположения телескопа им. Хаббла и помех в виде космического мусора, а также положения галактики относительно них. Подходящим под местоположение в заданное время объектом стал обломок разгонного блока Бриз-М, запущенного РН Протон. Исследователи с помощью телескопа RBT/PST2 измерили магнитуду вспышки отражения блока и погрешности измерений, которые оказались в допустимых пределах.

Работы о гамма-вспышке в GN-z11 попали под шквал критики как минимум потому, что подобных вспышек от якобы удаленных объектов за сутки по всему миру регистрируется более сотни штук. По каждой работу писать глупо, так как быстро обнаруживается, что это помеха. Если посмотреть спектры, которые анализировались в исследованиях (пр.: Jiang et al., arXiv.org: 2012.06936), можно обнаружить их сходство со спектром Солнца (т.к. спутники отражают именно его свет напрямую или через Луну). Спутников на небе много, они бывают довольно большими и летают пачками по несколько штук в минуту на небольшой площади небесной сферы.

У знающих людей возникает вопрос: а откуда у обломка разгонного блока красное смещение z = 11? И действительно, на первый взгляд это весьма нелогично. Но если мы обратимся к классическому определению эффекта Доплера (да простят меня сейчас космологи), то увидим, что смещение пропорционально разности видимой и лабораторной длин волн. Если видимая длина волны измеряется непосредственно во время наблюдений, то лабораторная создается шаблоном в соответствующих условиях. Мы знаем из чего состоят галактики - из холодного нейтрального водорода HI и молекулярного водорода HII. НО! В эпоху реионизации состав галактик был немного другим, а потому и лабораторный спектр нужно измерять на другом эталоне! Например, квазары светят в CIII (углерод). Тут же в качестве эталона взяли как раз обычную для галактики смесь нейтральный и дважды ионизированный водород, хотя на деле это мог быть и OII или OIII (дважды или трижды ионизированный кислород) или даже H-alpha. Оттого разность получилась настолько большой, что вышла из разряда доединичных значений, став смещением аж самого далекого обнаруженного на данный момент объекта.

 Эмиссионные линии спектра GN-z11.Credit: Jiang et al. Эмиссионные линии спектра GN-z11.Credit: Jiang et al.Цитата из источника (Jiang et al., arXiv.org: 2012.06936).

Detection of emission lines. We first verify the detection of the UV continuum emission by stacking the 2D K-band spectrum along the wavelength direction. We detect a signal with a 5.1 significance at the expected spatial position of the GN-z11 UV continuum (Fig. 1). We also see the standard negative-positive-negative pattern in Fig. 1b. In our ABBA observing mode, the separation between the A and B positions was 3", or ~16.7 pixels. The peak of the positive signal is roughly at x ~ 58 in Fig. 1b, so we expect to see two negative signals at x ~ 41 and 75, respectively. The negative signal at x ~ 41 is clearly seen. We can also see the negative signal at x ~ 75, although it is in a big trough that makes it less obvious. We search for emission lines in the K-band 2D spectrum and first identify a strong (5.3 significance) line emission feature at about 22823 . Meanwhile, we detect a weaker (2.6 significance), nearby line at 22797 . This pair of lines can be explained as the [C III] l1907, C III] l1909 doublet at z = 10.957. We would not have claimed a 2.6 line as a detection if this line does not form a [C III], C III] doublet that is commonly seen at high redshift. We then search for >3 lines that are associated with this redshift, and detect a line (3.3) at ~19922 that is consistent with O III] l1666 (Extended Data Fig. 3). We do not detect any other lines in the spectrum at greater than 3 significance. If the two weak detections of 3.3 and 2.6 are not considered, the strongest line with the 5.3 detection can be explained as [C III] l1907 at z = 10.970 or C III] l1909 at z = 10.957. If this line is [C III] l1907 at z = 10.970, we would expect to detect C III] l1909 with significance of 3, because the largest flux ratio of [C III] l1907 to C III] l1909 is about 1.6 in regular environments. Since we did not detect the expected C III] l1909 emission, the 5.3 line is not likely [C III] l1907. Therefore, we interpret the line pair at 22797 and 22823 as the [C III] l1907, C III] l1909 doublet and the line at 19922 as O III] l1666 at z = 10.957.

Выводы

Что является итогом этого? Вероятно то, что проблема загрязнения космического пространства весома не только для мирового сообщества, но в частности и для астрономического. Уже сейчас астрономы регистрируют сотни вспышек, вызванных помехами в виде отражений спутников (актуальная история со Starlink). Мы научились обнаруживать эти ложные вспышки, но они все еще требуют сортировки, человеческих ресурсов, повышенных рисков и вложений. На фоне этих вспышек, по великой случайности, мы можем проигнорировать важное событие по типу сверхновой в такой же далекой галактике. Будем надеяться, что большинство событий, обнаруженных в древней Вселенной, являются действительными.

Ну и напоминаю, о том, чтобы читатель не стеснялся задать вопрос или поправить меня в комментариях. Также у меня естьтелеграм-канал, где я рассказываю о последних новостях космологии и астрофизики, а также пишу об астрофотографии. Пишите мне вличкуилинаш чат. Всем добра!

Библиографический список

[1] Evidence for GN-z11 as a luminous galaxy at redshift 10.957 / Linhua Jiang, Nobunari Kashikawa, Shu Wang et al. // Nature Astronomy. 2020. Dec. Vol. 5, no. 3. P. 256261. Access mode: http://dx.doi.org/10.1038/s41550-020-01275-y;

[2] Michalowski Micha l J., Kami nski Krzysztof, Kami nska Monika K., Wnuk Edwin. GN-z11-flash was a signal from a man-made satellite not a gamma-ray burst at redshift 11. 2021. 2102.13164;

[3] Nir Guy, Ofek Eran O., Gal-Yam Avishay. The GN-z11-Flash Event Can be a Satellite Glint. 2021. 2102.04466;

[4] A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grismspectroscopy / P. A. Oesch, G. Brammer, P. G. van Dokkum et al. // The AstrophysicalJournal. 2016. Mar. Vol. 819, no. 2. P. 129. Access mode: http://dx.doi.org/10.3847/0004-637X/819/2/129.

Подробнее..

Не случившееся орбитальное столкновение и немного интриги

19.10.2020 12:14:37 | Автор: admin
16 октября на орбите могло появиться два больших облака космического мусора, одно от советского спутника Космос-2004, другое от ступени китайской ракеты-носителя Великий поход 4C. Два объекта, возможно, прошли друг от друга на расстоянии 11 метров с относительной скоростью 14,7 км/с и без помех продолжили свой долгий полет. Но вот было ли это реальной опасностью или же стартап решил прокричать Волки!, чтобы пропиариться?


Вспышка от удара на скорости 7,5 км/с в исследовательском центре Эймса, фото NASA

14 октября твиттер компании LeoLabs, занимающейся отслеживанием объектов на орбите, сообщил о возможности столкновения двух крупных экземпляров космического мусора советского спутника Космос-2004 и третьей ступени китайской ракеты-носителя Великий поход 4С. С вероятностью от 1 до 20% они могли столкнуться на высоте 991 км над Антарктикой в 00:56 UTC 16 октября. Общая масса объектов оценивалась примерно в 2,8 тонны, что в два раза превышало массу аппаратов, столкнувшихся в 2009 году и породивших более двух тысяч заметных объектов космического мусора.


Анимация сближения, созданная LeoLabs


Спутник Парус в парке Патриот, фото пользователя kpopov/russianarms.ru

Космос-2004 относится к типу Парус (навигационно-связные спутники морской системы Циклон) и был запущен 22 февраля 1989 года с космодрома Плесецк на полярную орбиту высотой 1000 км ракетой-носителем Космос-3М. Его масса составляет примерно 825 кг, диаметр в районе двух метров, и, к тому же, на спутнике выдвигается семнадцатиметровая мачта для стабилизации при помощи гравитационного градиента. Расчетный срок существования спутников этой системы находился в диапазоне 18-24 месяцев, так что уже к середине 90-х он наверняка перешел в категорию космического мусора.


Третья ступень Великого похода 4B, которая выглядит так же, как и 4С

Третья ступень Великого похода 4С, она же объект 2009-072C, входила в состав ракеты-носителя, которая 15 декабря 2009 вывела на полярную орбиту спутники Яогань-8 и Сиван-1 и после отделения полезной нагрузки стала космическим мусором. Ее масса оценивается примерно в две тонны, диаметр составляет 2,9 метра, а длина 7,5 м.

На деградацию орбиты спутников влияет множество факторов, часть из которых, например, солнечная активность, плохо предсказуема. К тому же у измерительного оборудования есть свои ограничения по точности. Поэтому расстояние в момент сближения между Космосом-2004 и ступенью по расчетам LeoLabs менялось в достаточно широких пределах.


Расчетные расстояния между объектами, изображение LeoLabs

Новость от компании, которая продает свой сервис по отслеживанию объектов на орбите, закономерно захотели проверить по другим источникам. И здесь получилась любопытная картина. Роскосмос подтвердил возможность столкновения, но без конкретных расстояний или вероятностей. 18-я эскадрилья контроля космического пространства ВВС США, по словам журналистки CNN Джеки Уолтерс, определила близкую к нулю вероятность столкновения. Компания The Aerospace Corporation рассчитала вероятность как 1 к 23 миллиардам. А LeoLabs не отказались от своих слов и уже после 16 октября заявили, что расстояние между Космосом-2004 и ступенью составило 11 метров, что, учитывая размеры обоих объектов и семнадцатиметровую мачту Космоса-2004, дистанция весьма и весьма маленького размера.

Достоверно же можно сказать следующее:


Космический мусор, наблюдаемый Европейским космическим агентством

Космических аппаратов, а, следовательно, и космического мусора, на орбите становится все больше. На лето 2020 года ежеквартальный журнал учета космического мусора NASA насчитывал почти 21 тысячу объектов на орбите, из которого мусором являлись 15 тысяч. Сейчас, с развертыванием не-геостационарных сетей высокоскоростного интернета, несмотря на принимаемые меры по сведению аппаратов с орбиты, мусора будет еще больше.


Столкновение Космоса-2251 и Иридиума-33, а также мусор спустя 10 и 50 минут после. Изображение Rlandmann/Wikimedia Commons

Столкновения больших объектов на орбите способны породить огромное количество космического мусора. 10 февраля 2009 года столкнулись сломавшийся в 1995 году советский спутник Космос-2251 и функционирующий Иридиум-33. В результате образовалось 2296 заметных обломков. И, хоть столкновение произошло на высоте 789 км, мусор разлетелся по разным орбитам и снижался с разной интенсивностью, в результате чего уже спустя два года Международной космической станции, работающей на орбите в два раза ниже, пришлось уворачиваться от одного из обломков. Если бы друг в друга врезались Космос-2004 и китайская ступень, результат мог бы стать сильно плачевнее.

LeoLabs можно поздравить с тем, что они стали ньюсмейкером и отлично пропиарились на этой истории. Оценку этичности такого пиара придется отдать на усмотрение читателя оборудование у военных наверняка лучше, к тому же LeoLabs пока что использует только радары, в то время как у государственных организаций есть и оптические системы, например, отечественная Сажень способна определять расстояние до спутника с точностью до 3-5 миллиметров. Компания может использовать свои критерии опасного сближения, искренне ошибаться или же раздувать событие с очень маленькой вероятностью для продажи своего сервиса.
Подробнее..

Грядущий кошмар синдрома Кесслера

02.11.2020 12:06:03 | Автор: admin
Хэллоуин в год пандемии не пир во время чумы, но неизбежно имеет мрачноватый оттенок. А в космосе есть аналог зомби-апокалипсиса, пандемии или еще какого ужаса, в который кто-то из вас мог наряжаться в прошедшие выходные. Синдром Кесслера это столкновения спутников с эффектом домино: объекты в космосе сталкиваются, порождают космический мусор, который сталкивается с новыми объектами и так по нарастающей. А по-настоящему страшно то, что это наше вполне реальное будущее.


Синдром Кесслера в представлении художника

Все будет плохо


Численное выражение технического прогресса, тот факт, что количество спутников увеличивается, имеет и свою темную сторону. Далеко не каждый аппарат в конце своего срока активного существования культурно уходит на специальную орбиту захоронения, чтобы никому не мешать. Далее, когда спутник отделяется от разгонного блока или последней ступени ракеты носителя, они оба находятся на целевой или переходной орбите, и не всякий разгонный блок затем уходит на свою орбиту захоронения. Особенности конструкции ракет также приводят к тому, что на один запущенный аппарат могут появиться несколько объектов космического мусора. В результате на 2020 год количество отслеживаемых объектов на орбите приблизилось к 21 тысяче.


Изображение NASA ODPO

И расчеты количества космического мусора пессимистичны спутники и отработанные ступени иногда взрываются (точнее лопаются, когда какой-нибудь бак, в котором сохранилось давление, разрушается) и, пока еще редко, сталкиваются между собой. В зависимости от настроек модели, количество мусора, медленно или быстро, но растет. И важно отметить, что эти модели пока не учитывают развертывание огромных космических созвездий Starlink, OneWeb, Project Kuiper от Amazon и нескольких возможных китайских аналогов.


Расчеты NASA в модели LEGEND

Опасные перекрестки


При всей серьезности грозящей нам опасности увеличения количества космического мусора есть два светлых факта, которые наиболее наглядны как ошибки фильма Гравитация. Во-первых, не стоит опасаться мгновенного взрывного роста количества космического мусора. Модели показывают постепенный рост числа столкновений спутников на орбите. По расчетам Европейского космического агентства серьезное столкновение объектов на орбите происходит с частотой примерно раз в пять лет. А делающая практически невозможным выведение новых спутников частота в пять столкновений в год ожидается примерно в 22 веке. Во-вторых, подобные столкновения не выбьют все спутники на всех орбитах, в космосе есть как еще сравнительно безопасные трассы, так и очень опасные перекрестки.


Концентрация спутников на определенных орбитах, источник

Низкая околоземная орбита. Ее главное преимущество в том, что, чем меньше высота орбиты, тем быстрее спутник затормозится об остатки атмосферы и сгорит в ее плотных слоях. Для высот до 600 км, в зависимости от площади и массы аппарата, срок может очень сильно разниться, но оценки Европейского космического агентства говорят, что за 25 лет любой мусор сгинет без всякого нашего участия.


Распределение объектов по орбите в модели MASTER Европейского космического агентства

Полярные и солнечно-синхронные орбиты. Орбиты с наклонением в районе 90 и высотой 800-1200 км сейчас являются самым опасным местом в космосе. Во-первых, туда уже успели запустить много спутников эти орбиты очень удобны для наблюдения за Землей. Далее, орбиты пересекаются над полюсами, где опасность столкновения возрастает многократно, причем столкновение возможно под любым углом, включая лоб в лоб, когда высвободится максимум энергии, и обломки разбросает на самые разные траектории. И, наконец, здесь уже летает мусор от столкновения 2009 года, когда давно сломавшийся советский спутник Космос-2251 и работающий Иридиум-33 столкнулись на пересекающихся курсах и образовали 2296 заметных обломков. Собственно говоря, это столкновение и произошло в наиболее вероятном месте в районе полюса на высоте 789 км. Созвездия спутников сделают это место еще опасней OneWeb должен будет работать на полярной орбите высотой 1200 км, а в планах Starlink обозначены орбиты высотой 1100, 1325, 1130 и 1275 км, и компанию уже просили ограничиться только аппаратами на высоте 550 км.

Навигационные спутники на средних орбитах. Спутники ГЛОНАСС расположены в трех плоскостях на высоте 19400 км, GPS 20180, Бэйдоу 21500 и Галилео 23222. Этого достаточно, чтобы сформировать заметные на графиках всплески плотности, но даже с учетом сломавшихся аппаратов вероятность столкновения здесь весьма мала спутников еще не так много, а места пока хватает.

Геопереходные орбиты. Заметные на графиках всплески плотности дают геопереходные орбиты, на которых остаются последние или предпоследние ступени ракет, выводящих спутники на геостационарные орбиты. Разная требуемая характеристическая скорость (delta-V) дают аж три заметных группы с Байконура, мыса Канаверал и Куру. Здесь нет живых аппаратов, только старый мусор, и пока что вероятность столкновения сравнительно невелика.


Объекты на орбите, изображение NASA

Геостационарная орбита. Очень удобная для работы спутников-ретрансляторов и метеорологических аппаратов, наблюдающих за целым полушарием, поэтому там сравнительно много спутников, а то, что она давно используется, означает, что и старого сломанного мусора там хватает. Силы, которые оказывают возмущающее воздействие на орбиту и требуют расхода топлива на ее поддержание, здесь в своеобразном смысле помогают убрать мусор оставшиеся без топлива или сломавшиеся аппараты Луна постепенно утаскивает на орбиту с наклонением 15, а небольшая асимметрия Земли размещает мусор в районе одной из двух равновесных точек. Но здесь встречаются объекты на орбите с высоким эксцентриситетом (вытянутые, не круговые), поэтому возможны столкновения с относительной скоростью до 4 км/с. Еще здесь есть своя орбита захоронения чуть выше, и все большая доля спутников доживает до исчерпания топлива, затрачивая его последние капли на цивилизованный уход на кладбище. Также уникальность геостационарной орбиты в том, что здесь реально может работать специальный спутник-мусорщик (который, например, на полярной орбите мог бы наводить порядок только в аппаратах, летающих в одной плоскости).

Борьба за чистоту


Как говорится, постановка и понимание проблемы уже половина ее решения. Тот факт, что синдром Кесслера будет развиваться медленно означает, что человечество имеет шансы успеть с ним справиться. Это не будет легко уже находящиеся в космосе объекты постепенно будут порождать все больше мусора сами по себе, и никто не согласится вводить мораторий на запуск новых спутников. Но и нерешаемой проблема не является в последние годы появляются самые разные проекты уборки космического мусора от парусов и тросовых систем до экстравагантных идей вроде сетей или переработки мусора в топливо для перелетов мусорщика. Стандартов и обязательных требований пока что нет, но можно надеяться, что уже в обозримом будущем аппараты начнут получать надежные системы, которые смогут сводить с орбиты даже сломавшиеся спутники., Победа над синдромом Кесслера будет одной из важных задач 21 века, которую человечество должно будет решить, если не захочет остаться без доступа в космос.
Подробнее..

Чем опасен космический мусор и как его уничтожают

29.05.2021 10:08:42 | Автор: admin


По разным оценкам, количество космического мусора на орбите Земли варьируется от 220 до 300 тысяч объектов. При этом, объекты, размером в поперечнике более 1 см, составляют от 20 до 33% (от 60 тыс. до 100 тыс) всего космического мусора. Только представьте, какой эффект может оказать астрономическая пуля на пролетающий мимо космический корабль. Конечно, в масштабах нашей орбиты это кажется несущественным, но по мнению ученых, после 2055, в результате взаимного саморазрушения уже имеющегося на орбите мусора, проблема космического мусора станет серьезным препятствием для дальнейшего освоения космоса. Теперь подробнее об этом и других возможных последствиях.

Суть проблемы


Угроза физического столкновения


Собственно, самая очевидная угроза, исходящая от космического мусора, это угроза физического столкновения. На текущем уровне развития технологий не существует какого-либо способа защитить космические аппараты от небольшого объекта, размером с пулю, движущегося со скоростью 10 км/с. Ну а про защиту от более крупных объектов и заикаться не приходиться, хотя на орбите их существенно меньше. Помимо угрозы повреждения и уничтожения объектов, стартующих с Земли, на орбите находится огромное количество различных спутников, необходимые для работы разных служб. GPS, метеорология, да куча всего в общем. Уничтожение одного из них не сделает всю систему нежизнеспособной, но в условиях увеличения количества мусора в будущем это может серьёзно повлиять на работоспособность этих систем. Помимо прогнозов на будущее, в настоящем и прошлом есть примеры столкновения космических аппаратов с мусором:


За всё время программы шаттлов, на них было обнаружено порядка 170 следов на иллюминаторах от столкновения, к счастью с микрочастицами (0,2 мм в диаметре). Около 70 иллюминаторов пошли под замену. На изображении слева кратер шириной 2.5 мм от частицы краски.

  • В июле 1996 года французский спутник столкнулся с третью ступенью французской ракеты Arian, запущенной намного раньше;


Французская ракета Arian. Источник ESA

  • 29 марта 2006 года российский спутник Экспресс АМ11 столкнулся с космическим мусором. В результате столкновения, был разгерметизирована система терморегулирования, спутник, потерял ориентацию и начал неконтролируемое вращение.

  • 10 февраля 2009 года российский спутник Космос-2251, выведенный из эксплуатации в 1995 году, столкнулся с американским коммерческим спутником Iridium 33.


Столкновение Космос-2251 и Iridium 33. Источник vermarushabh.blogspot.com

Для контроля мусора космическими агентствами ведутся соответствующие реестры, отслеживающие относительно крупные (от нескольких сантиметров) объекты. Так, например. основываясь на имеющихся данных, МКС несколько раз в год корректирует своё положение на орбите, дабы избежать столкновения.

Синдром Кесслера


Помимо угрозы физического уничтожения, космический мусор может являться причиной полной непригодности ближнего космоса для практического использования. Данную теорию описывает так называемый синдром Кесслера, описанный консультантом НАСА Дональдом Кесслером в 1978 году. Суть данной теории заключается в эффекте домино. По мере увеличения количества объектов на орбите увеличивается и количество потенциальных источников мусора. При столкновении двух крупных объектов приведет к появлению большого количества новых, более мелких объектов. В свою очередь, каждый из них может столкнуться с другим объектом. Таким образом возникает цепная реакция, ведущая к появлению всё новых и новых обломков. По итогу, при достаточно большом количестве столкновений, количество образовавшегося мусора на орбите сделает невозможным её использование.

Однако на низких орбитах взаимодействие с атмосферой постепенно уменьшает количество мусора, и это подводит нас к следующей угрозе.

Падение космического мусора на Землю


Объекты, находящиеся на низкой орбите, еще находятся под влиянием атмосферы земли и постепенно замедляются, в результате через какое-то время начинают снижаться и входить в более плотные слои атмосферы. Многие объекты сгорают в атмосфере, но есть и те, что достигают поверхности планеты. Так, по данным НАСА, почти ежегодно отдельные фрагменты космических аппаратов достигают поверхности Земли.


Источник oyla.xyz

Кладбище космических кораблей


Точка Немо это самая удаленная от суши место на Земле, также называемая океанической полюсом недоступности. Полюс недоступности это место, которое наиболее сложно достигнуть из-за её удалённости, обычно от береговой линии. Ближайшая суша находиться в 2688 километрах от Точки Немо, а ближайшим населенным местом периодически становится МКС, орбита которой проходит над этим местом. Низкое содержание питательных веществ (круговорот в южной части Тихого океана блокирует попадание питательных веществ в этот район) и удаленность от прибрежных вод делают это место практически безжизненным, поэтому Точка Немо идеальное место для захоронения космических аппаратов. Периодически этот район называют кладбищем космических кораблей. Некоторые русскоязычные источники называют этот район закрытым для судоходства, но судя по отсутствию нормативных документов и регламента процедуры захоронения (о которой чуть ниже) данный запрет носит рекомендательный характер. Ответственность за движение судов в этом регионе разделяют Чили и Новая Зеландия. За несколько дней до спуска космического аппарата, космические агентства предупреждают службы этих стран, которые в свою очередь доносят соответствующие предупреждения избегать этот район до летчиков и капитанов морских судов.


Источник gizmodo.com

Похороны космического аппарата


Как и при любой другой космической операции, захоронение космического аппарата требует соответствующей подготовки. После проведения необходимых расчетов и предупреждения местных властей, аппарат, достигнув необходимого местоположения, начинает снижение. Как упоминалось выше, небольшие и компактные спутник, как правило, не достигают поверхности земли и сгорают за счет трения. Поверхности воды же достигают различные тугоплавкие конструкции. Так, например, данный участок используется российским Центром управления полетов для утилизации космических беспилотных грузовиков серии Прогресс. Кстати, в результате захоронения части космического аппарата могут разлетаться на большой площади. Так, например, останки станции Мир, затопленной в 2001 году, разлетелись на участок протяженностью 3000 километров. Подобная характерность несколько раз становилась причиной ЧП. В 1979 году часть американской станции Скайлэб упала на территории Австралии, в 1991 году обломки станции Салют-7 упали на территории Аргентины. Также в 1997 году недогоревшая часть ракеты упала на женщину в Оклахоме. К счастью, все эти случаи произошли без жертв. Сейчас, ежегодно на кладбище космических кораблей свой последний приют находят несколько десятков кораблей, которые находясь на орбите являются источником большей угрозы.


Инфографика ТАСС. Источник tass.ru

Орбита захоронения


Помимо наземного кладбища также существует орбита, на которую отправляют уже отработавшие космические аппараты для уменьшения вероятности столкновения с ещё работающими. Существует две официальных орбит захоронения: для космических аппаратов, располагавшихся на геостационарной орбите, и для аппаратов для военных разведывательных спутников с ядерной энергетической установкой.

Геостационарная орбита это орбита, расположенная над экватором земли, находясь на которой, искусственный спутник имеет такую же угловую скорость, как и Земля, т.е. находится всегда над одним и тем же местом на Земле. Эта орбита используется для размещения коммуникационных, телетрансляционных спутников и находиться на высоте 35786 километров над уровнем моря. После отработки, спутник примерно на 200 км (для каждого спутника расстояние рассчитывается индивидуально).




Увеличение количества искусственных спутников Земли. Источник Европейское космическое агентство.

Другая орбита захоронения находится на высоте от 600 до 1000 километров. На эту орбиты отправляют военные спутники с ядерной энергетической установкой. Ориентировочно, эти спутники будут находиться на орбите порядка 2 тысяч лет, после чего гравитация Земли притянет их.

Пути решения


В целом, поиск путей решения этой проблемы ничем не отличается от решения проблемы творческого беспорядка у вас на столе, только масштаб у первой слегка побольше. Имеется два пути создавать меньше мусора или убирать старый.

Снижение создаваемого мусора


Как говорится, Чисто не там где убирают, а там где не мусорят!. Собственно, в этом и суть. К основным направлением снижения создаваемого мусора относят следующие меры:

  • Снижение массы запускаемого аппарата:

Меньше масса меньше потенциального мусора. Всё просто.

  • Увеличение срока эксплуатации космических аппаратов:

Чем дольше будут работать спутники, тем меньше будет производиться полетов для их замены.

  • Минимизация количества остающихся в космическом пространстве частей КА:

Утилизация отработавших частей и самого космического аппарата либо возвращение частей обратно на Землю.

Как видно, первые два пункта пересекаются с общими направлениями развития космонавтики. Последний пункт же вносит некоторые коррективы в построение ракет. Как грамотно организовать утилизацию отработавших частей? Одно из развивающихся направлений использование материалов, позволяющих ракетам-носителям вывести аппарат на орбиту, а затем сгореть в атмосфере. Т.е. такой материал должен выдерживать все взлетные нагрузки, и при этом не должен быть супер тугоплавким, чтобы за счет трения сгореть в атмосфере. Звучит как некоторый парадокс. На данный момент таких материалов в ракетостроение нет.

Второй способ это возвращение частей КА на Землю. Самый очевидные примеры это многоразовые ступени SpaceX и программа Space Shuttle.

Утилизация уже имеющегося мусора


В отличие от проектируемых с замыслом утилизации аппаратов, мусор на орбите сам себя утилизировать не может. Все текущие проекты по уборке космического мусора находятся либо в разработке либо в виде идеи. Было озвучено множество идей, которые можно классифицировать следующим образом:

  • Лазеры

Суть в том, что уничтожать мусор с помощью лазера. Что ж, звучит фантастично.

  • Захват

Захват мусора с помощью сверхпрочной сети и отправка его в плотные слои атмосферы. К слову, в 2019 году британский аппарат RemoveDebris смог захватить фрагмент спутника.

  • Воздушные шары

Крупный шар должен оборачивать мусор, при этом увеличивая их сопротивление и ускоряя процесс входа в плотные слои атмосферы.

  • Буксир с солнечным парусом

Солнечный парус это устройство, использующее давление света для приведения в движение космического аппарата. По задумке, такой аппарат будет цеплять мусор и уводить его с орбиты.

  • Облако вольфрама

По задумке, облако вольфрама будет медленно опускаться к Земле, попутно замедляя мусор.

  • Аппараты-самоубийцы

Такой аппарат должен должен буквально заталкивать опасные объекты в атмосферу, и при этом также сходить с орбиты.

  • Орбитальные мусоровозы

Аппарат будет собирать мусор на орбите и перерабатывать его.


Российский сборщик космического мусора, перерабатывающий космический мусор в топливо. Источник russianspacesystems.ru



Облачные серверы от Маклауд быстрые, безопасные и не генерируют космический мусор.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru