Русский
Русский
English
Статистика
Реклама

Атомы

Давление света подтверждение 90-летней теории об импульсах фотонов

22.07.2020 10:16:05 | Автор: admin


На протяжении столетий ученые из разных уголков мира создавали самые разные теории, объясняющие те или иные процессы, явления и феномены. Некоторые из этих теорий были подтверждены или опровергнуты на практике буквально сразу после их высказывания. Другие же оставались на бумаге многие годы, ибо на момент их появления технологии не позволяли провести практические опыты. Сегодня мы познакомимся с исследованием, в котором ученые из Франкфуртского университета имени Гете (Германия) попытались понять, что есть давление света на самом деле, подтвердив в процессе теорию 90-летней давности. В чем именно заключалась теория, какие методики были использованы в опытах, и что нового мы узнали о фотонах? Ответы на эти вопросы ожидают нас в докладе ученых. Поехали.

Историческая справка


Давление света (или давление электромагнитного излучения) это механическое давление, оказываемое на любую поверхность в результате обмена импульсом между объектом и электромагнитным полем.

Первооткрывателем этого понятия является Иоганн Кеплер (1571-1630). В 1619 году, наблюдая за кометой, он отметил, что ее хвост всегда направлен в сторону от Солнца.

Спустя более двухсот лет в 1862 году Джеймс Максвелл (1831-1879) предположил, что свет как электромагнитное излучение обладает свойствами импульса и, следовательно, оказывает давление на любую поверхность, с которой контактирует. Экспериментально это было подтверждено лишь в 1900 году Петром Лебедевым.

Практические опыты с целью изучения давления света крайне сложны. Связано это с тем, что силы, создаваемые световым давлением, крайне малы. Однако в космических масштабах (буквально) суммарный эффект этих малозаметных сил может оказывать большое кумулятивное воздействие на объект в течение длительных периодов времени. Например, если бы во время подготовительных расчетов перед запуском космического аппарата программы Викинг не учитывалось давление света, то аппарат пролетел бы орбиту Марса на расстоянии 15 000 км.


Иоганн Кеплер, Петр Лебедев и Арнольд Зоммерфельд.

Если суммировать все воедино, то мы получим следующее: частицы света (фотоны) ударяются об атомы тела и передают ему часть своего импульса, а тело от этого становится быстрее.

Пока все логично. Однако не все так просто. Ранее проводились опыты, в которых фотоны определенной длины волны выбивали из атомов отдельные электроны. Импульс этих электронов был больше, чем у фотона, который с ним взаимодействовал. Это невозможно, скажете вы, ибо есть второй закон Ньютона, в котором говорится, что на любое действие имеется противоположное равное противодействие (утрированно говоря). Тем не менее, в 1930 году немецкий ученый Арнольд Зоммерфельд предположил, что дополнительный импульс выброшенного электрона происходит из атома, который он покинул. Получается, что движение атома должно быть направлено в сторону источника фотонов, т.е. к свету. Теория весьма смелая, но в те годы подтвердить ее на практике было нереально ввиду отсутствия необходимых технологий.

И вот 90 лет спустя наши современники смогли впервые в мире воочию понаблюдать этой таинственный процесс.

Основа исследования

Авторы труда напоминают, что вектор электрического поля электромагнитной волны ориентирован перпендикулярно оси распространения света. Поскольку это поле управляет фотоионизацией*, стоит предположить, что его направление будет осью симметрии для угловых распределений фотоэлектронов и фотоионов.
Фотоионизация* ионизация молекулы/атома непосредственно при абсорбции фотонов, энергия которых равна или больше энергии ионизации.

Фотоэффект процесс взаимодействия электромагнитного излучения и вещества, когда энергия фотонов передается электронам вещества.

Фотоэлектрон электроны, вытесняемые из вещества, когда на него воздействует электромагнитное излучение.

Фотоион катион (положительно заряженный ион), полученный в результате фотоионизации.
Однако при высоких энергиях фотонов E и соответствующих высоких фотонных импульсах k эта симметрия нарушается, а импульсные распределения фрагментов реакции асимметричны относительно направления распространения света.

Зоммерфельд в своих изысканиях понял, что средний прямой импульс электронов, превышающий импульс фотона (kex > k), влечет за собой то, что средний импульс фотоиона должен быть противоположным для учета сохранения импульса.

Стоит также отметить, что так называемые недипольные эффекты, возникающие из-за ненулевого импульса фотона, также оказывают существенное влияние на однофотонную ионизация. Кроме того, более высокие мультипольные компоненты взаимодействия света и вещества не только изменяют угловое распределение фотоэлектронов, но также открывают дополнительные пути ионизации, которые запрещены диполями.

В данном исследовании эксперименты по однофотонной ионизации были выполнены в двух вариантах:

  • высокоэнергетический (3001775 эВ) на PETRA III (DESY/Немецкий электронный синхротрон) с применением света с циркулярной поляризацией;
  • низкоэнергетический (1240 кэВ) на ID31 (European Synchrotron Radiation Facility) с применением света с линейной поляризацией.

Для измерений состояния заряда и трехмерного вектора импульса фотоионов был использован метод спектроскопии COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy).

Пучок фотонов проходил под прямым углом со сверхзвуковой газовой струей He (низкоэнергетический эксперимент) или N2 (высокоэнергетический эксперимент).

Фотонный пучок был пересечен под прямым углом сверхзвуковой газовой струей He (низкоэнергетический эксперимент) или N2 (высокоэнергетический эксперимент). Ионы направлялись электрическим полем к чувствительному ко времени и положению детектору с отсчетом положения линии задержки*.
Линия задержки* устройство задержки электрических и электромагнитных сигналов на заданный промежуток времен.
Начальные импульсы после фотоионизации были получены от времени полета ионов и положения точки контакта. В экспериментах с N2 рассматривалась исключительно ионизация K-оболочки (электронная оболочка атома первого уровня) с последующим распадом Оже*.
Эффект Оже* выход электрона из атомной оболочки ввиду безызлучательного перехода в атоме при снятии возбуждения.
В таком случае возникает два однозарядных иона, которые совпадают с оже-электроном. Из этих трех векторов импульса был рассчитан импульс иона N2+ в момент после фотоэлектронной эмиссии.

Чтобы получить доступ к ионным импульсам в абсолютном масштабе, важно точно знать местоположение ионов с нулевым импульсом на нашем детекторе. Для данных высоких энергий эта нулевая точка получается из ионов, которые создаются комптоновским рассеянием*.
Комптоновское рассеяние* некогерентное (фотоны до и после рассеяния не интерферируют) рассеяние фотонов на свободных электронах.
В этом случае импульс фотона передается электрону, и поэтому ион остается с распределением импульса, центрированным в начальной точке.


Изображение 1

На графике выше суммированы результаты исследования. Синим цветом показано измеренное среднее значение импульса иона в направлении распространения света kionx как функция энергии фотона (верхняя шкала) или импульса фотона (нижняя шкала). Точки (низкие энергии фотонов) соответствуют однократной ионизации He, а квадраты (высокие энергии фотонов) ионизации K-оболочки N2.

Отрицательные значения соответствуют обратному излучению, то есть в противоположную сторону от направления распространения фотона. Красным цветом обозначено среднее значение импульса фотоэлектрона kex, полученное за счет измеренного импульса иона с учетом сохранения импульса.

Красная и синяя линии демонстрируют прогнозируемые данные в соответствии со следующими формулами:



где Ip потенциал ионизации; с скорость света.

Из вышеописанных данных следует, что это является прямым практическим доказательством теории касательно обратно направленной эмиссии ионов при фотоионизации.


Изображение 2

Изображение выше демонстрирует нам распределение фотоионного импульса для фотоионизации He, где использовались фотоны с циркулярной поляризацией в 300, 600, 1125 и 1775 эВ. Горизонтальная ось составляющая импульса, параллельная k, а вертикальная ось это импульс, перпендикулярный оси фотона. Красным отмечены концентрические кольца, центр которых расположен там же, где и начальная точка импульсного пространства. Радиус колец равен соответствующим фотоэлектронным импульсам ke = 2(E Ip).

События ионизации не накапливаются на этих кольцах, а смещаются вперед в направлении распространения фотонов. Это наиболее четко видно на внешнем кольце, соответствующем энергии фотона 1775 эВ. При этом синие кольца смещаются вперед фотонным импульсом 1775 эВ фотона.

Следовательно, измеренные распределения импульса иона непосредственно показывают, что импульс фотона в основном поглощается ионом, что является следствием сохранения импульса.

В каждом отдельном событии ионизации импульс фотона передается центру масс системы, который почти совпадает с ионом. Соответствующее импульсное распределение электрона показывает окружность того же радиуса, но не смещенную вперед.

Помимо смещения вперед кольца в импульсном пространстве ионов, распределение импульсов на этом кольце также изменяется в зависимости от энергии фотона. Это распределение больше отклоняется в обратное полушарие при увеличении E.

Сохранение импульса требует, чтобы конечный импульс измеряемого иона равнялся импульсу фотона за вычетом импульса фотоэлектрона. Таким образом, распределение ионов на смещенной сфере в импульсном пространстве и угловое распределение фотоэлектронов в лабораторной системе отсчета являются прямыми зеркальными отражениями друг друга (изображение 3).


Изображение 3

Они имеют приблизительную дипольную форму, поскольку начальное состояние является He(1s), и, таким образом, главная составляющая углового момента (момента импульса) в конечном состоянии представляет собой диполь. Кроме того, эта дипольная форма отклонена вперед.

По заявлению авторов исследования, в профильной литературе можно встретить много вариантов объяснения передачи импульса фотона, некоторые из которых далеки от истины. Чаще всего утверждается, что поглощенный фотон передает выбрасываемому электрону собственный импульс. Из этого утверждения следует, что этот удар отвечает за смещение вперед углового распределения электронов, как показано на изображении выше.

Чтобы было проще понять все нюансы, ученые предлагают вспомнить, как именно происходит передача импульса фотона при взаимодействии с электромагнитным полем. Для простоты примера была выбрана фотоионизация 1s-электрона атома водорода.

За пределами электрического дипольного приближения электромагнитная волна ионизирующей плоскости с волновым вектором |k| = k = E/c (импульс фотона) впечатывает локальный фазовый фактор eikr в элемент матрицы перехода.

Вводя координату RH для центра масс атома и координату r для электрона 1s по отношению к RH, абсолютная координата электрона 1s в лабораторной системе отсчета может быть переписана как r = RH + r. Таким образом, соответствующая фаза может быть выражена следующим образом: eikr = eikRHeikr.

Эта фаза, представленная полем, модифицирует элемент матрицы перехода: первый фактор из уравнения выше входит в элемент матрицы перехода |eikRH| 0 между переходными состояниями атомного центра масс, которые описываются плоскими волнами (2)3/2 eiRH с импульсом . Эта амплитуда порождает закон сохранения импульса = 0+k. Таким образом, поглощение фотона атомом привносит в его центр массы импульс k.

Второй фазовый фактор eikr из уравнения отвечает за мультипольные правки за пределами электрического дипольного приближения.

Выше порога ионизации в каждом событии ионизации ион получает импульс фотона и, кроме того, отдачу от фотоэлектрона. Дополнительная передача углового момента орбиты от фотона приводит к смещению вперед углового распределения электрона. Этот направленный вперед средний импульс электрона уравновешивается обратно направленной передачей импульса иону.

По результатам исследования видно, что для s-начальных состояний обратный импульс иона масштабируется -(3/5)k, подтверждая теорию, описанную Зоммерфельдом.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Выведение формул и формирование теорий нельзя назвать простым занятием, но поиски доказательств или опровержений этих теорий порой еще сложнее.
В данном труде ученые смогли доказать правоту теории, которая была сформулирована еще в тридцатых годах прошлого века. Авторы исследования смогли не только измерить импульс иона, но и определить его происхождение. Родителем этого импульса является так называемая отдача выброшенного электрона.

Если фотон имеет низкую энергию, то при теоретическом моделировании его импульсом можно пренебрегать, говорят ученые. Однако при высоких энергиях фотона подобное пренебрежение приводит к значительным неточностям. Экспериментальные данные позволили определить порог, когда импульс фотона больше нельзя не учитывать.

В дальнейшем ученые намерены продолжить начатую работу, поскольку совершенные открытия открывают двери перед более детальным рассмотрением процессов, происходящих в момент распределения энергии между двумя или более фотонами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Карусель из 16 атомов самый маленький молекулярный ротор в мире

19.06.2020 10:21:33 | Автор: admin


На микро- и нанометровом уровне происходит множество интереснейших процессов, о которых мы даже не подозреваем, ибо их не так и просто увидеть. Чего стоит наше собственное тело: миллионы клеток из разных подсистем слаженно выполняют свои функции, поддерживая жизнедеятельность организма. Среди великого разнообразия необычных молекулярных образований стоит выделить молекулярные моторы, к которым причисляют моторные белки (например, кинезин). Концепция искусственных молекулярных моторов существует еще с середины прошлого века, а попыток создать нечто подобное было очень много, и все они чем-то отличались от других. Сегодня мы с вами познакомимся с исследованием, в котором ученые из EMPA (Швейцарская федеральная лаборатория материаловедения и технологий) создали молекулярный двигатель из 16 атомов, что делает его самым маленьким на данный момент. Как именно ученые создавали нано-двигатель, какие его особенности и возможности, и как эта разработка может быть применена на практике? Об этом мы узнаем из доклада ученых. Поехали.

Основа исследования


В 1959 году американский ученый Ричард Фейнман (1918-1988) высказал теорию о том, что когда-то мы сможем создавать молекулярные моторы. Кому-то эта идея на то время могла показаться безумной, но скептическое отношение к науке еще никогда никого не останавливало.

Основной механизм молекулярных моторов это вращение, за что их еще именуют молекулярными роторами. В 1999 году Т. Росс Келли и его коллеги опубликовали доклад (Unidirectional rotary motion in a molecular system), в котором описывалось ротационное движение молекулярной системы посредством химических процессов.


Профессор органической химии Бостонского колледжа Т. Росс Келли.

Система состоит из трехлопастного триптиценового ротора и геликена и может выполнять однонаправленное вращение на 120. Чтобы выполнить это вращение, системе необходимо пройти 5 этапов.


Молекулярный ротор Келли (схема 5-этапного вращения).

Основная проблема данного метода заключается в том, что вращение происходит однократно. Келли и его коллеги долгое время пытались найти решение этой проблемы, однако безуспешно.

Тем не менее, метод Келли показывает, что химическая энергия может быть использована для создания искусственных молекулярных моторов.

В том же 1999 году в университете Гронингена (Нидерланды) под руководством Бена Феринга был создан еще один молекулярный мотор (Light-driven monodirectional molecular rotor). Их вариант мог вращаться на 360 градусов и состоял из бис-хелицина, соединенного двойной аксиальной связью и имеющий два стереоцентра.


Молекулярный ротор Феринга (схема 4-этапного вращения).

В этот раз этапов для полного вращения было четыре. Но и тут не обошлось без недостатков: мотор Феринги был крайне медленный. Другими словами, на осуществление вращения требовалось больше времени, чем у природных эквивалентов.

В 2008 году в университете штата Иллинойс (США) Петр Крал с коллегами разработали молекулярный мотор, движение которого осуществляется за счет резонансного или нерезонансного туннелирования электронов (Nanoscale Rotary Motors Driven by Electron Tunneling).


Молекулярный мотор Крала (схема вращения за счет туннелирования электронов).

Туннелирование электронов обеспечивает мотор энергией, необходимой ему для движения. Сам мотор состоит из 3 (или 6) лопастей, образованных на основе полимеризированного ицеана. В качестве оси мотора используется углеродная нанотрубка.

Данный метод достаточно эффективен в условиях лаборатории, однако его показатели могут снизиться из-за шума и структурных дефектов, которые неминуемо присутствуют в природных условиях.

Каждый из вышеперечисленных вариантов молекулярного мотора является уникальным и в чем-то превосходящим другие два. Однако, несмотря на разительные отличия в методиках их создания, все они послужили вдохновением для последующих разработок, в частности и для той, которую мы сейчас рассмотрим.

Ученые заявляют, что большинство синтетических молекулярных машин, хотя и управляются квантовыми процессами, демонстрируют классическую кинетику, тогда как работа с квантовым туннельным движением в значительной степени неуловима. Следовательно, сканирующая туннельная микроскопия (СТМ) обеспечивает идеальную платформу для исследования динамики атомов и молекул на поверхностях. Тем не менее, лишь немногие исследования были нацелены на достижение направленного движения (контролируемого и независимого от положения иглы), которое требует нарушения симметрии инверсии, что обычно достигается путем адсорбции хиральных молекул на ахиральных поверхностях.

Ученые решили использовать эту концепцию, но слегка изменив ее. В качестве хирального статора* было решено использовать поверхность нецентросимметричных кристаллов PdGa (Pd палладий, Ga галлий).
Статор* неподвижная часть мотора, взаимодействующая с ротором (подвижная часть мотора).
Это ослабляет геометрические ограничения на молекулу ротора и позволяет реализовать направленное движение даже для простых и симметричных молекул, таких как C2H2.

На Pd3 молекулы ацетилена адсорбируются поверх тримеров Pd. Во время STM-визуализации при 5 К они выглядят как гантели с разнесением между лепестками около 3 в трех симметрично эквивалентных ориентациях, повернутых на 120 (1E-1G), между которыми они переключаются квазимгновенно (1C и 1D).


Изображение 1

Молекулы ацетилена прочно закреплены на тримере и обычно диссоциируют* перед тем, как их вытаскивают из тримера с помощью иглы микроскопа.
Диссоциация* распад сложных химических соединений на составляющие компоненты.
Ученые наблюдали за процессом вращения, записывая временной ряд туннельного тока IT(t) при фиксированном положении иглы (1H).

IT(t) на графике 1H, записанный в течение t = 100 с, демонстрирует последовательности циклических скачков между тремя уровнями ( .RA RB BC RA ) с nCCW= 23 и nCW= 0 (CCW против часовой стрелки, CW по часовой стрелке). Это приводит к частоте f = nCCW + nCW / t = 0.23 Гц и идеальной направленности dir = 100% (nCCW-nCW) / (nCCW + nCW) = 100%.

СМТ снимки показывают, что в движении мотора преобладает направление против часовой стрелки.


Изображение 2

Анализ параметрической зависимости частоты вращения (2A-2C) показывает, что этот молекулярный двигатель работает в двух различных режимах: режим туннелирования (TR), где его частота вращения T не зависит от температуры (T < 15 K), напряжения смещения ( |VG| < 30 мВ) и тока (IT < 200 пА); классический режим (CR), где частота вращения зависит от этих параметров.

Экспериментальные данные (изображение 1) были записаны в режиме TR, однако ученые решили сначала рассмотреть именно классический режим, где вращения C2H2 могут избирательно подпитываться от тепловых или электрических возбуждений.

Для начала была найдена температурная зависимость частоты вращения при низком смещении (), чтобы следовать характеристике Аррениуса* (сплошная линия на ): (T) = T + Аexp (- EB / kBT), где T = 4.5 Гц, А = 10 8.72.0 Гц, EB = 27.57.1 мэВ.
Уравнение Аррениуса* устанавливает зависимость константы скорости химической реакции от температуры.
Выше 30 мВ частота увеличивается экспоненциально с VG, независимо от полярности (2B и 2C). В тех же условиях, но при постоянном напряжении смещения, степенная зависимость* ( InT при n 1; 2D) идентифицирует электронно-стимулированное вращение как одноэлектронный процесс. Зависимость частоты и направленности вращения от параметров T, VG и IT хорошо воспроизводится кинетической моделью Ланжевена (сплошные линии на 2B и 2C).
Степенной закон* относительное изменение одной величины приводит к пропорциональному относительному изменению другой величины.
Ученые отмечают, что важную роль в анализе всей системы играет понимание влияния иглы микроскопа, необходимого для фактических наблюдений за движением. В частности, необходимо убедиться, что нарушение симметрии инверсии из-за положения иглы вблизи двигателя не преобладает над влиянием хиральной подложки при определении направления вращения.

Для этого было измерено 6400 временных рядов с постоянной высотой наконечника zT(t) на 80х80 сетке из равноудаленных точек 1х1 нм2 в окрестности отдельных молекул ацетилена в режиме туннелирования (2E). К счастью, анализ показал, что игла микроскопа никак не влияет на однонаправленное вращение молекулы.

Дополнительное моделирование, в ходе которого была выполнена оптимизация конфигурации молекулы и формы иглы, позволило получить идеальную последовательность (схему) сигналов (2F). Следовательно, независимо от положения иглы последовательность сигналов всегда соответствует вращению против часовой стрелки.

Кроме того, как видно на 2G, нет явной зависимости T от положения иглы. Потому можно предположить, что все три вращательные конфигурации C2H2 будут энергетически эквивалентными. Три вращательных состояния становятся энергетически невырожденными, только если игла поднесена слишком близко к подложке.

Оценив 1792 событий вращения (nCCW= 1771 и nCW = 21) в режиме туннелирования, была определена направленность dir 96.7% с достоверностью 2. Сопоставив результаты моделирования и экспериментов удалось определить вращение C2H2, описать которое можно как вращающийся ротор, центр масс которого движется по окружности с радиусом r = 0.5 0.1 и моментом инерции IC2H2 = 5.62 х 10-46 кгм2 ().


Изображение 3

Установив степень влияния иглы микроскопа на вращение системы, ученые приступили к детальному рассмотрению зависимости вращения от параметров системы (3A-3D). Температурная зависимость показывает быстрое падение направленности, когда термически активированные вращения начинают вносить значительный вклад. Сплошная линия на предполагает, что T имеет 98%-ную направленность, тогда как термически активированные скачки, описываемые уравнением Аррениуса, являются чисто случайными.

Эти случайные события теплового вращения ожидаются, потому что субстрат, игла СТМ и, следовательно, молекулы находятся в тепловом равновесии и, соответственно, однонаправленное вращение (которое уменьшает энтропию) запрещено вторым законом термодинамики.

При T = 5 K уменьшение направленности также наблюдается для напряжений смещения VG выше 35 мэВ (3B). Однако, в отличие от тепловых вращений, те, которые вызваны неупругим туннелированием электронов (IET), становятся ненаправленными постепенно. Это отчетливо наблюдается в режиме, когда сосуществуют тепловые и IET-вращения. Как показано на 3C, независимая от напряжения направленность (10% при T = 19 K и |VG| < 30 мВ) может быть значительно увеличена при более высокой |VG| из-за дополнительных направленных вращений IET. Однако это увеличение эффективно только в узком диапазоне напряжений, за пределами которого (в большую сторону) направленность быстро уменьшается.

В отличие от этого, IT-зависимость направленности для фиксированного напряжения является слабой (3D), где небольшое уменьшение направленности с увеличением тока объясняется обнаружением двух быстро последовательных вращений против часовой стрелки как одного ошибочного непрерывного вращения. (сплошные линии на 3D). Из этого следует, что направленность остается выше 95% при |VG| < 40 мВ даже при высоком токе.

Для моделирования кинетики происходящих событий в данной системе было решено использовать концепцию смещенного броуновского движения*, предложенную в исследовании Астумяна (The Physics and Physical Chemistry of Molecular Machines) и Хэнджи (Artificial Brownian motors: Controlling transport on the nanoscale).
Броуновское движение* беспорядочное движение частиц твердого вещества, вызванное тепловым движением частиц жидкости или газа.
В полученной модели IET-индуцированного вращения предполагается статический и периодический, но асимметричный потенциал U() ( = [0.2] с периодичностью /3) с асимметрией потенциала (Rasym, вставка на ).

Одно IET события достаточно для мгновенного возбуждения молекулы из ее основного состояния, а ее траектория (t) получается из динамики Ланжевена: I = (U() / ) , где I момент инерции, а коэффициент вязкой диссипации.

В зависимости от Rasym и , две разные минимальные кинетические энергии EL и ER требуются для преодоления барьера слева (т.е. для движения по часовой стрелке) и справа (т.е. для движения против часовой стрелки) соответственно. Эти энергии являются основой для описания частоты и направленности с помощью использованной кинетической модели.

Сравнение кинетической модели и результатов экспериментов ( и ) позволяет определить зависящие от температуры EL(T) и ER(T) (3E). В результате было установлено, что Rasym равен 1.25 < Rasym < 1.5, предполагая, что EB = 25 мэВ.

Уменьшение диссипации с 1.6 х 10-33 кгм2/с при 5 К до 1.1 х 10-33 кгм2/с при 20 К можно объяснить менее эффективным связыванием молекулы с подложкой при повышении температуры.


Изображение 4

На графике показаны последовательности IT(t) для C2H2, C2DH и C2D2, где отчетливо видно отношения T (по отношению к C2H2) 1:0.56(11):0.24(5) (C2H2:C2DH:C2D2), которые наблюдались при использовании разных игл микроскопа.

Это явное относительное уменьшение T контрастирует со сравнительно небольшим относительным изменением момента инерции 1:1.08:1.2 и, следовательно, показательно для квантового туннелирования.

Рассмотрение IT(t) последовательности C2DH с нарушенной C2 симметрией показывает, что вращение протекает через шесть, а не три уровня тока (4B). Это является доказательством того, что для полного вращения ацетилена действительно требуется шесть вращений против часовой стрелки на 60. Сравнение экспериментальных и смоделированных значений T показало идеальное совпадение (4D).

Квантовые туннельные вращения, сопутствующие высокой направленности в 97.7%, позволяют оценить изменение энтропии одиночного туннельного вращения по экспериментально полученным вероятностям вращения против часовой стрелки и по часовой стрелке, определяемым как S = kBln (ppCCW / pCW) kBln (100/1) 0.4 мэВ/К.

Это означает, что направленное вращение в режиме туннелирования должно быть неравновесным процессом с диссипацией энергии Q > 2 мэВ при 5 К и Q > 6 мэВ при 15 К на вращение.

Максимальная мощность рассеяния составила 100 мэВ/с на каждый ротор, а частота туннелирования составила максимум 10 Гц. Однако микроскоп, необходимый для наблюдений, локально рассеивает около 3 х 106 мэВ / с даже при самых низких настройках туннельного тока. Несмотря на столь экстремальные настройки, наблюдается постоянная частота вращения со стабильно высокой направленностью.

В заключение ученые отмечают, что высоконаправленное вращение C2H2 на хиральных поверхностях PdGa{111}Pd3 демонстрирует богатую феноменологию, наиболее заметно характеризующуюся беспрецедентно высокой направленностью и малым размером мотора.

Ротор (C2H2) и статор (кластер Pd3-Ga6-Pd3) состоят всего лишь из 16 атомов, образуя однонаправленный шестизначный циклический молекулярный двигатель (), который непрерывно работает, получая энергию исключительно от одиночных электронов.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Миниатюризация стала одним из самых популярных направлений в современной науке. Разные исследовательские группы создают все больше и больше разработок, так или иначе связанных с этой концепцией. В рассмотренном нами сегодня труде его авторы описали самый маленький в мире молекулярный ротор, состоящий из 16 атомов. Однако габариты не являются единственной отличительной чертой данного мотора. Помимо этого он работает непрерывно, чем не могли похвастаться предшественники, способные выполнить лишь один цикл вращения. Еще одной диковинкой молекулярного мотора является энергия, которой он подпитывается. Ввиду того, что во время туннелирования происходит потеря энергии, ротор продолжает вращаться в одном направлении.

По словам ученых, данная разработка не только может быть использована в создании наноразмерных устройств разного назначения (медицина, передача данных, исследование микроструктурных образцов и т.д.), но и помочь в понимании процессов, связанных с рассеянием энергии во время квантового туннелирования.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята!

Пятничный офф-топ:

Каждый раз, когда я читаю что-то про молекулярные моторы, я вспоминаю это видео (да, оно не ново, но улыбку вызывает постоянно).

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Треугольники малые и большие изменение электронного взаимодействия в кристалле за счет температуры

05.08.2020 10:11:24 | Автор: admin


Вы когда-нибудь пытались объяснить трехлетнему ребенку, что такое атомы? Нет? И правильно, ибо впоследствии ребенок будет бегать по всему дому, детской площадке и магазину, тыкать пальцем на любой предмет и спрашивать И тут тозе атомы?. Если же серьезно, любопытство, присущее детям, это то, что часто становится движущей силой многих открытий взрослых дядь и теть в белых халатах. Возвращаясь к атомам, все мы знаем, что они являются основными строительными кирпичиками всего, что нас окружает, и нас в том числе. Цементом, связывающим атомы между собой, являются заряженные частицы (ядра или электроны). Разные вещества формируются за счет разных вариантов взаимодействия (связи) электронов. Ученые из Нагойского университета (Япония) обнаружили, что охлажденный до -58 C оксид вольфрама цезия (CsW2O6) демонстрирует необычную связь электронов, которую ранее обнаруживали исключительно в триводородных ионах, найти которые можно в межзвездном пространстве. Как подобная связь электронов влияет на свойства материала, в чем ее уникальность и что это значит для будущих исследований в области материаловедения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Авторы сего труда отмечают, что понимание фазовых переходов кристаллических твердых тел является одной из основных задач в материаловедении. Сюда относится и электронные фазовые переходы в соединениях переходных металлов с пирохлорными* структурами, состоящими из трехмерных сетей тетраэдров.
Пирохлор* минерал из класса оксидов и гидрооксидов, являющийся сложным оксидом натрия, кальция и ниобия с дополнительными анионами. Формула пирохлора выглядит так: (NaCa)2Nb2O6 (OH,F).
В качестве примера ученые приводят магнетит Fe3O4, который демонстрирует переход металл-диэлектрик*, сопровождаемый зарядовым упорядочением Fe при 119 К, называемым переходом Вервея*.
Переход металл-диэлектрик* обозначает, что вещество при определенных условиях демонстрирует свойства металла (например, проводимость), а при других условиях свойства изолятора.
Переход Вервея* фазовый электронно-упорядочеваемый переход, который происходит в смешанновалентной системе и приводит к упорядочению формальных валентных состояний в низкотемпературной фазе.
Полного понимания этого перехода пока нет, хоть и было проведено множество исследований и опытов. Тем не менее, научное сообщество уделяет все больше внимания изучению переходов металл-диэлектрик, сопровождаемых магнитным упорядочением все в одном в 5d-оксидах (например, Cd2Os2O7 и Nd2Ir2O7). Основной причиной популярности таких переходов является возникновение ферроического упорядочения протяженных магнитных октаполюсов и образование фермионов Вейля* в твердом теле.
Фермион Вейля* безмассовый тип фермиона со спином 1/2.

Фермион* частица с полуцелым значением спина. К фермионам относятся кварки (протоны и нейтроны), лептоны (электроны, мюоны, тау-лептоны, нейтрино), дырки (квазичастицы в полупроводнике), а также квантовомеханические системы, состоящие из нечетного числа фермионов.
В данном исследовании ученые описывают самоорганизацию 5d электронов при электронном фазовом переходе -пирохлора оксида CsW2O6, обнаруженную в высококачественных монокристаллах. Ранее сообщалось, что CsW2O6 обладает кубической решеткой с пространственной группой Fd3m при комнатной температуре. В таком случае атомы W образуют структуру пирохлора и имеют валентность 5.5+ с электронной конфигурацией 5d0.5. Измерение удельного электрического сопротивления поликристаллических образцов показало, что переход металл-диэлектрик происходит при температуре 210 К (-63.15 C).

Также ранее сообщалось, что кристаллическая структура диэлектрической фазы имеет орторомбическую пространственную группу Pnma. Однако теоретические исследования показали, что это не соответствует действительности. Расчеты электронной структуры Fd3m фазы показали, что существует сильное влияние поверхностей Ферми, которое вызывает понижение симметрии до пространственной группы P4132.
* Pnma, Fd3m и другие относятся к кристаллографическим группам симметрии, которые описывают все возможные симметрии бесконечного количества периодически расположенных в трехмерном пространстве точек. Более детальную информацию касательно кристаллографических групп можно найти тут.
Недавние фотоэмиссионные эксперименты с тонкими пленками образцов показали, что валентность W в диэлектрической фазе диспропорционирует в 5+ и 6+.

Результаты исследования


Для начала стоит рассмотреть фазовый переход, который происходил при температуре 215 К.


Изображение 1

В кварцевой трубке были подготовлены монокристаллы CsW2O6 () и W-дефицитного CsW1.835O6. На графике 1b видно, что удельное сопротивление (p) монокристалла CsW2O6 сильно возрастает при понижении температуры ниже отметки Tt = 215 К, что наблюдалось и в случае поликристаллических образцов и тонких пленок.

Это увеличение сопротивления сопровождается небольшим, но вполне очевидным гистерезисом температуры. Это указывает на то, что фазовый переход первого рода происходит именно при Tt (т.е. при 215 К). В данном исследовании фазы выше и ниже Tt называются фаза I и фаза II соответственно.

Магнитная восприимчивость () сильно уменьшается ниже Tt (1b), что также идентично поликристаллическому образцу. Однако линейная ширина спектров 133Cs-ЯМР в фазе II не показывает какого-либо значительного уширения по сравнению с фазой I (1f). Из этого следует, что уменьшение в фазе II не вызвано антиферромагнитным упорядочением.

На изображении показаны рентгенограммы монокристалла CsW2O6, полученные при 250 К (фаза I) и 100 К (фаза II). Каждое из дифракционных пятен при 250 K было проиндексировано на основе кубической ячейки a = 10.321023(7) с пространственной группой Fd3m, в соответствии с предыдущими исследованиями. На дифракционной картине при 100 К появляется больше дифракционных пятен. Все они были проиндексированы на основе кубической пространственной группы P213 с постоянной решетки a = 10.319398(6) , что практически идентично a фазы I. Подобное изменение дифракционных пятен происходит при Tt, как видно из температурной зависимости интенсивности (1d).

Также стоит отметить, что в фазе II дифракционные пятна не разделяются на несколько пятен и не меняют свою форму даже в области высокого угла (). Класс Лауэ* и кристаллическая система, определяемые наблюдаемыми отражениями, ясно указывают на то, что структурное изменение, которое сохраняет кубическую симметрию, происходит при Tt, а фаза II имеет класс Лауэ m3.
Классы Лауэ* кристаллографический класс симметрии, у которого есть центр симметрии. Из всех 32 классов лишь 11 считаются классами Лауэ. Класс m3 это дитригонально-пирамидальная система.
Как видно из поляризационной зависимости Рамановских спектров поверхности (111), измеренных при 100 К (фаза II) и комнатной температуре (фаза I на 1e) спектры фазы II не зависят от угла поляризации, как в фазе I. Это свидетельствует о наличии трехкратной вращательной симметрии, перпендикулярной (111), что согласуется с предполагаемой кубической симметрией.

Данные результаты означают, что структурная модель Pnma, предложенная на основе данных порошковой дифракции*, является неверной.
Порошковая рентгеновская дифракция* метод исследования вещества путем дифракции рентгеновских лучей на образце в виде порошка.
Дополнительным подтверждением ошибочности Pnma является факт того, что данная модель имеет псевдотетрагональное искажение около 0.03%, но в данном исследовании этого не наблюдалось.

В поликристаллическом образце CsW2O6 W-дефицитный CsW1.835O6 всегда существует в качестве примесной фазы. Ученые считают, что в процессе определения природы фазы II важную роль сыграл факт того, что монокристаллы CsW2O6 и W-дефицитного CsW1.835O6 были получены отдельно, а измерения дифракционных и физических свойств выполнялись именно на монокристаллах.


Таблица 1: кристаллографические данные CsW2O6 фазы I (250 К).


Таблица 2: кристаллографические данные CsW2O6 фазы II (100 К).


Таблица 3: кристаллографические данные CsW1.835O6 (30 К).


Температурная зависимость сопротивления (вверху) и магнитной восприимчивости (внизу) монокристаллов CsW1.835O6.

На следующем этапе исследования ученые более детально рассмотрели кристаллическую структуру фазы II.

В фазе I с пространственной группой Fd3m каждый из атомов Cs, W и O занимает один участок, где атомы Cs и W образуют структуры алмаза и пирохлора соответственно ().


Изображение 2

В фазе II с пространственной группой P213 атомы Cs занимают два разных центра и образуют структуру сфалерит (названную в честь одноименного минерала, также именуемого цинковая обманка*) (2b).
Обманками* называют минералы, которые не являются металлическими рудами, но обладают полуметаллическим блеском и другими признаками (цвет, плотность), присущими как рудам металлов, так и минералам.
Это было дополнительно подтверждено двумя пиками в спектрах 133Cs-ЯМР, соответствующими двум областям Cs, которые проявляются в виде небольшого расщепления пиков в случаях 200, 160 и 125 K (1f).

С другой стороны, атомы W занимают два участка с соотношением 1:3 в фазе II (2b и 2c), что несовместимо с зарядовым упорядочением W5+ W6+ атомов W5+ и W6+ в соотношении 1:1.

В соответствии с расчетом валентной суммы связи для расстояний W O, определенным из рентгеноструктурного анализа монокристалла, валентности атомов W(1) и W(2) была равна 6.07(3) и 5.79(3) при 100 К (фаза II) соответственно.

Учитывая, что параметры валентной суммы надежной связи W6+ доступны, а параметры W5+ нет, логично, что атомы W(1) являются W6+ без 5d электронов. В этом случае валентность атомов W(2) становится равной 5.33+ с электронными конфигурациями 5d2/3.

Из вышеописанных расчетов следует, что зарядовое упорядочение с нецелой валентностью имеет место при Tt. Фактически, монокристаллы W-дефицитного CsW1.835O6, где все атомы W имеют валентность 6+ без 5d электронов, не показывают переход при Tt.

В фазе II атомы W(2) образуют трехмерную сеть из маленьких и больших правильных треугольников, которые поочередно связаны друг с другом общими углами (2b). Хотя разница в размерах между большим и малым треугольниками составляет около 2%, расположение занятых 5d-орбиталей между ними совершенно различно, что приводит к образованию тримера W3 в небольшом треугольнике. Если бы не было чередования треугольников W3, подрешетка W имела бы гиперкагомную (трехмерная структура из связанных треугольников) структуру (). Наличие чередования указывает на то, что структура дышащего гиперкагома (т.е. с зазорами, в отличие от равномерного гиперкагома) формируется во время фазы II.

Зарядовое упорядочение в фазе II CsW2O6 любопытно тем, что условие Андерсона поддерживается необычным образом. Андерсон говорил, что у магнетита есть бесконечное число моделей упорядочения зарядов, когда все тетраэдры в структуре пирохлора имеют одинаковый полный заряд (это и есть условие Андерсона), и это макроскопическое вырождение сильно подавляет температуру перехода Вервея.

Тем не менее, есть сведения о том, что не только магнетит, но и другие смешанно-валентные пирохлорные системы, такие как CuIr2S4 и AlV2O4, демонстрируют упорядочение зарядов, которое нарушает условие Андерсона. В таком случае энергия, полученная за счет -связи между d-орбиталями соседних атомов, должна быть достаточно большой, чтобы компенсировать потерю кулоновской энергии из-за нарушения условия Андерсона.

Но в случае с CsW2O6 ситуация иная. Его зарядовое упорядочение удовлетворяет условие Андерсона, где каждый тетраэдр состоит из трех атомов W5.33+ и одного атома W6+. Однако этот формат упорядочений отличается от предложенного Андерсоном и Вервеем, где валентности были целочисленные с соотношением 1:1.

Упорядочение гиперкагомного типа часто появляются в пирохлорных системах с соотношением двух видов атомов 1:3. Таким образом, CsW2O6 является на данный момент единственным примером упорядочения гиперкагомного типа с нетривиальной природой формирования.

Возникает вполне ожидаемый вопрос почему именно такой формат упорядочения возникает в CsW2O6? По словам ученых, ответ можно получить, внимательнее рассмотрев неустойчивость поверхности Ферми электронной зонной структуры фазы I, т.е. понять движение и взаимодействие электронов в этой фазе.


Изображение 3

Слева на изображении выше показана зонная структура фазы I, а справа перекрывающие друг друга зонные структуры, полученные после параллельного сдвига электронных зон, соответствующих изменению примитивной ячейки с гранецентрированной сингонии на простую сингонию.


Кубическая сингония (слева направо): простая, объемно-центрированная и гранецентрированная.

Как видно на правой части изображения 3, пересечение зон происходит вблизи всех точек, где электронные зоны касаются энергии Ферми (EF). Следовательно, поверхности Ферми хорошо вложены за счет параллельных сдвигов электронных зон, соответствующих потере операций центрирования.

Подобный сценарий развития событий ученые именуют трехмерной вложенностью. Это означает, что большая электронная энергия генерируется за счет структурных изменений, связанных с вышеупомянутым изменением симметрии. Следовательно, эта трехмерная вложенность может быть важным компонентом возникновения перехода при 215 К.

Если рассматривать данный эффект как единственную движущую силу в возникновении перехода, то должно произойти структурное изменение с Fd3m на P4132 или P4332, что уже высказывалось в ранее проведенном теоретическом исследовании. В таком случае атомы W(2) должны образовывать однородную гиперкагомную структуру. Также предполагается, что запрещенная зона не открывается при энергии Ферми в случаях P4132 и P4332, что не согласуется с наблюдаемой в данном исследовании диэлектрической природой фазы II.

В действительности же пространственной группой фазы II является P213, которая является подгруппой P4132 и P4332, а атомы W(2) образуют дышащую гиперкагомную структуру, где размер маленького треугольника на 2% меньше, чем у большого.

Кроме того, ориентация занятых 5d орбиталей важна для понижения симметрии с P4132 / P4332 (равномерный гиперкагом) до P213 (дышащий гиперкагом). Для октаэдра W(2)O6 фазы II () две апикальные связи W(2)-O (отмечены серым) на 38% короче, чем остальные четыре экваториальные связи (отмечены синим). Это говорит о том, что октаэдр одноосно сжат.

Подобное искажение, по словам ученых, сильно напоминает классический пример эффекта Яна Теллера* в электронных системах t2g. В таком случае 5d-орбитали, лежащие в экваториальной плоскости, должны быть заняты электронами (2f).
Эффект Яна Теллера* возникает, когда взаимодействие между электронами и колебаниями ядер приводит к образованию локальных деформаций и изменению симметрии кристалла (статический эффект), или когда образуются вибронные состояния (динамический эффект).
Между занятыми 5d-орбиталями в малом треугольнике происходит значительное перекрытие через 2p-орбиталь O. А вот в большом треугольнике наблюдается небольшое перекрытие. Это указывает на то, что два электрона в трех атомах W(2) заключены в тримере W3 в маленьком треугольнике.

Для образования этого тримера электронная корреляция 5d электронов в CsW2O6 может быть еще одним существенным фактором. В тримере CsW2O6 два 5d электрона образуют спин-синглетную пару, что приводит к немагнитному и диэлектрическому основному состоянию. Таким образом мы наблюдаем альтернативный тип самоорганизации d-электронов, реализованный в сильно коррелированном 5d-оксиде.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Результатом сего исследования стало обнаружение того, что тримеры правильного треугольника W3 образуются при переходе 215 K в -пирохлоре оксида CsW2O6. Определить это удалось с помощью измерений структурных и электронных свойств монокристаллических образцов.

По сути, ученые обнаружили молекулы тривольфрама в монокристаллах CsW2O6, охлажденных до -58 C. При комнатной температуре CsW2O6 является хорошим проводником, но при охлаждении становится диэлектриком.

Когда кристалл находится в состоянии проводника, молекулы вольфрама образуют трехмерные сети тетраэдрических пирамид, связанных по их углам, известных как структура пирохлора. А симметрически распределенные между молекулами электроны образуют их связь. Если же образец охладить, то электроны меняют свое положение, от чего появляется два типа атомов вольфрама, которые отличаются своей валентностью. Такие изменения приводят к искажению связи вольфрама с атомами кислорода, что приводит к более сжатой форме соединения.

В процессе всех этих пертурбаций атомы вольфрама с более низкой валентностью образуют маленькие и большие треугольники по бокам тетраэдров вольфрама, причем очень маленькие молекулы тривольфрама образуют маленькие треугольники. Три атома вольфрама, являющиеся вершинами этих треугольников, держатся друг друга за счет всего лишь двух электронов.

Ученые заявляют, что на данный момент CsW2O6 является единственным известным примером, где подобный формат связи (два электрона на три атома) проявляется как фазовый переход. В последующих работах авторы сего исследования намерены глубже изучить соединения с пирохлорными структурами, что позволит открыть новые материалы с крайне необычными свойствами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru