Русский
Русский
English
Статистика
Реклама

Электроны

Давление света подтверждение 90-летней теории об импульсах фотонов

22.07.2020 10:16:05 | Автор: admin


На протяжении столетий ученые из разных уголков мира создавали самые разные теории, объясняющие те или иные процессы, явления и феномены. Некоторые из этих теорий были подтверждены или опровергнуты на практике буквально сразу после их высказывания. Другие же оставались на бумаге многие годы, ибо на момент их появления технологии не позволяли провести практические опыты. Сегодня мы познакомимся с исследованием, в котором ученые из Франкфуртского университета имени Гете (Германия) попытались понять, что есть давление света на самом деле, подтвердив в процессе теорию 90-летней давности. В чем именно заключалась теория, какие методики были использованы в опытах, и что нового мы узнали о фотонах? Ответы на эти вопросы ожидают нас в докладе ученых. Поехали.

Историческая справка


Давление света (или давление электромагнитного излучения) это механическое давление, оказываемое на любую поверхность в результате обмена импульсом между объектом и электромагнитным полем.

Первооткрывателем этого понятия является Иоганн Кеплер (1571-1630). В 1619 году, наблюдая за кометой, он отметил, что ее хвост всегда направлен в сторону от Солнца.

Спустя более двухсот лет в 1862 году Джеймс Максвелл (1831-1879) предположил, что свет как электромагнитное излучение обладает свойствами импульса и, следовательно, оказывает давление на любую поверхность, с которой контактирует. Экспериментально это было подтверждено лишь в 1900 году Петром Лебедевым.

Практические опыты с целью изучения давления света крайне сложны. Связано это с тем, что силы, создаваемые световым давлением, крайне малы. Однако в космических масштабах (буквально) суммарный эффект этих малозаметных сил может оказывать большое кумулятивное воздействие на объект в течение длительных периодов времени. Например, если бы во время подготовительных расчетов перед запуском космического аппарата программы Викинг не учитывалось давление света, то аппарат пролетел бы орбиту Марса на расстоянии 15 000 км.


Иоганн Кеплер, Петр Лебедев и Арнольд Зоммерфельд.

Если суммировать все воедино, то мы получим следующее: частицы света (фотоны) ударяются об атомы тела и передают ему часть своего импульса, а тело от этого становится быстрее.

Пока все логично. Однако не все так просто. Ранее проводились опыты, в которых фотоны определенной длины волны выбивали из атомов отдельные электроны. Импульс этих электронов был больше, чем у фотона, который с ним взаимодействовал. Это невозможно, скажете вы, ибо есть второй закон Ньютона, в котором говорится, что на любое действие имеется противоположное равное противодействие (утрированно говоря). Тем не менее, в 1930 году немецкий ученый Арнольд Зоммерфельд предположил, что дополнительный импульс выброшенного электрона происходит из атома, который он покинул. Получается, что движение атома должно быть направлено в сторону источника фотонов, т.е. к свету. Теория весьма смелая, но в те годы подтвердить ее на практике было нереально ввиду отсутствия необходимых технологий.

И вот 90 лет спустя наши современники смогли впервые в мире воочию понаблюдать этой таинственный процесс.

Основа исследования

Авторы труда напоминают, что вектор электрического поля электромагнитной волны ориентирован перпендикулярно оси распространения света. Поскольку это поле управляет фотоионизацией*, стоит предположить, что его направление будет осью симметрии для угловых распределений фотоэлектронов и фотоионов.
Фотоионизация* ионизация молекулы/атома непосредственно при абсорбции фотонов, энергия которых равна или больше энергии ионизации.

Фотоэффект процесс взаимодействия электромагнитного излучения и вещества, когда энергия фотонов передается электронам вещества.

Фотоэлектрон электроны, вытесняемые из вещества, когда на него воздействует электромагнитное излучение.

Фотоион катион (положительно заряженный ион), полученный в результате фотоионизации.
Однако при высоких энергиях фотонов E и соответствующих высоких фотонных импульсах k эта симметрия нарушается, а импульсные распределения фрагментов реакции асимметричны относительно направления распространения света.

Зоммерфельд в своих изысканиях понял, что средний прямой импульс электронов, превышающий импульс фотона (kex > k), влечет за собой то, что средний импульс фотоиона должен быть противоположным для учета сохранения импульса.

Стоит также отметить, что так называемые недипольные эффекты, возникающие из-за ненулевого импульса фотона, также оказывают существенное влияние на однофотонную ионизация. Кроме того, более высокие мультипольные компоненты взаимодействия света и вещества не только изменяют угловое распределение фотоэлектронов, но также открывают дополнительные пути ионизации, которые запрещены диполями.

В данном исследовании эксперименты по однофотонной ионизации были выполнены в двух вариантах:

  • высокоэнергетический (3001775 эВ) на PETRA III (DESY/Немецкий электронный синхротрон) с применением света с циркулярной поляризацией;
  • низкоэнергетический (1240 кэВ) на ID31 (European Synchrotron Radiation Facility) с применением света с линейной поляризацией.

Для измерений состояния заряда и трехмерного вектора импульса фотоионов был использован метод спектроскопии COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy).

Пучок фотонов проходил под прямым углом со сверхзвуковой газовой струей He (низкоэнергетический эксперимент) или N2 (высокоэнергетический эксперимент).

Фотонный пучок был пересечен под прямым углом сверхзвуковой газовой струей He (низкоэнергетический эксперимент) или N2 (высокоэнергетический эксперимент). Ионы направлялись электрическим полем к чувствительному ко времени и положению детектору с отсчетом положения линии задержки*.
Линия задержки* устройство задержки электрических и электромагнитных сигналов на заданный промежуток времен.
Начальные импульсы после фотоионизации были получены от времени полета ионов и положения точки контакта. В экспериментах с N2 рассматривалась исключительно ионизация K-оболочки (электронная оболочка атома первого уровня) с последующим распадом Оже*.
Эффект Оже* выход электрона из атомной оболочки ввиду безызлучательного перехода в атоме при снятии возбуждения.
В таком случае возникает два однозарядных иона, которые совпадают с оже-электроном. Из этих трех векторов импульса был рассчитан импульс иона N2+ в момент после фотоэлектронной эмиссии.

Чтобы получить доступ к ионным импульсам в абсолютном масштабе, важно точно знать местоположение ионов с нулевым импульсом на нашем детекторе. Для данных высоких энергий эта нулевая точка получается из ионов, которые создаются комптоновским рассеянием*.
Комптоновское рассеяние* некогерентное (фотоны до и после рассеяния не интерферируют) рассеяние фотонов на свободных электронах.
В этом случае импульс фотона передается электрону, и поэтому ион остается с распределением импульса, центрированным в начальной точке.


Изображение 1

На графике выше суммированы результаты исследования. Синим цветом показано измеренное среднее значение импульса иона в направлении распространения света kionx как функция энергии фотона (верхняя шкала) или импульса фотона (нижняя шкала). Точки (низкие энергии фотонов) соответствуют однократной ионизации He, а квадраты (высокие энергии фотонов) ионизации K-оболочки N2.

Отрицательные значения соответствуют обратному излучению, то есть в противоположную сторону от направления распространения фотона. Красным цветом обозначено среднее значение импульса фотоэлектрона kex, полученное за счет измеренного импульса иона с учетом сохранения импульса.

Красная и синяя линии демонстрируют прогнозируемые данные в соответствии со следующими формулами:



где Ip потенциал ионизации; с скорость света.

Из вышеописанных данных следует, что это является прямым практическим доказательством теории касательно обратно направленной эмиссии ионов при фотоионизации.


Изображение 2

Изображение выше демонстрирует нам распределение фотоионного импульса для фотоионизации He, где использовались фотоны с циркулярной поляризацией в 300, 600, 1125 и 1775 эВ. Горизонтальная ось составляющая импульса, параллельная k, а вертикальная ось это импульс, перпендикулярный оси фотона. Красным отмечены концентрические кольца, центр которых расположен там же, где и начальная точка импульсного пространства. Радиус колец равен соответствующим фотоэлектронным импульсам ke = 2(E Ip).

События ионизации не накапливаются на этих кольцах, а смещаются вперед в направлении распространения фотонов. Это наиболее четко видно на внешнем кольце, соответствующем энергии фотона 1775 эВ. При этом синие кольца смещаются вперед фотонным импульсом 1775 эВ фотона.

Следовательно, измеренные распределения импульса иона непосредственно показывают, что импульс фотона в основном поглощается ионом, что является следствием сохранения импульса.

В каждом отдельном событии ионизации импульс фотона передается центру масс системы, который почти совпадает с ионом. Соответствующее импульсное распределение электрона показывает окружность того же радиуса, но не смещенную вперед.

Помимо смещения вперед кольца в импульсном пространстве ионов, распределение импульсов на этом кольце также изменяется в зависимости от энергии фотона. Это распределение больше отклоняется в обратное полушарие при увеличении E.

Сохранение импульса требует, чтобы конечный импульс измеряемого иона равнялся импульсу фотона за вычетом импульса фотоэлектрона. Таким образом, распределение ионов на смещенной сфере в импульсном пространстве и угловое распределение фотоэлектронов в лабораторной системе отсчета являются прямыми зеркальными отражениями друг друга (изображение 3).


Изображение 3

Они имеют приблизительную дипольную форму, поскольку начальное состояние является He(1s), и, таким образом, главная составляющая углового момента (момента импульса) в конечном состоянии представляет собой диполь. Кроме того, эта дипольная форма отклонена вперед.

По заявлению авторов исследования, в профильной литературе можно встретить много вариантов объяснения передачи импульса фотона, некоторые из которых далеки от истины. Чаще всего утверждается, что поглощенный фотон передает выбрасываемому электрону собственный импульс. Из этого утверждения следует, что этот удар отвечает за смещение вперед углового распределения электронов, как показано на изображении выше.

Чтобы было проще понять все нюансы, ученые предлагают вспомнить, как именно происходит передача импульса фотона при взаимодействии с электромагнитным полем. Для простоты примера была выбрана фотоионизация 1s-электрона атома водорода.

За пределами электрического дипольного приближения электромагнитная волна ионизирующей плоскости с волновым вектором |k| = k = E/c (импульс фотона) впечатывает локальный фазовый фактор eikr в элемент матрицы перехода.

Вводя координату RH для центра масс атома и координату r для электрона 1s по отношению к RH, абсолютная координата электрона 1s в лабораторной системе отсчета может быть переписана как r = RH + r. Таким образом, соответствующая фаза может быть выражена следующим образом: eikr = eikRHeikr.

Эта фаза, представленная полем, модифицирует элемент матрицы перехода: первый фактор из уравнения выше входит в элемент матрицы перехода |eikRH| 0 между переходными состояниями атомного центра масс, которые описываются плоскими волнами (2)3/2 eiRH с импульсом . Эта амплитуда порождает закон сохранения импульса = 0+k. Таким образом, поглощение фотона атомом привносит в его центр массы импульс k.

Второй фазовый фактор eikr из уравнения отвечает за мультипольные правки за пределами электрического дипольного приближения.

Выше порога ионизации в каждом событии ионизации ион получает импульс фотона и, кроме того, отдачу от фотоэлектрона. Дополнительная передача углового момента орбиты от фотона приводит к смещению вперед углового распределения электрона. Этот направленный вперед средний импульс электрона уравновешивается обратно направленной передачей импульса иону.

По результатам исследования видно, что для s-начальных состояний обратный импульс иона масштабируется -(3/5)k, подтверждая теорию, описанную Зоммерфельдом.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Выведение формул и формирование теорий нельзя назвать простым занятием, но поиски доказательств или опровержений этих теорий порой еще сложнее.
В данном труде ученые смогли доказать правоту теории, которая была сформулирована еще в тридцатых годах прошлого века. Авторы исследования смогли не только измерить импульс иона, но и определить его происхождение. Родителем этого импульса является так называемая отдача выброшенного электрона.

Если фотон имеет низкую энергию, то при теоретическом моделировании его импульсом можно пренебрегать, говорят ученые. Однако при высоких энергиях фотона подобное пренебрежение приводит к значительным неточностям. Экспериментальные данные позволили определить порог, когда импульс фотона больше нельзя не учитывать.

В дальнейшем ученые намерены продолжить начатую работу, поскольку совершенные открытия открывают двери перед более детальным рассмотрением процессов, происходящих в момент распределения энергии между двумя или более фотонами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Космический субботник уборка пыли на Луна

04.09.2020 10:14:53 | Автор: admin


Когда я был маленький, у моего отца была машина ВАЗ-2101. Это далеко не самая крутая тачка, но она исправно выполняла свои функции и всегда отлично выглядела. Причиной тому было то, что отец за ней ухаживал. Посему я всегда считал, что дешевый или старенький автомобиль может выглядеть намного лучше дорогого только за счет опрятности. Пыль на любой поверхности вызывает не только эстетическое разочарование в стиле Прометея (ибо сколько ты ее не убираешь, этот процесс придеться повторять снова и снова), но и негативно влияет на работоспособность некоторых предметов (кулеры в компьютерах, например), да и здоровье человека она не укрепляет. И если мы говорим про пыль на поверхностях в квартире, то средств для ее ликвидации полно. Но если это поверхность спутника Земли? Ученые из университета Колорадо в Боулдере (США) разработали методику уборки пыли с поверхности Луны. Кому мешает пыль на Луне, как от нее решили избавляться ученые и насколько эффективен их метод? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Поверхность Луны это настоящий кошмар для аллергиков и любителей чистоты. Шутки в сторону, поверхность нашего спутника покрыта слоем реголита*.
Реголит* остаточный грунт, который является результатом космического выветривания породы на поверхности Луны (и не только).
Частицы реголита могут подниматься вверх как от деятельности человека, так и ввиду природных процессов. Они легко прилипают к любым поверхностям (луноходы, скафандры, оптические линзы и т.д.). Но это не самое плохое, ибо они могут повреждать предметы, на которые оседают. К примеру, скафандры страдают от абразивности лунной пыли; лазерные ретрорефлекторы на лунной поверхности со временем показывают снижение коэффициента отражения света; радиаторы и терморегулирующие поверхности (TCS от thermal control surfaces) демонстрируют ухудшение своих характеристик; солнечные панели, покрытые пылью, дают меньшую выходную мощность и т.д. А человек, вдохнувший лунную пыль, может столкнуться с крайне серьезными проблемами со здоровьем.


В данном видео рассматривается влияние лунной пыли на скафандр участника миссии Apollo 17 Джина Сернана.

Все вышеописанные причины и привели к тому, что лунная пыль считается одной из основных технических проблем для будущих исследований поверхности Луны людьми и роботами.

За последние десятилетия было изучено и разработано несколько технологий пылеподавления. Эти методы можно разделить на четыре категории (ссылки ведут на некоторые из исследований в данных областях): гидравлические, механические, электродинамические и пассивные.

Гидравлические методы включают использование струй жидкости, пены и сжатых газов для удаления пыли с поверхностей. (Lunar Dust Degradation Effects and Removal/Prevention Concepts)

Механические методы используют щетки (например, нейлоновые щетинки) или вибрационные механизмы для очистки пыли. Такая методика использовалась во время программы Аполлон. (Evaluation of Brushing as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces)

Электродинамический пылезащитный экран на данный момент считается одним из самых развитых методов борьбы с лунной пылью. Основная идея состоит в том, чтобы подавать колеблющееся высокое напряжение на электроды, встроенные под поверхность оборудования, для удаления пыли. Ожидается, что этот метод будет более эффективным именно в лунной среде, поскольку лунная пыль заряжается плазмой солнечного ветра, солнечным излучением и / или трибоэлектрическими эффектами. (Practical performance of an electrostatic cleaning system for removal oflunar dust from optical elements utilizing electrostatic traveling wave)

В пассивных методах поверхности модифицируются (например, посредством ионной имплантации) для уменьшения силы сцепления пыли с данной поверхностью. (Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces)

Естественно, каждый из вышеописанных методов обладает своими достоинствами и недостатками. Выбор конкретной методики зависит от характеристик самой пыли, свойств поверхностей и условий применения этого метода.

Ученые считают, что достичь лучшего результата можно за счет гибридизации этих методов. В своем исследовании они представляют новый метод использования электронного луча для зарядки частиц пыли (< 25 мкм в диаметре), чтобы заставить их отскакивать от поверхностей в результате электростатических сил.

Подготовка к экспериментам




Изображение 1

Прежде всего стоит отметить, что запыленные поверхности обладают уникальной особенностью образования микрополостей между частицами пыли. Как видно на схеме , когда электроны или фотоны проходят через небольшой зазор и попадают в синий участок поверхности частиц пыли под поверхностью верхнего слоя, происходит испускание вторичных электронов или фотоэлектронов. Часть этих испускаемых электронов поглощается внутри микрополости и накладывает отрицательные заряды на окружающие частицы пыли (красные участки на схеме). Чрезвычайно большое электрическое поле образуется поперек полости из-за ее небольшого размера (порядка микрон), что приводит к накоплению значительных отрицательных зарядов на окружающих частицах. В результате сила отталкивания между этими отрицательно заряженными частицами достаточно велика, чтобы превзойти силу сцепление частица-частица или частица-поверхность и силу тяжести. Следовательно, происходит высвобождение частиц пыли. Практические опыты показали, что частицы пыли одного размера диаметром до 60 мкм или агрегаты диаметром до 140 мкм могут высвобождаться с поверхностей под воздействием электронного пучка 120 эВ.

Основываясь на этих данных, ученые решили провести серию опытов по определению оптимальных характеристик электронного пучка для эффективного удаления пыли с поверхностей.

Опыты проводились в вакуумной камере диаметром 50 см и высотой 28 см (1b). Имитатор лунных частиц JSC-1А (p ~ 2.9х103 кг/м3; диаметр < 25 мкм) наносился на тестовый образец (2.5 х 5 см), прикрепленный к подложке. Подложка была прикреплена к валу, повернутому так, чтобы поверхность подложки находилась под углом 45 относительно горизонтальной линии.

Вся поверхность образца была приблизительно равномерно освещена электронным пучком, испускаемым горячим филаментом (нитью) с отрицательным смещением, установленным в верхней части камеры на высоте около 20 см над поверхностью образца. В условиях вакуума испускаемые электроны создают эффекты пространственного заряда, которые ограничивают ток пучка, испускаемый из филамента. Для достижения более высоких токов пучка была создана плазма с низкой плотностью путем подачи аргона с низким давлением (~ 0.2 мТорр), ионизированного электронным пучком.

Плотность тока пучка на поверхности образца измерялась дисковым зондом Ленгмюра. А высвобожденная с поверхности пыль фиксировалась высокоскоростной камерой (2000 кадров в секунду).


Изображение 2

На изображении 2 (слева) показано, что большой поток пылевых частиц отскакивает от поверхности стекла в результате воздействия электронного пучка (230 эВ; 1.5 мкА/см2).

Для записи исходной чистоты поверхности и ее изменений в процессе пылеулавливания использовалась видеокамера (но не скоростная). Гамма-коррекция камеры была установлена равной 1, путем калибровки по яркости, полученной из изображений. На изображении 2 (справа) показаны снимки поверхности стекла до и после процесса высвобождения.

Чистота поверхности определяет степень запыленности поверхности испытательного образца (чем ниже чистота, тем выше степень запыленности). В данных опытах чистота (С) определялась в соответствии с формулой:
C = (Ls Ld) / (Lc Ld)
где Ls средняя яркость пикселей всей поверхности образца; Lc средняя яркость пикселей чистой поверхности (без пыли); Ld средняя яркость пикселей на поверхности, полностью покрытой пылью.

Для достижения контролируемого и постоянного осаждения пыли на исследуемом образце, необходимо было выполнить следующую процедуру из трех этапов:

  • загрузить имитатор лунных частиц на сито (размер ячейки: 25 мкм);
  • постучать по ситу, чтобы частицы необходимого размера упали на образец и образовали равномерный слой;
  • записать изображения и проанализировать яркость поверхности образца, чтобы определить начальную чистоту поверхности, используя вышеуказанное уравнение;

Важно отметить, что частицы пыли не всегда образуют равномерный слой на поверхности образца. В некоторых участках из-за сцепления между частицами образуется несколько слоев пыли. Таким образом, чистота поверхности также зависит от толщины слоя пыли.

После того как экспериментальная установка была готова, было проведено несколько тестов по определению оптимальных параметров плотности тока и энергии электронного пучка. Эффективность очистки проверялась на различных материалах поверхности и с разной толщиной начального слоя пыли.

Результаты экспериментов


Первым делом было решено проверить плотность тока и энергию пучка на образце скафандра, покрытом пылью JSC-1А со средней толщиной слоя (C = 37.5%). Результирующая плотность тока пучка варьировалась от 0.3 до 6.1 мА/см2. Энергия пучка была установлена на уровне ~ 230 эВ, что дает относительно высокую вторичную электронную эмиссию для большинства материалов.


Изображение 3

На графике показан процесс очистки как функция времени. Максимальная чистота достигала ~75% для всех плотностей тока пучка. Постоянная времени (определяемая как время повышения чистоты до уровня 1-1/e 63.2% между начальным и конечным значениями) процесса очистки уменьшается по мере увеличения плотности тока (3b). Постоянная времени имеет тенденцию к достижению плато ~100 секунд при плотности тока от 1.5 до 3 мА/см2.

Скорость уменьшения постоянной времени для очистки от пыли приблизительно соответствует скорости увеличения плотности тока электронного пучка, поскольку время зарядки пылевых частиц обратно пропорционально плотности тока. Более высокая плотность тока приводит к сокращению времени зарядки и, следовательно, более быстрому пылеулавливанию. Когда процесс зарядки идет быстрее, чем движение пыли, скорость выброса ограничивается движением пыли и достигает плато.

Энергетическая зависимость пучка проверялась в диапазоне от 60 до 400 эВ. Было обнаружено, что пороговая энергия для включения процесса очистки составляет ~ 80 эВ, что является минимальной энергией падающих электронов для генерации достаточного количества вторичных электронов для создания значительного эффекта зарядки микрополости.


Изображение 4

График выше демонстрирует процессы очистки с энергией пучка 80, 150 и 230 эВ. Как видно с графика, степень чистоты увеличивается при увеличении энергии пучка. Однако при 400 эВ пыль практически не удалялась. Связано это с тем, что выход вторичных электронов возрастает до максимального значения, но затем падает с увеличением энергии первичных электронов. Из этого следует, что таковой максимум в случае с имитатором лунной пыли достигается при 230 эВ.

В результате было установлено, что оптимальными показателями системы для лучшего удаления пыли является энергия 230 эВ и минимальная плотность тока от 1.5 до 3 мА/см2.


Изображение 5

Для подтверждения верности подобранных параметров (230 эВ и 1.5 мА/см2) были проведены тесты с участием образца скафандра и образца из стеклянной пластины. Как видно из графика выше, изменение степени чистоты обоих материалов соответствует одной и той же тенденции.

Помимо параметров самого электронного пучка, также необходимо было проанализировать влияние толщины слоя пыли на работу системы. Во время тестов толщина слоя с точки зрения уровня чистоты составляла: 5%, 40% и 65%.


Изображение 6

Степень чистоты однозначно зависит от начальной толщины слоя пыли: чем тоньше слой, тем выше будет чистота (до ~ 85%). Возможное объяснение состоит в том, что в более толстом слое частицы пыли ниже самого верхнего слоя более компактны из-за силы тяжести, что приводит к большим силам сцепления между частицами. Однако на поверхности Луны, по мнению ученых, этот эффект будет значительно слабее, чем в условиях лаборатории на Земле, ввиду сниженной гравитации. Также можно использовать гибридный метод удаления пыли, т.е. толстый слой удалить посредством щетки или вибраций, а оставшийся тонкий слой удалять уже с помощью электронно-лучевого метода.

Совокупность вышеописанных результатов четко говорит о том, что поверхности, покрытые средним или тонким слоем пыли, могут быль успешно очищены (до уровня чистоты 75-85%) посредством электронного луча за относительно короткий промежуток времени (меньше 1 минуты). Также стоит отметить, что накопление заряда на поверхностях, подверженных воздействию электронного луча, не привело к возникновению электростатического разряда ни в одном из проведенных тестов.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Когда начнется процесс колонизации Луны, пока точно сказать никто не может. Но ученые во всю занимаются решением всевозможных проблем, с которыми могли бы столкнуться будущие колонисты.

В данном труде был рассмотрен вопрос лунной пыли, настойчиво прилипающей и повреждающей все, что попадется ей на глаза (фигурально выражаясь, конечно). Метод очистки достаточно прост и заключается в использовании электронного луча, заряжающего частицы пыли, что приводит к их отделению друг от друга и от поверхности.

По мнению авторов данной разработки, их вариант очистки намного лучше того, что на данный момент активно разрабатывается в NASA (а именно внедрение в скафандры сети из специальных электродов), как минимум по цене и простоте изготовления.

Возможно, когда-нибудь лунные поселенцы после долгого дня на лунных грядках будут заходить в помещения через специальный шлюз, в котором будет установлен электронно-лучевой душ, очищающий их от пыли. Сами же ученые не намерены останавливаться на достигнутом, ибо степень чистоты, полученная в ходе опытов, составила всего лишь 85%. Для достижения более высоких показателей необходимо усовершенствовать систему так, чтобы она могла справляться с остаточным слоем пыли, состоящем из крайне малых частиц. Также ученые намерены рассмотреть возможность применения в их разработке коротковолнового ультрафиолетового излучения.

Пятничный офф-топ:

Поверхность Луны усыпана кратерами, каждый из которых имеет свою историю.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Карусель из 16 атомов самый маленький молекулярный ротор в мире

19.06.2020 10:21:33 | Автор: admin


На микро- и нанометровом уровне происходит множество интереснейших процессов, о которых мы даже не подозреваем, ибо их не так и просто увидеть. Чего стоит наше собственное тело: миллионы клеток из разных подсистем слаженно выполняют свои функции, поддерживая жизнедеятельность организма. Среди великого разнообразия необычных молекулярных образований стоит выделить молекулярные моторы, к которым причисляют моторные белки (например, кинезин). Концепция искусственных молекулярных моторов существует еще с середины прошлого века, а попыток создать нечто подобное было очень много, и все они чем-то отличались от других. Сегодня мы с вами познакомимся с исследованием, в котором ученые из EMPA (Швейцарская федеральная лаборатория материаловедения и технологий) создали молекулярный двигатель из 16 атомов, что делает его самым маленьким на данный момент. Как именно ученые создавали нано-двигатель, какие его особенности и возможности, и как эта разработка может быть применена на практике? Об этом мы узнаем из доклада ученых. Поехали.

Основа исследования


В 1959 году американский ученый Ричард Фейнман (1918-1988) высказал теорию о том, что когда-то мы сможем создавать молекулярные моторы. Кому-то эта идея на то время могла показаться безумной, но скептическое отношение к науке еще никогда никого не останавливало.

Основной механизм молекулярных моторов это вращение, за что их еще именуют молекулярными роторами. В 1999 году Т. Росс Келли и его коллеги опубликовали доклад (Unidirectional rotary motion in a molecular system), в котором описывалось ротационное движение молекулярной системы посредством химических процессов.


Профессор органической химии Бостонского колледжа Т. Росс Келли.

Система состоит из трехлопастного триптиценового ротора и геликена и может выполнять однонаправленное вращение на 120. Чтобы выполнить это вращение, системе необходимо пройти 5 этапов.


Молекулярный ротор Келли (схема 5-этапного вращения).

Основная проблема данного метода заключается в том, что вращение происходит однократно. Келли и его коллеги долгое время пытались найти решение этой проблемы, однако безуспешно.

Тем не менее, метод Келли показывает, что химическая энергия может быть использована для создания искусственных молекулярных моторов.

В том же 1999 году в университете Гронингена (Нидерланды) под руководством Бена Феринга был создан еще один молекулярный мотор (Light-driven monodirectional molecular rotor). Их вариант мог вращаться на 360 градусов и состоял из бис-хелицина, соединенного двойной аксиальной связью и имеющий два стереоцентра.


Молекулярный ротор Феринга (схема 4-этапного вращения).

В этот раз этапов для полного вращения было четыре. Но и тут не обошлось без недостатков: мотор Феринги был крайне медленный. Другими словами, на осуществление вращения требовалось больше времени, чем у природных эквивалентов.

В 2008 году в университете штата Иллинойс (США) Петр Крал с коллегами разработали молекулярный мотор, движение которого осуществляется за счет резонансного или нерезонансного туннелирования электронов (Nanoscale Rotary Motors Driven by Electron Tunneling).


Молекулярный мотор Крала (схема вращения за счет туннелирования электронов).

Туннелирование электронов обеспечивает мотор энергией, необходимой ему для движения. Сам мотор состоит из 3 (или 6) лопастей, образованных на основе полимеризированного ицеана. В качестве оси мотора используется углеродная нанотрубка.

Данный метод достаточно эффективен в условиях лаборатории, однако его показатели могут снизиться из-за шума и структурных дефектов, которые неминуемо присутствуют в природных условиях.

Каждый из вышеперечисленных вариантов молекулярного мотора является уникальным и в чем-то превосходящим другие два. Однако, несмотря на разительные отличия в методиках их создания, все они послужили вдохновением для последующих разработок, в частности и для той, которую мы сейчас рассмотрим.

Ученые заявляют, что большинство синтетических молекулярных машин, хотя и управляются квантовыми процессами, демонстрируют классическую кинетику, тогда как работа с квантовым туннельным движением в значительной степени неуловима. Следовательно, сканирующая туннельная микроскопия (СТМ) обеспечивает идеальную платформу для исследования динамики атомов и молекул на поверхностях. Тем не менее, лишь немногие исследования были нацелены на достижение направленного движения (контролируемого и независимого от положения иглы), которое требует нарушения симметрии инверсии, что обычно достигается путем адсорбции хиральных молекул на ахиральных поверхностях.

Ученые решили использовать эту концепцию, но слегка изменив ее. В качестве хирального статора* было решено использовать поверхность нецентросимметричных кристаллов PdGa (Pd палладий, Ga галлий).
Статор* неподвижная часть мотора, взаимодействующая с ротором (подвижная часть мотора).
Это ослабляет геометрические ограничения на молекулу ротора и позволяет реализовать направленное движение даже для простых и симметричных молекул, таких как C2H2.

На Pd3 молекулы ацетилена адсорбируются поверх тримеров Pd. Во время STM-визуализации при 5 К они выглядят как гантели с разнесением между лепестками около 3 в трех симметрично эквивалентных ориентациях, повернутых на 120 (1E-1G), между которыми они переключаются квазимгновенно (1C и 1D).


Изображение 1

Молекулы ацетилена прочно закреплены на тримере и обычно диссоциируют* перед тем, как их вытаскивают из тримера с помощью иглы микроскопа.
Диссоциация* распад сложных химических соединений на составляющие компоненты.
Ученые наблюдали за процессом вращения, записывая временной ряд туннельного тока IT(t) при фиксированном положении иглы (1H).

IT(t) на графике 1H, записанный в течение t = 100 с, демонстрирует последовательности циклических скачков между тремя уровнями ( .RA RB BC RA ) с nCCW= 23 и nCW= 0 (CCW против часовой стрелки, CW по часовой стрелке). Это приводит к частоте f = nCCW + nCW / t = 0.23 Гц и идеальной направленности dir = 100% (nCCW-nCW) / (nCCW + nCW) = 100%.

СМТ снимки показывают, что в движении мотора преобладает направление против часовой стрелки.


Изображение 2

Анализ параметрической зависимости частоты вращения (2A-2C) показывает, что этот молекулярный двигатель работает в двух различных режимах: режим туннелирования (TR), где его частота вращения T не зависит от температуры (T < 15 K), напряжения смещения ( |VG| < 30 мВ) и тока (IT < 200 пА); классический режим (CR), где частота вращения зависит от этих параметров.

Экспериментальные данные (изображение 1) были записаны в режиме TR, однако ученые решили сначала рассмотреть именно классический режим, где вращения C2H2 могут избирательно подпитываться от тепловых или электрических возбуждений.

Для начала была найдена температурная зависимость частоты вращения при низком смещении (), чтобы следовать характеристике Аррениуса* (сплошная линия на ): (T) = T + Аexp (- EB / kBT), где T = 4.5 Гц, А = 10 8.72.0 Гц, EB = 27.57.1 мэВ.
Уравнение Аррениуса* устанавливает зависимость константы скорости химической реакции от температуры.
Выше 30 мВ частота увеличивается экспоненциально с VG, независимо от полярности (2B и 2C). В тех же условиях, но при постоянном напряжении смещения, степенная зависимость* ( InT при n 1; 2D) идентифицирует электронно-стимулированное вращение как одноэлектронный процесс. Зависимость частоты и направленности вращения от параметров T, VG и IT хорошо воспроизводится кинетической моделью Ланжевена (сплошные линии на 2B и 2C).
Степенной закон* относительное изменение одной величины приводит к пропорциональному относительному изменению другой величины.
Ученые отмечают, что важную роль в анализе всей системы играет понимание влияния иглы микроскопа, необходимого для фактических наблюдений за движением. В частности, необходимо убедиться, что нарушение симметрии инверсии из-за положения иглы вблизи двигателя не преобладает над влиянием хиральной подложки при определении направления вращения.

Для этого было измерено 6400 временных рядов с постоянной высотой наконечника zT(t) на 80х80 сетке из равноудаленных точек 1х1 нм2 в окрестности отдельных молекул ацетилена в режиме туннелирования (2E). К счастью, анализ показал, что игла микроскопа никак не влияет на однонаправленное вращение молекулы.

Дополнительное моделирование, в ходе которого была выполнена оптимизация конфигурации молекулы и формы иглы, позволило получить идеальную последовательность (схему) сигналов (2F). Следовательно, независимо от положения иглы последовательность сигналов всегда соответствует вращению против часовой стрелки.

Кроме того, как видно на 2G, нет явной зависимости T от положения иглы. Потому можно предположить, что все три вращательные конфигурации C2H2 будут энергетически эквивалентными. Три вращательных состояния становятся энергетически невырожденными, только если игла поднесена слишком близко к подложке.

Оценив 1792 событий вращения (nCCW= 1771 и nCW = 21) в режиме туннелирования, была определена направленность dir 96.7% с достоверностью 2. Сопоставив результаты моделирования и экспериментов удалось определить вращение C2H2, описать которое можно как вращающийся ротор, центр масс которого движется по окружности с радиусом r = 0.5 0.1 и моментом инерции IC2H2 = 5.62 х 10-46 кгм2 ().


Изображение 3

Установив степень влияния иглы микроскопа на вращение системы, ученые приступили к детальному рассмотрению зависимости вращения от параметров системы (3A-3D). Температурная зависимость показывает быстрое падение направленности, когда термически активированные вращения начинают вносить значительный вклад. Сплошная линия на предполагает, что T имеет 98%-ную направленность, тогда как термически активированные скачки, описываемые уравнением Аррениуса, являются чисто случайными.

Эти случайные события теплового вращения ожидаются, потому что субстрат, игла СТМ и, следовательно, молекулы находятся в тепловом равновесии и, соответственно, однонаправленное вращение (которое уменьшает энтропию) запрещено вторым законом термодинамики.

При T = 5 K уменьшение направленности также наблюдается для напряжений смещения VG выше 35 мэВ (3B). Однако, в отличие от тепловых вращений, те, которые вызваны неупругим туннелированием электронов (IET), становятся ненаправленными постепенно. Это отчетливо наблюдается в режиме, когда сосуществуют тепловые и IET-вращения. Как показано на 3C, независимая от напряжения направленность (10% при T = 19 K и |VG| < 30 мВ) может быть значительно увеличена при более высокой |VG| из-за дополнительных направленных вращений IET. Однако это увеличение эффективно только в узком диапазоне напряжений, за пределами которого (в большую сторону) направленность быстро уменьшается.

В отличие от этого, IT-зависимость направленности для фиксированного напряжения является слабой (3D), где небольшое уменьшение направленности с увеличением тока объясняется обнаружением двух быстро последовательных вращений против часовой стрелки как одного ошибочного непрерывного вращения. (сплошные линии на 3D). Из этого следует, что направленность остается выше 95% при |VG| < 40 мВ даже при высоком токе.

Для моделирования кинетики происходящих событий в данной системе было решено использовать концепцию смещенного броуновского движения*, предложенную в исследовании Астумяна (The Physics and Physical Chemistry of Molecular Machines) и Хэнджи (Artificial Brownian motors: Controlling transport on the nanoscale).
Броуновское движение* беспорядочное движение частиц твердого вещества, вызванное тепловым движением частиц жидкости или газа.
В полученной модели IET-индуцированного вращения предполагается статический и периодический, но асимметричный потенциал U() ( = [0.2] с периодичностью /3) с асимметрией потенциала (Rasym, вставка на ).

Одно IET события достаточно для мгновенного возбуждения молекулы из ее основного состояния, а ее траектория (t) получается из динамики Ланжевена: I = (U() / ) , где I момент инерции, а коэффициент вязкой диссипации.

В зависимости от Rasym и , две разные минимальные кинетические энергии EL и ER требуются для преодоления барьера слева (т.е. для движения по часовой стрелке) и справа (т.е. для движения против часовой стрелки) соответственно. Эти энергии являются основой для описания частоты и направленности с помощью использованной кинетической модели.

Сравнение кинетической модели и результатов экспериментов ( и ) позволяет определить зависящие от температуры EL(T) и ER(T) (3E). В результате было установлено, что Rasym равен 1.25 < Rasym < 1.5, предполагая, что EB = 25 мэВ.

Уменьшение диссипации с 1.6 х 10-33 кгм2/с при 5 К до 1.1 х 10-33 кгм2/с при 20 К можно объяснить менее эффективным связыванием молекулы с подложкой при повышении температуры.


Изображение 4

На графике показаны последовательности IT(t) для C2H2, C2DH и C2D2, где отчетливо видно отношения T (по отношению к C2H2) 1:0.56(11):0.24(5) (C2H2:C2DH:C2D2), которые наблюдались при использовании разных игл микроскопа.

Это явное относительное уменьшение T контрастирует со сравнительно небольшим относительным изменением момента инерции 1:1.08:1.2 и, следовательно, показательно для квантового туннелирования.

Рассмотрение IT(t) последовательности C2DH с нарушенной C2 симметрией показывает, что вращение протекает через шесть, а не три уровня тока (4B). Это является доказательством того, что для полного вращения ацетилена действительно требуется шесть вращений против часовой стрелки на 60. Сравнение экспериментальных и смоделированных значений T показало идеальное совпадение (4D).

Квантовые туннельные вращения, сопутствующие высокой направленности в 97.7%, позволяют оценить изменение энтропии одиночного туннельного вращения по экспериментально полученным вероятностям вращения против часовой стрелки и по часовой стрелке, определяемым как S = kBln (ppCCW / pCW) kBln (100/1) 0.4 мэВ/К.

Это означает, что направленное вращение в режиме туннелирования должно быть неравновесным процессом с диссипацией энергии Q > 2 мэВ при 5 К и Q > 6 мэВ при 15 К на вращение.

Максимальная мощность рассеяния составила 100 мэВ/с на каждый ротор, а частота туннелирования составила максимум 10 Гц. Однако микроскоп, необходимый для наблюдений, локально рассеивает около 3 х 106 мэВ / с даже при самых низких настройках туннельного тока. Несмотря на столь экстремальные настройки, наблюдается постоянная частота вращения со стабильно высокой направленностью.

В заключение ученые отмечают, что высоконаправленное вращение C2H2 на хиральных поверхностях PdGa{111}Pd3 демонстрирует богатую феноменологию, наиболее заметно характеризующуюся беспрецедентно высокой направленностью и малым размером мотора.

Ротор (C2H2) и статор (кластер Pd3-Ga6-Pd3) состоят всего лишь из 16 атомов, образуя однонаправленный шестизначный циклический молекулярный двигатель (), который непрерывно работает, получая энергию исключительно от одиночных электронов.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Миниатюризация стала одним из самых популярных направлений в современной науке. Разные исследовательские группы создают все больше и больше разработок, так или иначе связанных с этой концепцией. В рассмотренном нами сегодня труде его авторы описали самый маленький в мире молекулярный ротор, состоящий из 16 атомов. Однако габариты не являются единственной отличительной чертой данного мотора. Помимо этого он работает непрерывно, чем не могли похвастаться предшественники, способные выполнить лишь один цикл вращения. Еще одной диковинкой молекулярного мотора является энергия, которой он подпитывается. Ввиду того, что во время туннелирования происходит потеря энергии, ротор продолжает вращаться в одном направлении.

По словам ученых, данная разработка не только может быть использована в создании наноразмерных устройств разного назначения (медицина, передача данных, исследование микроструктурных образцов и т.д.), но и помочь в понимании процессов, связанных с рассеянием энергии во время квантового туннелирования.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята!

Пятничный офф-топ:

Каждый раз, когда я читаю что-то про молекулярные моторы, я вспоминаю это видео (да, оно не ново, но улыбку вызывает постоянно).

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Энергоэффективность хранения данных спиновые моменты, намагниченности и эффект Холла

08.07.2020 10:20:45 | Автор: admin


Когда-то день начинался с чашечки кофе и утренней газеты. В наши дни любовь к кофе по утрам не утратила свою релевантность, а вот бумажные новостные издания были вытеснены смартфонами, планшетами и прочими гаджетами, подключенными к интернету. И в этом нет ничего плохого, ведь всемирная паутина позволяет нам получать информацию и общаться с людьми из разных уголков мира. С каждым днем объем данных, генерируемых в мире, неустанно увеличивается. Каждая статья, фото и даже твит из двух слов все это является частью огромного и вечно растущего информационного поля Земли. Но эти данные не эфирны, они не витают в облаках, а где-то хранятся. Местом хранения данных служат и наши гаджеты, и специализированные учреждения дата-центры. Здания, наполненные под завязку серверами, ожидаемо потребляют уйму энергии. Логично, что с увеличением мирового объема данных будет увеличиваться и объем потребляемой энергии. Сегодня мы с вами познакомимся с исследованием, в котором ученые из Майнцского университета (Германия) разработали новую методику записи данных на сервера, которая в теории может уменьшить энергопотребление в два раза. Какие физические и химические процессы задействованы в разработке, что показали эксперименты, и настолько ли велик потенциал данного труда, как о том говорят его авторы? Об этом мы узнаем из доклада ученых. Поехали.

Основа исследования


Корнем всего исследования является спинтроника наука, изучающая спиновый токоперенос. Спин в свою очередь это собственный момент импульса элементарной частицы. За последние годы интерес к спинтронике сильно возрос, что позволило открыть немало нового, в том числе и переключение тока с помощью спин-орбитальных моментов (SOT от spin-orbit torque) в магниторезистивных запоминающих устройств с произвольным доступом (MRAM).

Одной из важнейших составляющих MRAM являются спиновые вентили. Эти устройства состоят из двух или более проводящих магнитных материалов, электрическое сопротивление которых может меняться между двумя значениями в зависимости от относительного выравнивания намагниченности в слоях.

SOT-индуцированное переключение реализуется в бислоях ферромагнетик-тяжелый металл (FM-HM), где существует значительное демпфирование (подавление колебаний), обусловленные протеканием электрического тока вдоль направления x. SOT возникают из-за спинового эффекта Холла в объеме HM материала и из-за обратного спин-гальванического эффекта на интерфейсе FM-HM.

Ранее проведенные исследования показали, что значение демпфированого SOT может быть достаточно большим, чтобы переключать направление намагничивания при низких плотностях тока (до 107108 А/см2).

Параметры образца (например, состав и толщина слоя гетероструктуры FM-HM) можно регулировать для определения величины и знака SOT. Но, как заявляют ученые, куда более важно получить динамический контроль в реальном времени над самими SOT.

Одним из энергоэффективных инструментов для получения этого контроля является механическое напряжение, вызванное электрическим полем. Ученые напоминают, что избегая необходимости в электрическом токе и, таким образом, устраняя связанные с этим потери, деформация эффективно настраивает магнитные свойства (например, магнитную анизотропию) и, следовательно, магнитную доменную структуру и динамику тонких пленок в плоскости. Более того, поскольку деформация может применяться локально, она предоставляет площадку для разработки и реализации сложных концепций коммутации в устройствах с упрощенной архитектурой.

Ранее уже были предприняты попытки исследовать влияние деформации на переключение за счет SOT, в первую очередь изучалось влияние деформации на анизотропию и возникающее в результате влияние на переключение. Кроме того, предыдущие исследования были сосредоточены исключительно на системах с плоской магнитной осью, а экспериментальные исследования в перпендикулярно намагниченных многослойных материалах не проводились.

Однако, по мнению авторов сего труда, именно в перпендикулярно намагниченных многослойных материалах кроется большой потенциал. В частности, перспективность использования систем с перпендикулярной магнитной анизотропией (PMA от perpendicular magnetic anisotropy) обусловлена повышенной термостабильностью, более высокими плотностями упаковки и улучшенным масштабированием.

В рассматриваемом нами сегодня исследовании ученые продемонстрировали электрически индуцированный контроль напряжения (механического) SOT в перпендикулярно намагниченных мультислоях W=CoFeB=MgO, выращенных на пьезоэлектрической подложке. SOT оцениваются методом вторичного квантования и магнито-транспортным методом при плоском напряжении разного характера и величины.

Результаты исследования


Было установлено, что деформация, модулируемая электрическим полем, приложенным к пьезоэлектрической подложке, приводит к отчетливым откликам спинов.


Изображение 1

На изображении показана схема датчика Холла* крестового типа, используемого для измерений демпфирующих (DL) и полевых (FL) SOT полей в мультислое Вт (5 нм) / CoFeB (0.6 нм) / MgO (2 нм) / Ta (3 нм). Мультислой был выращен на подложке [Pb(Mg0.33Nb0.66O3)]0.68 (011) (сокращенно PMN-PT), которая использовалась для электрической генерации механических напряжений. На 1b показан снимок устройства, сделанный оптическим микроскопом.
Эффект Холла* возникновение поперечной разности потенциалов при размещении проводника с постоянным током в магнитное поле.

Устройства Холла бывают трех типов: а датчик Холла крестового типа; b разделитель тока; с датчик магнетосопротивления.
Одноосная деформация в плоскости была получена путем приложения вне-плоскостного электрического поля постоянного тока к пьезоэлектрической PMN-PT(011) подложке.

Обычно реакция пьезоэлектрической деформации на приложенное электрическое поле имеет гистерезисный характер. Однако электрические поля, которые превышают коэрцитивное* поле, характерное для материала, полюсует подложку и приводят к режиму, в котором генерируемая деформация характеризуется линейным откликом.
Коэрцитивная сила* значение напряженности магнитного поля, необходимого для полного размагничивания вещества.
Линейный режим поддерживается до тех пор, пока подложка не будет сдвинута в другом направлении путем приложения электрических полей, больших, чем противоположное коэрцитивное поле. Поэтому перед первыми измерениями, но после процесса структурирования, к PMN-PT подложке было применено полюсование посредством электрического поля +400 кВм-1.

Далее использовали именно электрические поля постоянного тока, позволяющие изменять деформацию в режиме линейного отклика, поскольку это обеспечивает надежный электрический контроль над индуцированной деформацией.

Стоит также отметить, что пересечение Холла было изготовлено таким образом, чтобы его плечи были ориентированы вдоль направлений [011] и [100] подложки PMN-PT (011), которые соответствуют направлениям растяжения и сжатия соответственно.

Для начала была проведена характеризация магнитного гистерезиса системы при нулевом электрическом поле постоянного тока.

На изображении 1b показана аномальная линия напряжения Холла с вне-плоскостным магнитным полем (0 Гц), измеренная для W=CoFeB=MgO=Ta при 0 кВм-1 (красная линия), демонстрирующая переключение легкой оси (оси легкого намагничивания), характерное для множеств тонких мультислоев CoFeB.

Цикл вне-плоскостного намагничивания, измеренный при 400 кВм-1 (черная линия), накладывается поверх напряжения Холла (красная линия) и не показывает значительных изменений из-за генерируемой деформации. Это говорит о том, что система всегда имеет доминирующую перпендикулярную магнитную анизотропию.


Изображение 2

Графики выше показывают типичные внутри-плоскостные зависимости полей первой (V1) и второй (V2) гармоник напряжения Холла, когда к текущей линии был применен переменный ток с плотностью jс = 3.8 х 1010 А/м2.

Напряжение постоянного тока было установлено на 0, поэтому на кресте Холла не создавалось никакого напряжения. Графики продольного (2a) и поперечного (2b) полей демонстрируют ожидаемые симметрии: для продольного поля наклоны V2 и наклоны поля одинаковы для обоих направлений намагниченности вдоль +z (+Mz) или -z (-Mz), тогда как для поперечного поля их знак становится противоположным.

Далее ученые провели анализ поперечной (0HT) и продольной (0HL) компоненты поля SOT для обоих направлений намагниченности Mz и определили среднее значение этих компонент как функции приложенной плотности тока jc (2c).


Изображение 3

Графики выше показывают результаты зависимости от электрического поля. Было определено, что полевой (FL) SOT существенно не меняется при растягивающих и сжимающих деформациях ( и ). Напротив, на 3b видно, что растягивающая деформация увеличивает демпфирующий (DL) SOT в 2 раза при приложении 400 кВм-1 (0.03% напряжение).

С другой стороны, когда ток течет вдоль направления деформации сжатия, величина DL момента уменьшается с увеличением деформации.

Из этого следует, что величина DL момента увеличивается при приложении электрически индуцированной растягивающей деформации и уменьшается при сжимающей деформации.

Чтобы понять микроскопическое происхождение экспериментально наблюдаемой деформационной зависимости FL и DL SOT, были проведены функциональные расчеты по методике теории функционала плотности электронной структуры Fe1-xCox/W(001), состоящей из перпендикулярно намагниченного монослоя и немагнитных подложек.


Изображение 4

Как показано на , во время расчетов кристаллическая структура намеренно расширялась или сужалась, сохраняя постоянную площадь в плоскости элементарной ячейки, чтобы учесть эффект одноосной деформации. Эта деформация может быть определена количественно по соотношению = (aj aj)/aj, где aj и aj обозначают постоянную решетки вдоль j-направления в плоскости в расслабленном и искаженном состоянии соответственно. Как следствие, любая конечная деформация уменьшает исходную симметрию кристалла с C4v до C2v.

Основываясь на расчетах электронной структуры, была получена зависимость SOT от (4b), которая проявляет те же качественные характеристики, что и в фактическом эксперименте.

Поскольку FL и DL SOT происходят из разных электронных состояний, они обычно следуют различным зависимостям от структурных особенностей. Было установлено, что величина DL момента линейно возрастает по отношению к растягивающей деформации и линейно уменьшается по отношению к сжимающей. Например, расширение решетки на 1% вдоль направления электрического поля значительно увеличивает проводимость DL моментов (примерно на 35%).

Чтобы более точно оценить это наблюдение, было проведено сравнение () распределений в пространстве микроскопических вкладов в DL SOT для релаксированных и деформированных пленок. В отличие от занятых состояний вокруг точки М, которые являются едва важными, электронные состояния вблизи точек высокой симметрии , X и Y составляют основной источник проводимости DL. В частности, растягивающая деформация способствует сильным отрицательным вкладам вокруг X и Y, что приводит к общему увеличению проводимости.

Чтобы связать полученные данные с имеющейся электронной структурой, ученые обратили внимание на орбитальную поляризацию состояний в магнитном слое, где преобладающей силой являются d электроны.

В то время как dxy, dx2 y2 и dz2 не зависят от знака приложенной деформации , состояния dyz и dzxявно изменяются относительно деформации растяжения или сжатия. Примечательно, что эти орбитали также опосредуют гибридизацию с подложкой из тяжелого металла. Из этого следует, что их зависимость от структурных особенностей дает дополнительное понимание SOT в исследуемых тонких пленках.

В качестве примера ученые предлагаю рассмотреть деформационное изменение плотности состояний dyz в магнитном слое по сравнению со случаем с четырехкратной вращательной симметрией (4d).

В то время как плотность состояний * на уровне Ферми практически не зависит от деформации растяжения, состояния явно перераспределяются. Как показывает орбитальная поляризация на 4e, этот эффект обусловлен выраженными -управляемыми изменениями поляризации dyz вокруг точки X, что коррелирует с изменениями проводимости DL ().
Спиновый канал* одно из направления ориентации спина (вверх или вниз).

Индекс s = , обозначает спиновое состояние электронов в ферромагнетиках: спиновую подзону большинства электронов, спиновую подзону меньшинства электронов. Кроме того, индекс s =, обозначает спиновое состояние электрона в спиновых каналах проводимости.
Используя данные, полученные из расчетов электронной структуры, ученые обнаружили, что различная природа наблюдаемых экспериментально особенностей FL и DL моментов происходит из уникальных изменений орбитальной поляризации электронных состояний из-за искажений решетки.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Как заявляют авторы труда, помимо раскрытия ключевой роли гибридизированных состояний на интерфейсе FM-HM, результаты исследования предлагают четкую схему для рукотворных спин-орбитальных явлений. Используя сложное взаимодействие спинового и орбитального магнетизма, спин-орбитальной связи и симметрии, можно адаптировать величину SOT в многослойных устройствах, создавая орбитальную поляризацию состояний вблизи энергии Ферми по отношению к деформации.

Стоит также отметить, что это исследование позволяет расширить возможности инженерии в области проектирования устройств с динамической настройкой SOT в перпендикулярно намагниченных многослойных системах с помощью электрически управляемого напряжения (механического).

Это громкое заявление обусловлено тем, что деформация может генерироваться локально и накладываться на выбранные части области переключения. Следовательно, можно настроить плотность тока таким образом, чтобы DL спин мог одновременно регулировать направление намагничивания в областях с напряжением, но не затрагивать области без напряжения. Затем выбранные области могут быть изменены по требованию за счет использования другой конфигурации электрических полей, что обеспечивает дополнительный уровень контроля.

Все это означает, что с помощью конкретных схем деформации областей переключения посредством электрических полей можно создать энергоэффективную многоуровневую ячейку памяти.

Приложение деформации к исследуемой структуре W=CoFeB=MgO во время опытов привело к отчетливо различным изменениям FL и DL спинов. Причем как отмечают ученые, DL спин может быть увеличен в 2 раза, если деформацию растяжения прикладывать параллельно течению тока.

Другими словами, можно получить прямой контроль над характеристиками процесса магнитного переключения посредством регулировки электрического поля, которое воздействует на пьезоэлектрический кристалл. Это приводит к значительному снижению энергопотребления, а также дает возможность создавать сложные архитектуры для хранения информации.

В дальнейшем ученые планируют продолжить как практические опыты, так и сопряженные с ними расчеты, чтобы выяснить, где и как возможно усовершенствовать этот сложный процесс. Однако, несмотря на сложность создания подобных систем, их потенциал крайне велик, ибо снижение энергопотребления приводит не только к экономии для провайдеров и потребителей услуг хранения информации, но и значительно снижает и без того сильное давление со стороны человечества на экологию.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Треугольники малые и большие изменение электронного взаимодействия в кристалле за счет температуры

05.08.2020 10:11:24 | Автор: admin


Вы когда-нибудь пытались объяснить трехлетнему ребенку, что такое атомы? Нет? И правильно, ибо впоследствии ребенок будет бегать по всему дому, детской площадке и магазину, тыкать пальцем на любой предмет и спрашивать И тут тозе атомы?. Если же серьезно, любопытство, присущее детям, это то, что часто становится движущей силой многих открытий взрослых дядь и теть в белых халатах. Возвращаясь к атомам, все мы знаем, что они являются основными строительными кирпичиками всего, что нас окружает, и нас в том числе. Цементом, связывающим атомы между собой, являются заряженные частицы (ядра или электроны). Разные вещества формируются за счет разных вариантов взаимодействия (связи) электронов. Ученые из Нагойского университета (Япония) обнаружили, что охлажденный до -58 C оксид вольфрама цезия (CsW2O6) демонстрирует необычную связь электронов, которую ранее обнаруживали исключительно в триводородных ионах, найти которые можно в межзвездном пространстве. Как подобная связь электронов влияет на свойства материала, в чем ее уникальность и что это значит для будущих исследований в области материаловедения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Авторы сего труда отмечают, что понимание фазовых переходов кристаллических твердых тел является одной из основных задач в материаловедении. Сюда относится и электронные фазовые переходы в соединениях переходных металлов с пирохлорными* структурами, состоящими из трехмерных сетей тетраэдров.
Пирохлор* минерал из класса оксидов и гидрооксидов, являющийся сложным оксидом натрия, кальция и ниобия с дополнительными анионами. Формула пирохлора выглядит так: (NaCa)2Nb2O6 (OH,F).
В качестве примера ученые приводят магнетит Fe3O4, который демонстрирует переход металл-диэлектрик*, сопровождаемый зарядовым упорядочением Fe при 119 К, называемым переходом Вервея*.
Переход металл-диэлектрик* обозначает, что вещество при определенных условиях демонстрирует свойства металла (например, проводимость), а при других условиях свойства изолятора.
Переход Вервея* фазовый электронно-упорядочеваемый переход, который происходит в смешанновалентной системе и приводит к упорядочению формальных валентных состояний в низкотемпературной фазе.
Полного понимания этого перехода пока нет, хоть и было проведено множество исследований и опытов. Тем не менее, научное сообщество уделяет все больше внимания изучению переходов металл-диэлектрик, сопровождаемых магнитным упорядочением все в одном в 5d-оксидах (например, Cd2Os2O7 и Nd2Ir2O7). Основной причиной популярности таких переходов является возникновение ферроического упорядочения протяженных магнитных октаполюсов и образование фермионов Вейля* в твердом теле.
Фермион Вейля* безмассовый тип фермиона со спином 1/2.

Фермион* частица с полуцелым значением спина. К фермионам относятся кварки (протоны и нейтроны), лептоны (электроны, мюоны, тау-лептоны, нейтрино), дырки (квазичастицы в полупроводнике), а также квантовомеханические системы, состоящие из нечетного числа фермионов.
В данном исследовании ученые описывают самоорганизацию 5d электронов при электронном фазовом переходе -пирохлора оксида CsW2O6, обнаруженную в высококачественных монокристаллах. Ранее сообщалось, что CsW2O6 обладает кубической решеткой с пространственной группой Fd3m при комнатной температуре. В таком случае атомы W образуют структуру пирохлора и имеют валентность 5.5+ с электронной конфигурацией 5d0.5. Измерение удельного электрического сопротивления поликристаллических образцов показало, что переход металл-диэлектрик происходит при температуре 210 К (-63.15 C).

Также ранее сообщалось, что кристаллическая структура диэлектрической фазы имеет орторомбическую пространственную группу Pnma. Однако теоретические исследования показали, что это не соответствует действительности. Расчеты электронной структуры Fd3m фазы показали, что существует сильное влияние поверхностей Ферми, которое вызывает понижение симметрии до пространственной группы P4132.
* Pnma, Fd3m и другие относятся к кристаллографическим группам симметрии, которые описывают все возможные симметрии бесконечного количества периодически расположенных в трехмерном пространстве точек. Более детальную информацию касательно кристаллографических групп можно найти тут.
Недавние фотоэмиссионные эксперименты с тонкими пленками образцов показали, что валентность W в диэлектрической фазе диспропорционирует в 5+ и 6+.

Результаты исследования


Для начала стоит рассмотреть фазовый переход, который происходил при температуре 215 К.


Изображение 1

В кварцевой трубке были подготовлены монокристаллы CsW2O6 () и W-дефицитного CsW1.835O6. На графике 1b видно, что удельное сопротивление (p) монокристалла CsW2O6 сильно возрастает при понижении температуры ниже отметки Tt = 215 К, что наблюдалось и в случае поликристаллических образцов и тонких пленок.

Это увеличение сопротивления сопровождается небольшим, но вполне очевидным гистерезисом температуры. Это указывает на то, что фазовый переход первого рода происходит именно при Tt (т.е. при 215 К). В данном исследовании фазы выше и ниже Tt называются фаза I и фаза II соответственно.

Магнитная восприимчивость () сильно уменьшается ниже Tt (1b), что также идентично поликристаллическому образцу. Однако линейная ширина спектров 133Cs-ЯМР в фазе II не показывает какого-либо значительного уширения по сравнению с фазой I (1f). Из этого следует, что уменьшение в фазе II не вызвано антиферромагнитным упорядочением.

На изображении показаны рентгенограммы монокристалла CsW2O6, полученные при 250 К (фаза I) и 100 К (фаза II). Каждое из дифракционных пятен при 250 K было проиндексировано на основе кубической ячейки a = 10.321023(7) с пространственной группой Fd3m, в соответствии с предыдущими исследованиями. На дифракционной картине при 100 К появляется больше дифракционных пятен. Все они были проиндексированы на основе кубической пространственной группы P213 с постоянной решетки a = 10.319398(6) , что практически идентично a фазы I. Подобное изменение дифракционных пятен происходит при Tt, как видно из температурной зависимости интенсивности (1d).

Также стоит отметить, что в фазе II дифракционные пятна не разделяются на несколько пятен и не меняют свою форму даже в области высокого угла (). Класс Лауэ* и кристаллическая система, определяемые наблюдаемыми отражениями, ясно указывают на то, что структурное изменение, которое сохраняет кубическую симметрию, происходит при Tt, а фаза II имеет класс Лауэ m3.
Классы Лауэ* кристаллографический класс симметрии, у которого есть центр симметрии. Из всех 32 классов лишь 11 считаются классами Лауэ. Класс m3 это дитригонально-пирамидальная система.
Как видно из поляризационной зависимости Рамановских спектров поверхности (111), измеренных при 100 К (фаза II) и комнатной температуре (фаза I на 1e) спектры фазы II не зависят от угла поляризации, как в фазе I. Это свидетельствует о наличии трехкратной вращательной симметрии, перпендикулярной (111), что согласуется с предполагаемой кубической симметрией.

Данные результаты означают, что структурная модель Pnma, предложенная на основе данных порошковой дифракции*, является неверной.
Порошковая рентгеновская дифракция* метод исследования вещества путем дифракции рентгеновских лучей на образце в виде порошка.
Дополнительным подтверждением ошибочности Pnma является факт того, что данная модель имеет псевдотетрагональное искажение около 0.03%, но в данном исследовании этого не наблюдалось.

В поликристаллическом образце CsW2O6 W-дефицитный CsW1.835O6 всегда существует в качестве примесной фазы. Ученые считают, что в процессе определения природы фазы II важную роль сыграл факт того, что монокристаллы CsW2O6 и W-дефицитного CsW1.835O6 были получены отдельно, а измерения дифракционных и физических свойств выполнялись именно на монокристаллах.


Таблица 1: кристаллографические данные CsW2O6 фазы I (250 К).


Таблица 2: кристаллографические данные CsW2O6 фазы II (100 К).


Таблица 3: кристаллографические данные CsW1.835O6 (30 К).


Температурная зависимость сопротивления (вверху) и магнитной восприимчивости (внизу) монокристаллов CsW1.835O6.

На следующем этапе исследования ученые более детально рассмотрели кристаллическую структуру фазы II.

В фазе I с пространственной группой Fd3m каждый из атомов Cs, W и O занимает один участок, где атомы Cs и W образуют структуры алмаза и пирохлора соответственно ().


Изображение 2

В фазе II с пространственной группой P213 атомы Cs занимают два разных центра и образуют структуру сфалерит (названную в честь одноименного минерала, также именуемого цинковая обманка*) (2b).
Обманками* называют минералы, которые не являются металлическими рудами, но обладают полуметаллическим блеском и другими признаками (цвет, плотность), присущими как рудам металлов, так и минералам.
Это было дополнительно подтверждено двумя пиками в спектрах 133Cs-ЯМР, соответствующими двум областям Cs, которые проявляются в виде небольшого расщепления пиков в случаях 200, 160 и 125 K (1f).

С другой стороны, атомы W занимают два участка с соотношением 1:3 в фазе II (2b и 2c), что несовместимо с зарядовым упорядочением W5+ W6+ атомов W5+ и W6+ в соотношении 1:1.

В соответствии с расчетом валентной суммы связи для расстояний W O, определенным из рентгеноструктурного анализа монокристалла, валентности атомов W(1) и W(2) была равна 6.07(3) и 5.79(3) при 100 К (фаза II) соответственно.

Учитывая, что параметры валентной суммы надежной связи W6+ доступны, а параметры W5+ нет, логично, что атомы W(1) являются W6+ без 5d электронов. В этом случае валентность атомов W(2) становится равной 5.33+ с электронными конфигурациями 5d2/3.

Из вышеописанных расчетов следует, что зарядовое упорядочение с нецелой валентностью имеет место при Tt. Фактически, монокристаллы W-дефицитного CsW1.835O6, где все атомы W имеют валентность 6+ без 5d электронов, не показывают переход при Tt.

В фазе II атомы W(2) образуют трехмерную сеть из маленьких и больших правильных треугольников, которые поочередно связаны друг с другом общими углами (2b). Хотя разница в размерах между большим и малым треугольниками составляет около 2%, расположение занятых 5d-орбиталей между ними совершенно различно, что приводит к образованию тримера W3 в небольшом треугольнике. Если бы не было чередования треугольников W3, подрешетка W имела бы гиперкагомную (трехмерная структура из связанных треугольников) структуру (). Наличие чередования указывает на то, что структура дышащего гиперкагома (т.е. с зазорами, в отличие от равномерного гиперкагома) формируется во время фазы II.

Зарядовое упорядочение в фазе II CsW2O6 любопытно тем, что условие Андерсона поддерживается необычным образом. Андерсон говорил, что у магнетита есть бесконечное число моделей упорядочения зарядов, когда все тетраэдры в структуре пирохлора имеют одинаковый полный заряд (это и есть условие Андерсона), и это макроскопическое вырождение сильно подавляет температуру перехода Вервея.

Тем не менее, есть сведения о том, что не только магнетит, но и другие смешанно-валентные пирохлорные системы, такие как CuIr2S4 и AlV2O4, демонстрируют упорядочение зарядов, которое нарушает условие Андерсона. В таком случае энергия, полученная за счет -связи между d-орбиталями соседних атомов, должна быть достаточно большой, чтобы компенсировать потерю кулоновской энергии из-за нарушения условия Андерсона.

Но в случае с CsW2O6 ситуация иная. Его зарядовое упорядочение удовлетворяет условие Андерсона, где каждый тетраэдр состоит из трех атомов W5.33+ и одного атома W6+. Однако этот формат упорядочений отличается от предложенного Андерсоном и Вервеем, где валентности были целочисленные с соотношением 1:1.

Упорядочение гиперкагомного типа часто появляются в пирохлорных системах с соотношением двух видов атомов 1:3. Таким образом, CsW2O6 является на данный момент единственным примером упорядочения гиперкагомного типа с нетривиальной природой формирования.

Возникает вполне ожидаемый вопрос почему именно такой формат упорядочения возникает в CsW2O6? По словам ученых, ответ можно получить, внимательнее рассмотрев неустойчивость поверхности Ферми электронной зонной структуры фазы I, т.е. понять движение и взаимодействие электронов в этой фазе.


Изображение 3

Слева на изображении выше показана зонная структура фазы I, а справа перекрывающие друг друга зонные структуры, полученные после параллельного сдвига электронных зон, соответствующих изменению примитивной ячейки с гранецентрированной сингонии на простую сингонию.


Кубическая сингония (слева направо): простая, объемно-центрированная и гранецентрированная.

Как видно на правой части изображения 3, пересечение зон происходит вблизи всех точек, где электронные зоны касаются энергии Ферми (EF). Следовательно, поверхности Ферми хорошо вложены за счет параллельных сдвигов электронных зон, соответствующих потере операций центрирования.

Подобный сценарий развития событий ученые именуют трехмерной вложенностью. Это означает, что большая электронная энергия генерируется за счет структурных изменений, связанных с вышеупомянутым изменением симметрии. Следовательно, эта трехмерная вложенность может быть важным компонентом возникновения перехода при 215 К.

Если рассматривать данный эффект как единственную движущую силу в возникновении перехода, то должно произойти структурное изменение с Fd3m на P4132 или P4332, что уже высказывалось в ранее проведенном теоретическом исследовании. В таком случае атомы W(2) должны образовывать однородную гиперкагомную структуру. Также предполагается, что запрещенная зона не открывается при энергии Ферми в случаях P4132 и P4332, что не согласуется с наблюдаемой в данном исследовании диэлектрической природой фазы II.

В действительности же пространственной группой фазы II является P213, которая является подгруппой P4132 и P4332, а атомы W(2) образуют дышащую гиперкагомную структуру, где размер маленького треугольника на 2% меньше, чем у большого.

Кроме того, ориентация занятых 5d орбиталей важна для понижения симметрии с P4132 / P4332 (равномерный гиперкагом) до P213 (дышащий гиперкагом). Для октаэдра W(2)O6 фазы II () две апикальные связи W(2)-O (отмечены серым) на 38% короче, чем остальные четыре экваториальные связи (отмечены синим). Это говорит о том, что октаэдр одноосно сжат.

Подобное искажение, по словам ученых, сильно напоминает классический пример эффекта Яна Теллера* в электронных системах t2g. В таком случае 5d-орбитали, лежащие в экваториальной плоскости, должны быть заняты электронами (2f).
Эффект Яна Теллера* возникает, когда взаимодействие между электронами и колебаниями ядер приводит к образованию локальных деформаций и изменению симметрии кристалла (статический эффект), или когда образуются вибронные состояния (динамический эффект).
Между занятыми 5d-орбиталями в малом треугольнике происходит значительное перекрытие через 2p-орбиталь O. А вот в большом треугольнике наблюдается небольшое перекрытие. Это указывает на то, что два электрона в трех атомах W(2) заключены в тримере W3 в маленьком треугольнике.

Для образования этого тримера электронная корреляция 5d электронов в CsW2O6 может быть еще одним существенным фактором. В тримере CsW2O6 два 5d электрона образуют спин-синглетную пару, что приводит к немагнитному и диэлектрическому основному состоянию. Таким образом мы наблюдаем альтернативный тип самоорганизации d-электронов, реализованный в сильно коррелированном 5d-оксиде.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Результатом сего исследования стало обнаружение того, что тримеры правильного треугольника W3 образуются при переходе 215 K в -пирохлоре оксида CsW2O6. Определить это удалось с помощью измерений структурных и электронных свойств монокристаллических образцов.

По сути, ученые обнаружили молекулы тривольфрама в монокристаллах CsW2O6, охлажденных до -58 C. При комнатной температуре CsW2O6 является хорошим проводником, но при охлаждении становится диэлектриком.

Когда кристалл находится в состоянии проводника, молекулы вольфрама образуют трехмерные сети тетраэдрических пирамид, связанных по их углам, известных как структура пирохлора. А симметрически распределенные между молекулами электроны образуют их связь. Если же образец охладить, то электроны меняют свое положение, от чего появляется два типа атомов вольфрама, которые отличаются своей валентностью. Такие изменения приводят к искажению связи вольфрама с атомами кислорода, что приводит к более сжатой форме соединения.

В процессе всех этих пертурбаций атомы вольфрама с более низкой валентностью образуют маленькие и большие треугольники по бокам тетраэдров вольфрама, причем очень маленькие молекулы тривольфрама образуют маленькие треугольники. Три атома вольфрама, являющиеся вершинами этих треугольников, держатся друг друга за счет всего лишь двух электронов.

Ученые заявляют, что на данный момент CsW2O6 является единственным известным примером, где подобный формат связи (два электрона на три атома) проявляется как фазовый переход. В последующих работах авторы сего исследования намерены глубже изучить соединения с пирохлорными структурами, что позволит открыть новые материалы с крайне необычными свойствами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Объединение отрицательно заряженных частиц за счет фотонов

26.08.2020 10:09:33 | Автор: admin


Противоположности притягиваются. Этот житейский принцип, касающийся отношений между людьми, далеко не всегда соответствует действительности. Но в физике все так, как говорится: противоположные электрические заряды, к примеру, всегда притягиваются, а сходные отталкиваются. Этот принцип стар, как сам мир, но и его можно подвергнуть некой модификации, если применить другие физические законы и явления. Группа ученых из Саутгемптонского университета (Великобритания) провели исследование, в котором им удалось создать новый тип материала, названный фотонно-связанный экситон. Самый смак заключается в том, что фотоны стали связующим звеном между отрицательно заряженными электронами, которые по логике должны были отталкиваться. Как именно были использованы фотоны, какие особенности изобретенного атома, и в каких областях может использоваться данная разработка? Об этом мы узнаем из доклада ученых. Поехали.

Основа исследования


Как мы уже вспомнили, одноименные заряды (т.е. одинаковые: ++ или -) должны отталкиваться друг от друга, а разноименные (т.е. противоположные: +- / -+) притягиваться. Однако картина такого взаимодействия меняется, если добавить щепотку фотонов, т.е. частиц света. В таком случае добавляется влияние фотоэффекта взаимодействия света и материи, когда энергия фотонов передается материи.

В данном труде ученые создали наноустройство, которое захватывает электроны в наноразмерные квантовые ямы*. Если же фотоны вносят в устройство достаточно много энергии, то это приводит к выходу из ямы электронов. Разместив данное устройство между двумя золотыми зеркалами, можно поймать фотоны в ловушку. За счет этого энергия фотонов будет сфокусирована на электроны, усиливая взаимодействие между светом и материей. Добавление зеркал привело к тому, что отрицательно заряженные электроны оставались в яме (без зеркал фотоны вытесняли их из ямы) и начинали связываться друг с другом.
Квантовая яма* потенциальная яма, ограничивающая подвижность частиц с трех до двух измерений (т.е. частицы начинают двигаться в плоском слое).
Важнейшую роль в работоспособности всей системы, естественно, играют вышеописанные квантовые ямы (QW от quantum well). По словам ученых, на то есть ряд причин.

Во-первых, QW позволяют достичь большей силы связи между светом и материей, которую можно регулировать за счет изменения электронной плотности* в QW.
Электронная плотность* в квантовой механике мера вероятности того, что электрон займет бесконечно малый элемент пространства, окружающего любую условную точку.
Во-вторых, квантовые ямы можно сделать достаточно узкими, что позволит получить одну локализованную электронную подзону, которая не будет иметь никаких межподзонных переходов.

В-третьих, в подобной системе кулоновское взаимодействие не создает связанных состояний.

Из последних двух пунктов следует, что чистые квантовые ямы без окружающего фотонного резонатора вообще не представляют какого-либо дискретного резонанса, а только полосу непрерывного поглощения на частотах, превышающих порог ионизации.

Отсутствие кулоновского взаимодействия обосновано квазипараллельной дисперсией двух электронных подзон, что приводит к отталкивающему электронно-дырочному взаимодействию*.
Электронно-дырочное взаимодействие* (p-n взаимодействие) область соприкосновения двух частиц с разными типами проводимости дырочной (p от positive положительная) и электронной (n от negative отрицательная).
Это сильно отличается от случаев межзонных переходов на более коротких длинах волн, где электронно-дырочное взаимодействие является притягивающим и приводит к созданию узких резонансов вне электронно-дырочного континуума в отсутствие поляритонных эффектов.

Таким образом, формирование поляритонов* может изменять существующие резонансы, но не приводит к созданию новых локализованных электронных резонансов.
Поляритон* частица, являющаяся результатом взаимодействия фотона и возбуждений среды (оптические фононы, экситоны, плазмоны, магноны и т.д.).



Изображение 1: Кулоновский эффект в легированных и нелегированных квантовых ямах. межзонное поглощение нелегированной полупроводниковой квантовой ямы, в котором преобладает экситонный резонанс (EX) ниже энергии запрещенной зоны (EG) и электронно-дырочный континуум над ним; 1b стандартное электронно-дырочное картирование, позволяющее описать одиночную электронную вакансию в валентной зоне как дырку с положительным зарядом и массой; межподзонное поглощение легированной квантовой ямы, содержащей только одно локализованное состояние, и континуум состояний выше первой энергии ионизации квантовой ямы (EI); 1d первоначально заполненная подзона электронов имеет положительную эффективную массу, а электрон-дырочное картирование приводит к положительно заряженной дырке с отрицательной эффективной массой.

Изображения выше являются схемой вышеописанного явления. В случае межзонных переходов в нелегированных квантовых ямах участвующие в переходе электроны изначально занимают валентную зону с отрицательной эффективной массой. Однако в случае межподзонных переходов в легированных квантовых ямах ту же роль играет первая частично заполненная подзона проводимости, имеющая положительную эффективную массу*. При обычном электронно-дырочном картировании это приводит к положительно заряженной дырке с отрицательной эффективной массой.
Эффективная масса* величина, имеющая размерность массы и применяемая для описания движения частицы в периодическом потенциале кристалла.
Эффективная масса электронов в возбужденной подзоне m2 в квантовых ямах GaAs больше массы в первой подзоне m1. Это приводит к отрицательно сниженной массе межподзонной электронно-дырочной пары mr-1 = m2-1 m1-1.

При наличии любого притягивающего потенциала двух тел отрицательная масса приводит к отталкивающему электронно-дырочному взаимодействию, которое, в свою очередь, не может создавать связанные состояния.

Для практического подтверждения наличия связанных состояний, опосредованных фотонами, была создана система, состоящая из 13 квантовых ям GaAs / AlGaAs, встроенных в узкие решетчатые золотые микрополостные резонаторы.


Изображение 2: схема экспериментальной установки. распределение компоненты электрического поля, ортогональной металлическим слоям, для одного периода (D) структуры и для моды TM02 ленточного резонатора; 2b микроскопия набора образцов; экспериментальная установка, используемая для измерений отражательной способности (микроскоп среднего инфракрасного диапазона, подключенный к Фурье-ИК-спектроскопу.

Резонаторы представляют собой одномерные ленты, а электромагнитное поле (схема на ) почти полностью удерживается под металлическими штифтами.

Размеры квантовых ям были достаточно тонкими, чтобы была лишь одна захваченная подзона проводимости, поскольку наличие второй подзоны привело бы к созданию межподзонных поляритонов.

Если бы было две подзоны, то наличие перехода типа связь-связь привело бы к насыщению имеющейся силы осциллятора, что привело бы к подавлению связь-континуумного перехода, который и должен изучаться в данном тесте.

Для проверки этого важного параметра было изготовлено два образца HM4229 и HM4230, различающиеся шириной квантовой ямы и легированием. Образец HM4229 содержал квантовые ямы GaAs толщиной 4 нм (с шириной LQW = 4 нм), каждая из которых легирована с плотностью 5 х 1012 см-2. А образец HM4230 содержал квантовые ямы (LQW = 3.5 нм), легированные при 4.77 х 1012 см-2.


Изображение 3: связь-континуумный характер оптического перехода в чистых QW без окружающего фотонного резонатора. измерение пропускания при 300 K для образцов с QW разной ширины LQW; 3b-3e схемы связь-связь (3b и 3c) и связь-континуумных переходов (3d и 3e) в легированных квантовых ямах.
Переход связь-связь* изменение энергии электрона внутри атома или, реже, внутри молекулы, при котором электрон остается прикрепленным (связанным) к атому или молекуле как до, так и после изменения.

Связь-континуумный переход* (переход связь-континуум) возбуждают носителей в токопроводящие состояния континуума и позволяют использовать перпендикулярный транспорт (носители, движущиеся через переход).
(Infrared absorption of multiple quantum wells: bound to continuum transitions)
На схемах 3b- видно, что переходы разных типов (связь-связь и связь-континуум) в разных одночастичных состояниях QW потенциала претерпевают противоположные частотные сдвиги при уменьшении LQW: у первых возникает синее смещение*, у вторых красное смещение*.
Синее смещение* явление, когда уменьшается длина волны излучения, а частота увеличивается.

Красное смещение* явление, когда увеличивается длина волны излучения (свет становится более красным, например), а частота и энергия уменьшаются.
Это позволило оценить природу оптического перехода за счет анализа спектра пропускания двух образцов до применения золота ().

Здесь наблюдается очень широкое поглощение, которое (будучи поперечной магнитной поляризацией) связано с легированными квантовыми ямами. Также наблюдается и более узкая область около 140 мэВ, которая является краем континуума. Ученые отмечают, что данная функция не приводит к синему смещению при уменьшении LQW, а показывает перенос спектрального веса в красную часть спектра. Связь-связь переход в таком случае привело бы к синему смещению порядка десятков миллиэлектронвольт, доказывая привязанный к континууму характер переходов в чистых QW.

Как уже упоминалось ранее, все образцы были изготовлены в рамках решетки металл-полупроводник-металл и металлических штифтов с шириной р ( и 2b). Поскольку электромагнитное поле чрезвычайно локализовано под металлическими пальцами, система по существу ведет себя как резонатор ФабриПеро*.
Резонатор ФабриПеро* оптический резонатор, в котором параллельно расположенные зеркала направлены друг на друга. Между этими зеркалами может формироваться резонансная стоячая оптическая волна.
Было изготовлено несколько устройств на основе решеток площадью 200 х 200 мкм с шагом в диапазоне от 800 нм до 5 мкм, что позволяет охватить широкий диапазон частот (2b). Данные по отражательной способности были получены для каждого устройства при температуре 78 К посредством Фурье-ИК-спектроскопа, оснащенного очень компактным криостатом (2c).


Изображение 4: экспериментальные данные по отражательной способности. данные по отражательной способности легированного образца HM4229 в зависимости от частоты резонатора; 4b данные отражательной способности для HM4229 (красный) и чистого резонатора (зеленый) для частот с = 157.8 мэВ (сплошные линии), с = 147 мэВ (пунктирные линии) и с = 141.5 мэВ (штрихпунктирные линии); ширина линий для различных колебаний как функция энергии колебаний.

Результаты данного анализа представлены на графиках выше. На представлена карта отражательной способности образца HM4229 при 78 К как функция частоты чистого резонатора. Если выше порога ионизации (показан черной горизонтальной пунктирной линией) наблюдается континуум поглощения, то ниже появляется узкий поляритонный резонанс. Он сдвинут в красную сторону более чем на 20 мэВ по отношению к чистому резонатору.

На цветовую карту были нанесены пиковые частоты, полученные с помощью множественной аппроксимации данных методом Лоренца. Красные треугольники и синие квадраты отображают соответственно частоты ниже и выше идентифицированного порога ионизации. Для сравнения зелеными кругами отмечена частота чистого резонатора, измеренная на нелегированном образце.

Ниже порога ионизации время жизни дискретной поляритонной моды в основном ограничивается временем жизни резонатора. Выше заметен спектр связь-континуум, в котором можно идентифицировать только очень расширенные и неопределенные особенности.

Сравнение спектров легированных и нелегированных образцов показало, что в легированном образце возникает дискретный резонанс ниже края континуума, тогда как в идентичном, но электромагнитно несвязанном образце его нет.

Подобное гибридное дискретное состояние можно описать как поляритон, плотность электронов которого относительно основного состояния равна:
N(z) = P [|e(z)|2 |g(z)|2]
где Р (в диапазоне 01) вес поляритонного компонента материи; g(z) нормированная волновая функция электрона в его основном состоянии; e(z) волновая функция локализованного электронного состояния, порожденного взаимодействием света и материи.


Изображение 5: расчеты P. собственные моды, полученные с помощью теоретической модели с параметрами, выбранными для соответствия экспериментальным данным отражательной способности на цветовой карте; 5b параметры, извлеченные из 5a, которые используются для расчета P для дискретной поляритонной моды.

На визуально отображен результат использования теоретической модели для моделирования наблюдаемого спектра отражательной способности и сравнения его с экспериментальными данными. Эти параметры позволили рассчитать Р (5b).

Из этого модели следует, что дискретный резонанс ниже порога ионизации четко определяется для ненулевых значений P, демонстрируя существенное заполнение генерируемой светом электронной волновой функции e(z).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Данный эксперимент позволил продемонстрировать возможность связывания ионизирующего перехода с фотонным резонатором, что приводит к непертурбативной модификации электронной структуры системы.

В результате получается гибридное поляритонное возбуждение, материальная составляющая которого представляет собой связанное состояние, порожденное взаимодействием света и материи, состоящего из электрона и дырки, удерживаемых вместе благодаря их взаимодействию с поперечным электромагнитным полем.

Как заявляют ученые, возможность настраивать свойства материала за счет связи с фотонным полем микрорезонатора является крайне перспективным направлением.

В данном труде они смогли создать устройство, ограниченное с двух сторон золотыми зеркалами, которые улавливали фотоны и фокусировали световую энергию на электроны, что резко усиливало связь между светом и материей. В ходе экспериментов было замечено, что отрицательно заряженный электрон, выброшенный фотоном, остается в ловушке в квантовой яме, связанный с другими отрицательно заряженными электронами. При этом такая конфигурация остается стабильной за счет воздействия фотонов.

Другими словами, данное исследование показывает возможность создания искусственных атомов нового типа, электронные конфигурации которых можно будет настраивать по собственному желанию.

Фотоника является достаточно молодой отраслью науки, но при этом ее влияние с каждым годом растет, что обусловлено подобного рода исследованиями. Свет, как и многие другие явления, можно сравнить с котом Шредингера: с одной стороны все понятно и очевидно, но если копнуть поглубже, то становится очевидна простая истина сколько бы ответов не получал человек, вопросов всегда будет больше. Тем не менее в поисках ответов на вопросы, по крайней мере в науке, важен не столько сам ответ, сколько путь, ведущий к нему.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Металлизация алмаза превращение изолятора в полупроводник

09.10.2020 10:12:07 | Автор: admin


Преобразование одного вещества в другое, изменение свойств материала под собственные нужды, трансформация материи. Все эти действия сочли бы за колдовство и ересь буквально пару сотен лет назад. Сейчас же это вполне обыденные процессы, которые можно наблюдать в современных лабораториях. Однако есть нечто, что сделать по факту нереально или, как минимум, крайне сложно. В рассматриваемом нами сегодня исследовании ученые из МТИ (Массачусетский технологический институт, США) решили радикально изменить электрические свойства алмаза, превратив его из диэлектрика в проводник. Как это было достигнуто, каковы характеристики алмаза-проводника, и где может пригодиться подобная разработка? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


В далеком 1949 году Кэрол Чэннинг впервые исполнила песню Бриллианты лучшие друзья девушек, которая большинству из нас известна в исполнении Мерлин Монро. Правдиво ли данное высказывание касательно драгоценного камня каждый может судить по себе индивидуально.

Бриллианты это красивые драгоценные камни, которые прекрасно смотрятся в украшениях или на музейных полках. Но вот их предшественники куда интереснее с научной точки зрения. Речь, конечно, об алмазах.

Алмаз это кубическая аллотропная форма углерода. Срок годности этого минерала в нормальных условиях фактически неограничен, так как он является метастабильным материалом. Также всем известен факт того, что алмаз является одним из самых твердых веществ на планете. Физико-химические свойства алмаза сделали его важнейшей составляющей для многих приборов и центром внимания многих исследований. Среди них и труды по электропроводимости, в которых алмазы наделяли свойствами проводника посредством внедрения примесей (например, бора).

Но в таком случае, преобразование алмаза в проводник происходит посредством допирования. Другими словами, сам алмаз по-прежнему остается изолятором.

Однако, как заявляют авторы сего исследования, открытие сверхбольшой упругой деформации в наноразмерном алмазе и более точное описание его электронной и фононной структур посредством машинного обучения позволили расширить спектр манипуляций, которые можно проводить с алмазами.

Получив новые данные и новые инструменты для исследований, ученые задались вопросом: может ли алмаз со сверхширокой запрещенной зоной (5.6 эВ) быть полностью металлизирован исключительно за счет механической деформации без фононной нестабильности, так чтобы его электронная запрещенная зона полностью исчезла? Как оказалось, это вполне реально.

Прежде всего ученые обращают наше внимание на другое исследование (Ultralarge elastic deformation of nanoscale diamond), в котором говорится, что монокристаллические и поликристаллические алмазные наноиглы (диаметр 300 нм) могут быть обратимо деформированы до локальных упругих деформаций растяжения выше 9% и 3.5% при комнатной температуре. Это умозаключение было подтверждено в последующих исследованиях, где объектом изучения были алмазные наноразмерные столбы, полученные с помощью резки образцов природного алмаза сфокусированным ионным лучом.

В рассматриваемом нами сегодня труде наибольшие локальные деформации растяжения 13.4% (ориентация решетки <100>) и 9.6% (ориентация решетки <110>) были достигнуты в наноиглах монокристаллического алмаза с ориентацией при изгибе. При этом соответствующие максимальные локальные деформации сжатия 14
% и -10.1% наблюдаются на стороне сжатия.

Получить такие результаты стало возможным за счет расчетов, экспериментов, моделирования и, что самое важное, машинного обучения, алгоритм которого должен определить оптимальные свойства алмаза для различных геометрий и условий нагрузки путем сканирования всех возможных комбинаций состояний деформации в общем шестимерном (6D) пространстве деформации.

Перед проведением фактического исследования ученые определили ряд основных вопросов, на которые они хотели бы получить ответы:

  • можно ли исключительно посредством наложения напряжения металлизировать алмаз при комнатной температуре и давлении? При этом необходимо достичь перехода от его естественного недеформированного состояния со сверхширокой запрещенной зоной (5.6 эВ) до полной металлизации с шириной запрещенной зоны 0 эВ без фононной нестабильности или структурных преобразований (например, графитизация).
  • какие состояния деформации и наименьшая плотность энергии деформации необходимы для достижения безопасной металлизации запрещенной зоны?
  • насколько такая безопасная металлизация может быть реализована в условиях деформаций, достижимость которых была доказана экспериментально?
  • как кристаллографические и геометрические переменные влияют на металлизацию алмаза?
  • какие условия запускают преобразование непрямого перехода запрещенной зоны в прямой или конкурирующий переход фазы графитизации в алмазе при деформации?

Результаты исследования


Забегая наперед, можно сказать, что в алмазе можно достичь электронной запрещенной зоны 0 эВ исключительно за счет наложения обратимых упругих деформаций, не вызывая фононную нестабильность или фазовый переход. Это открытие подразумевает, что обратимая металлизация/деметаллизация возможна за счет правильной комбинации условий механической нагрузки и геометрии в наноразмерном алмазе.

Было установлено, что безопасная металлизация может быть достигнута при значениях плотности энергии упругой деформации порядка 95275 мэВ/3. При этом даже незначительный изгиб <110> наноиглы может эффективно уменьшить ширину запрещенной зоны с 5.6 эВ до 0 эВ без фононной нестабильности при локальной упругой деформации сжатия около 10.8%. Однако увеличение напряжения изгиба может вызвать фононную нестабильность, которая приводит к необратимому фазовому переходу sp3 sp2 (алмаз графит) или разрушению образца.


Изображение 1

Выше представлены некоторые 6D-состояния деформации, которые приводят к исчезновению запрещенной зоны алмаза без фононной неустойчивости или графитизации. В кристаллографической системе координат [100] [010] [001] расчеты показывают, что одна такая полная и безопасная металлизация происходит, когда локальное состояние деформации 6D составляет (0.0536, -0.0206, -0.056, 0.0785, 0.0493, 0.0567).

На 1A представлен k-график GW* электронной зонной структуры для алмаза, деформированного до 6D состояния, указанного выше, в результате чего получается металл.
GW*: электронные зонные структуры алмаза при деформации растяжения могут быть предсказаны с высокой точностью на основе теории функционала плотности (DFT) с последующими расчетами GW (G функция Грина; W экранированное кулоновское взаимодействие).
Контуры плотности энергии деформации построены в двумерном (2D) пространстве на 1B, где черной звездой отмечен h = 98.7 мэВ/3.


Изображение 2

Изображение выше дополнительно иллюстрирует области безопасной металлизации алмаза без фононной нестабильности, а также демонстрирует обратимые преобразования прямозонный/непрямозонный при больших упругих деформациях.
Прямозонный полупроводник, в котором переход из зоны проводимости в валентную зону не сопровождается потерей импульса.

Непрямозонный полупроводник, в котором переход из зоны проводимости в валентную зону сопровождается потерей импульса.
На показаны возможные состояния деформаций 11, 22, 33, охватывающие от -20% (т.е. деформация сжатия 0.2) до +10% (т.е. деформация растяжения 0.1), в которых индуцируется безопасная металлизация (отмечено коричневым цветом). В свою очередь, является двумерной репрезентацией областей металлизации.

Посредством компьютерного моделирования было установлено два типа безопасной металлизации: прямой металл и непрямой металл (где переход зона-граница непрямой, т.е. из двух разных k-точек).

Двумерная область прямого металла, заштрихованная коричневым цветом, охватывает деформированное состояние, обозначенное звездой из . Эта зона встроена в пространство деформации прямой запрещенной зоны (синяя область на 2B). Область непрямого металла, также заштрихованная коричневым, окружена белой зоной, представляющей пространство деформации для непрямой запрещенной зоны.

На структура GW зоны перенесена в k-пространство, чтобы проиллюстрировать непрямое состояние металла в точке c (2B) внутри зоны безопасной металлизации. 2D и являются диаграммами зонной структуры, показывающими примеры ненулевых случаев прямой и косвенной запрещенной зоны.

Область, заштрихованная серым цветом вне пунктирных линий, это область больших упругих деформаций и нестабильной металлизации, где происходит фононная неустойчивость, приводящая к зарождению дефектов и/или фазовому переходу. А на 2F видно заметное уменьшение частоты фононов и возникновение мягкой моды, связанной с точкой деформации f на 2B, где имеет место фононная нестабильность и связанный с ней фазовый переход от алмаза к графиту.

Эксперименты показывают, что алмазные наноиглы перед разрушением демонстрируют сверхбольшой упругий изгиб. Такая деформация, приводящая к локальным деформациям сжатия, превышающим -10%, и деформациям растяжения, превышающим 9%, является обратимой после снятия нагрузки.

Далее было проведено моделирование для определения модуляции запрещенной зоны в изогнутых алмазных наноиглах при максимальных уровнях локальной деформации.


Изображение 3

На схеме показан способ, при котором наконечник алмазного индентора надавливает на алмазную наноиглу, вызывая большую деформацию. Был применен метод конечных элементов (МКЭ), позволивший смоделировать латеральный изгибающий момент алмазной иглы во время контакта с острием индентора при учете нелинейной упругости, ориентации кубической решетки относительно оси иглы, направления изгиба и возможного трения между наконечником индентора и иглой.

Изображение это результаты МКЭ моделирования для локальных деформаций сжатия (максимум -10.8%) и растяжения (максимум 9.6%) <110> алмазной наноиглы. Тут же представлены прогнозы распределения ширины запрещенной зоны.

Начало безопасной металлизации появляется на сильно напряженной стороне наноиглы при локальной деформации -10.8% (3C). Также было установлено, что склонность к более металлическому поведению с увеличением деформации не зависит от трения между индентором и наноиглой. <110> наноигла может выдерживать не более 12.1% локальной деформации растяжения до возникновения фононной нестабильности на стороне растяжения при ширине запрещенной зоны 0.62 эВ (3D).


Эволюция плотности энергии упругой деформации, ширины запрещенной зоны и соответствующей зонной структуры в месте максимального сжатия на наноигле, показывающая процесс металлизации алмазной наноиглы при изгибе (соответствует изображению 3).

Сторона наноиглы, где протекает сжатие, куда более устойчива к деформациям. Максимально достижимая деформация сжатия может составлять порядка -20% при ориентации с низким показателем преломления. Следовательно, можно предположить, что есть место для дополнительной упругой деформации после достижения безопасной металлизации в областях с преобладающим сжатием.

Еще одним важным аспектом, определяющим степень деформации и результирующую модуляцию запрещенной зоны, является кристаллографическая ориентация оси наноиглы.

Среди трех изученных типов <110>- и <111>-ориентированные наноиглы требуют относительно меньших деформаций растяжения для уменьшения ширины запрещенной зоны за счет деформации, тогда как ориентация <100> является наиболее сложной ориентацией для уменьшения ширины запрещенной зоны ниже 2 эВ или достижения металлизации. Это можно объяснить различием в гибкости доступа ко всем шести компонентам тензора деформации, выраженным в системе координат [100] [010] [001].

Несмотря на возможность чрезвычайно большой деформации в <100> -ориентированной наноигле, эта ориентация в первую очередь способствует нормальным деформациям, и результирующее максимальное уменьшение ширины запрещенной зоны ограничивается достижением фононной нестабильности, вызывающей разрушение или фазовое преобразование.

А вот для <110> и <111>-ориентированных наноигл намного легче инициировать различные компоненты деформации и, следовательно, легче провести преобразование зонной структуры и достичь модуляции запрещенной зоны.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Ученые заявляют, что помимо рассмотренных в данном труде вариантов алмазных структур, можно создать более сложные геометрические формы с отверстиями и впадинами за счет оптимизации топологии и микро- и наномеханической обработки геометрических элементов, не подвергая металлизированную зону воздействию приповерхностных областей, что еще больше увеличивает возможности металлизации алмаза.

Когда деформированный алмаз превращается в полупроводник с прямой запрещенной зоной, даже только локально в месте максимальной деформации, он будет демонстрировать фундаментальное улучшение оптических переходов вокруг края адсорбции по сравнению с недеформированным алмазом в его естественном состоянии. Поскольку поглощение экспоненциально увеличивается с толщиной материала, устройство преобразования световой энергии на основе полупроводника с прямой запрещенной зоной потребует гораздо меньшей толщины, чтобы поглощать такое же количество света. Следовательно, данный подход может быть использован в разработке новых типов фотодетекторов и излучателей от ультрафиолета до дальнего инфракрасного диапазона, работающих на одном кусочке алмаза.

Также важно отметить, что достижение полной металлизации алмаза в условиях упругих деформаций выше 80 мэВ/3 или при локальной упругой деформации на сжатие или растяжение > 9% является крайне сложным делом. Однако успешная реализация этой разработки может иметь значимый эффект на развитие электроники, оптоэлектроники и систем квантового зондирования.

Однако характеристики системы будут напрямую зависеть от ее практического применения. Другими словами, систему можно будет оптимизировать в зависимости от задач, которые она должна выполнять. На данный момент ученые смогли практическим путем доказать работоспособность своего творения. Пока это лишь концепция, однако она может быстро перейти от теории к практике, учитывая скорость развития технологий выращивания однородных алмазных материалов.

Несмотря на все сложности практической реализации полученных знаний, они по-прежнему остаются крайне важными элементами понимания того, как те или иные материалы с давно определенными свойствами способны менять их в зависимости от внешних факторов.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru