Русский
Русский
English
Статистика
Реклама

Обработка

Перевод Оптимизация веб-графики в 2021 году

20.06.2021 18:15:44 | Автор: admin
Изображения, используемые на веб-страницах, привлекают пользователей, пользователи довольно-таки охотно щёлкают по ним мышью. Изображения делают веб-страницы лучше во всём кроме скорости работы страниц. Изображения это огромные куски байтов, которые обычно являются теми частями сайтов, которые загружаются медленнее всего. В этом материале я собрал всё, что нужно знать в 2021 году об улучшении скорости работы веб-страниц через оптимизацию работы с изображениями.



Изображения обычно имеют большие размеры. Даже очень большие. В большинстве случаев CSS- и JavaScript-ресурсы, необходимые для обеспечения работоспособности страниц это мелочь в сравнении с тем объёмом данных, который нужно передать по сети для загрузки изображений, используемых на страницах. Медленные изображения могут повредить показателям Core Web Vitals сайта, могут оказать воздействие на SEO и потребовать дополнительных затрат на трафик. Изображения это обычно тот самый ресурс сайта, который оказывает решающее воздействие на показатель Largest Contentful Paint (LCP) и на задержки загрузки сайта. Они способны увеличить показатель Cumulative Layout Shift (CLS). Если вы не знакомы с этими показателями производительности сайтов почитайте о них в Definitive Guide to Measuring Web Performance.

Здесь мы поговорим о подборе наиболее подходящего формата изображений, об оптимизации их размеров в пикселях и качества, а так же о встраивании изображений в веб-страницы и о ленивой загрузке изображений.

1. Формат изображений


Изображения, которые не повредят скорости работы сайта, прежде всего, должны иметь подходящий формат. Графические форматы разработаны с учётом использования их для хранения изображений различных видов. В результате, если для хранения крупного изображения, способного замедлить загрузку сайта, использовать неподходящий формат, это может ухудшить ситуацию.

Есть одно хорошее общее правило, касающееся выбора форматов для изображений. Заключается оно в том, что для фотографий рекомендуется использовать формат JPG, а для рисунков, схем и прочего подобного формат PNG. Вот пример.


Изображения ленивца

Слева мы можем видеть фото нашего товарища-ленивца Сэма. Эта картинка в формате JPG занимает всего лишь 32,7 Кб. А если то же самое изображение преобразовать в формат PNG размер графического файла увеличится более чем вдвое до 90,6 Кб!

Справа находится рисунок со всё тем же Сэмом. Этот рисунок лучше всего хранить в формате PNG. Так он занимает всего 5,5 Кб. А если преобразовать его в JPG, то его размер подскочит до 11,3 Кб.

Обратите внимание: всё то, что фотографиями не является, обычно занимает меньше места, чем фотографии. Не забывайте об этом, проектируя свои веб-страницы.

Существует, конечно, ещё много графических форматов! Если у вас имеется некое векторное изображение (состоящее из всяческих линий и геометрических фигур), то вам лучше всего подойдёт формат SVG. Более новые браузеры поддерживают и более современные графические форматы вроде AVIF и WebP. Их использование для хранения подходящих изображений позволяет добиться ещё более серьёзного уменьшения размеров графических файлов.

2. Отзывчивые изображения и их пиксельные размеры


Не все посетители сайта будут просматривать его в одних и тех же условиях. У кого-то имеется огромный монитор шириной в 1600 пикселей. А кто-то смотрит сайт на планшете с шириной экрана в 900 пикселей, или на телефоне с экраном шириной в 600 пикселей. Если на сайте применяется изображение шириной в 1200 пикселей это будет означать, что при просмотре такого сайта на устройствах с небольшими экранами сетевые и другие ресурсы будут тратиться впустую, так как размер таких изображений при выводе на экран, всё равно, будет уменьшен.


Просмотр сайта на устройствах с разными экранами

Почему бы не уменьшить пиксельные размеры изображения до загрузки этих изображений пользователями? Подготовив такие изображения, можно воспользоваться HTML-механизмами, нацеленными на работу с отзывчивыми изображениями, и указать, в каких условиях нужно выводить каждое из изображений.

<img src="picture-1200.jpg"srcset="picture-600.jpg  600w,picture-900.jpg  900w,picture-1200.jpg 1200w"sizes="(max-width: 900px) 100vw, 1200px"alt="my awesome picture" height="900" width="1200" />

В данном случае ширина базового изображения составляет 1200 пикселей. Оно, кроме того, является изображением, записанным в атрибут src тега и используемым по умолчанию. В srcset описаны 3 варианта изображения шириной в 600, 900 и 1200 пикселей. В sizes используются медиа-запросы CSS, позволяющие дать браузеру подсказку, касающуюся видимой области, доступной для вывода изображения. Если ширина окна меньше 900 пикселей место, где будет выведено изображение, займёт всю его ширину 100vw. В противном случае место для вывода изображения никогда не окажется шире 1200 пикселей.

Большинство инструментов для работы с изображениями, вроде Photoshop, Gimp и Paint.NET, умеют экспортировать изображения в различных размерах. Стандартные системные графические программы тоже, в определённых пределах, способны решать подобные задачи. А если надо автоматизировать обработку очень большого количества изображений возможно, есть смысл взглянуть на соответствующие инструменты командной строки вроде ImageMagick.

Скрытие изображений при просмотре сайта на мобильных устройствах


При работе над некоторыми страницами может быть принято решение, в соответствии с которым изображения, имеющиеся на этих страницах, не будут выводиться при просмотре их на мобильных устройствах. Дело может быть в том, что эти изображения просто слишком велики. При этом установка для изображения стиля display:none особой пользы не принесёт из-за того, что браузер, всё равно, будет тратить время и трафик на загрузку изображения. Вместо этого можно воспользоваться атрибутом sizes, сообщив с его помощью браузеру о том, в каких условиях изображение выводиться не будет.

<img src="picture-1200.jpg"srcset="picture-600.jpg  600w,picture-900.jpg  900w,picture-1200.jpg 1200w"sizes="(max-width: 600px) 0, 600px"alt="my awesome picture" height="900" width="1200" />

Тут сказано, что если ширина экрана меньше чем 600 пикселей ширина области для вывода изображения будет равняться 0. В результате браузер, при просмотре сайта на устройстве с маленьким экраном, будет знать о том, что изображение ему выводить не нужно, а значит не нужно и его загружать.

3. Качество изображений


Помимо формата, в котором хранится изображение, и его размеров в пикселях, при сохранении изображений в форматах, поддерживающих сжатие данных с потерями, обычно можно настраивать уровень сжатия или уровень качества изображений. Алгоритмы сжатия изображений с потерями убирают из них некоторые данные, которые (на низких уровнях сжатия) могут и не повлиять на внешний вид изображений, но при этом, всё равно, занимают место. Взгляните на следующий пример.


Исходное PNG-изображение с прозрачными участками имеет размер 57 Кб. Такое же изображение, но сжатое, имеет размер 15 Кб.

Уменьшение размера изображения достигается путём удаления из него неиспользуемых цветов, или путём комбинирования цветов и пикселей, которые очень похожи друг на друга. Но, на самом деле, в тонкости всего этого можно и не вдаваться. Подбор приемлемого уровня сжатия изображений можно доверить специализированным инструментам. Например самые разные задачи по сжатию изображений хорошо решают TinyPNG и ImageMin.

4. Встраивание изображений в веб-страницы


Иногда изображение играет крайне важную роль для обеспечения работоспособности веб-страницы. Например оно может представлять собой кнопку, логотип или какую-нибудь иконку. После того, как размер такого изображения доведён до минимума, единственный способ дальнейшего ускорения его загрузки заключается во встраивании кода этого изображения в код страницы. Это позволит уменьшить количество запросов, необходимых на загрузку материалов страницы, и позволит вывести изображение в ходе рендеринга страницы.

Код изображений встраивают в код страниц, преобразуя данные изображений в base64-строки и помещая то, что получится, в атрибут src тега . Выглядеть это может так, как показано на следующем рисунке.


Изображение, встроенное в страницу

Может, выглядит это и странновато, но тут перед нами так называемый Data URL. Такие URL пользуются полной поддержкой всех браузеров. В атрибуте src сказано, что соответствующие данные надо воспринимать как PNG-изображение в кодировке base64. После описания изображения идёт набор символов, представляющих содержимое этого изображения. В данном случае это маленькая красная точка.

Google часто использует встроенные в страницу изображения при выводе результатов поиска. Это одна из причин того, что поиск Google кажется таким быстрым.

Вот материал, в котором проанализированы подходы к повышению производительности веб-ресурсов, используемые Google. Возможно, вы найдёте тут что-то такое, что вам пригодится.

А вот удобный веб-инструмент для преобразования изображений в формат base64.

5. Ленивая загрузка изображений


Обычно на веб-страницах есть немало изображений, которые не нужно загружать во время загрузки основных материалов страниц. Но браузеры не знают о том, какие именно изображения им понадобятся для правильного отображения страниц, поэтому просто загружают все изображения, которые есть на страницах. Загрузка большого количества изображений замедляет приведение страниц в работоспособное состояние и ухудшает скорость загрузки тех изображений, которые действительно важны для правильной работы страниц.

Вместо того, чтобы заставлять браузер сразу загружать все изображения, можно посоветовать ему немного полениться. Ленивая загрузка изображений это такой подход к работе с изображениями, когда браузеру предлагают загружать изображения только тогда, когда они могут понадобиться пользователю. Применение ленивой загрузки изображений способно оказать огромное положительное влияние на показатель Largest Contentful Paint (LCP), так как благодаря этому браузер, при загрузке страницы, может уделить основное внимание только самым важным изображениям.

В спецификации HTML есть атрибут loading, которым можно воспользоваться для организации ленивой загрузки изображений, но он пока имеет статус экспериментального. А Safari ещё даже его не поддерживает. В результате о его широком использовании говорить пока нельзя. Но, к счастью, ленивую загрузку изображений можно организовать средствами JavaScript.

Существуют соответствующие библиотеки. Например lazysizes. В этой библиотеке обрабатываются различные пограничные случаи, она уделяет немало внимания вопросам совместимости с разными браузерами. Но, в целом, код, ответственный за ленивую загрузку изображений, выглядит так, как показано ниже.

var lazyEls = [].slice.call(document.querySelectorAll("[data-src]"));var lazyObserver = new IntersectionObserver(function(entries) {entries.forEach(function(entry) {if (entry.isIntersecting) {var el = entry.target;var src = el.getAttribute("data-src");if (src) { el.setAttribute("src", src); }lazyObserver.unobserve(el);}});});lazyEls.forEach(function(el) {lazyObserver.observe(el);});

Тут, для определения того момента, когда надо загружать изображение, используется объект IntersectionObserver. Когда наступает нужный момент содержимое атрибута data-src копируется в атрибут src и изображение загружается. Тот же подход можно применить к атрибуту srcset и воспользоваться им при работе с любым количеством изображений.

Пользуются этим, переименовывая атрибут src в data-src.

<img data-src="picture-1200.jpg"loading="lazy" class="lazy" />

В этом фрагменте HTML-разметки используется и экспериментальный атрибут loading, и обычный атрибут, который можно использовать с некоей JavaScript-функцией или с какой-нибудь библиотекой.

Настройка размеров области, которую займёт изображение


При использовании изображений, которые загружаются через некоторое время после загрузки основных материалов страниц, очень важно заранее указывать их размеры, что позволит избежать сдвига макета страницы. Сдвиги макетов страниц происходят тогда, когда меняется положение одних элементов страниц при загрузке других их элементов, размеры которых настраиваются динамически. Подробности о сдвигах макета и о влиянии их на скорость работы страниц можно почитать здесь.

Избежать сдвига макета страницы можно, указав атрибуты height и width тега <img>.

<img data-src="picture-1200.jpg"loading="lazy" class="lazy"width="1200" height="900" />

Обратите на то, что значения атрибутов height и width это не 1200px и 900px. Это просто 1200 и 900. И работают они немного не так, как можно было бы ожидать. Размер соответствующего изображения не обязательно будет составлять 1200x900 пикселей. Этот размер будет зависеть от CSS и от размеров макета страницы. Но браузер, благодаря этим атрибутам, получит сведения о соотношении сторон изображения. В результате, узнав ширину изображения, браузер сможет правильно настроить его высоту.

То есть, например, если макет страницы имеет в ширину всего 800px, то браузер, не загружая изображение, будет знать о том, что ему надо зарезервировать 600px вертикального пространства для вывода изображения с правильным соотношением сторон.

Итоги


Применение тех подходов к оптимизации работы с изображениями, о которых мы говорили, способно значительно ускорить работу ваших веб-страниц. Подбор подходящего формата для хранения изображений, настройка их правильного размера, качества, порядка загрузки, способны значительно улучшить впечатления пользователей от работы с сайтом.

Как вы оптимизируете изображения, используемые в ваших веб-проектах?


Подробнее..

FOVEA томографируем коня через игольное ушко

27.05.2021 14:07:09 | Автор: admin

Рентгеновская томография - один из двух (наряду с МРТ) самых известных способов заглянуть внутрь непрозрачных объектов. В медицине он является инструментом клинического мониторинга и средством терапии, в индустрии помогает контролировать технологические процессы, в таможне - найти то, что кое-кто предпочел бы спрятать. Эта технология в нашей стране развивается in house на мировом уровне. Но мы в Smart Engines пишем про томографию так часто не только поэтому. Мы - ученые и изобретатели, а томография - неиссякаемый источник проблем и задач, требующих решения (мы уже писали о несовершенных детекторах и широкополосном излучении). Сегодня мы расскажем о том, что делать, если объект исследования не помещается в томограф. Вот как, например, британские ученые исследуют коня в зоопарке. Голову коня в гентри поместить удается, а с остальным дела обстоят сложнее. Пример не очень серьезный, но жизненный. Кто в лаборатории работал, тот в зоопарке не смеется. Заглянув под кат вы узнаете, как получается, что у физиков сантиметровый образец не помещается в километровый томограф, и чем тут могут помочь вычислительные математики.

Наш томографический маскот воодушевляет специалистов буквально всеми своими ммм деталями. Вот и с общими геометрическими формами все очень удачно. Гентри ей - как хула-хуп: можно сканировать хоть сверху-вниз, хоть снизу-вверх.

Впрочем, для боди-позитивного маскота можно было бы построить гентри побольше - в чем проблема? Но не все томографические комплексы вообще используют гентри. Есть такая машина - синхротрон. Машиной их называют специалисты, и это может вызвать неправильные образы при первом знакомстве. Размеры такой машины достигают километров, а строятся они, бывает, всем миром. В полном смысле этого слова. Например, синхротрон ESRF, расположенный во французском городе Гренобле, был построен в 1994 году совместными усилиями 20 стран. Синхротрон дает мощнейший узконаправленный пучок рентгеновских лучей. Такой мощный, что время многих измерений сокращается в десятки и сотни тысяч раз. Для регистрации рентгеновского излучения на его станциях используются уникальные плоскопараллельные детекторы с высочайшим пространственным разрешением. Излучатель и детектор остаются неподвижными, а образец вращается. Часто размеры исследуемых объектов, мельчайшие детали которых требуется рассмотреть, большие, а вот размеры детекторов ограничены.

Давайте посмотрим на результат измерений типичного биологического объекта в такой томографической схеме. Это фрагмент кости, отснятый с субмикронным разрешением. Измерения проведены на современном швейцарском синхротроне Swiss Light Source Paul Scherrer Institut. Намётанный глаз позволяет увидеть и контуры объекта, и трабекулы (перегородки) внутри. Но при таком разрешении объект не помещается целиком в поле зрения детектора. На каждой из проекций просматривается только часть объекта.

Похожее мы наблюдали в детстве, когда подсматривали в замочную скважину. Мы видели только часть запертой от нас комнаты. Заглядывая в нее под разными углами, можно расширить поле зрения, увидеть больше, но общую картину придется сшивать силой воображения. Традиционные алгоритмы томографической реконструкции для такого не предназначены.

Чтобы лучше почувствовать проблему, обратимся, как это принято среди ученых, к модели. Возьмем в качестве модельного объекта грецкий орех, совсем недавно оттомографированный в разных режимах нашими коллегами из Голландии. На картинке ниже показан орех и его рентгеновское изображение.

По структуре орех похож на кость, и для него нам известен ground truth - реконструкция, полученная при полных данных.

Теперь посмотрим, что мы сможем реконструировать при измерениях через замочную скважину. На рисунке ниже красным прямоугольником показано поле зрения нашего воображаемого детектора.

При таком соотношении размеров вместо целой синограммы объекта (что это такое, мы уже писали на Хабре) будет видна только ее часть (ниже в красной рамке).

Поскольку в детектор помещается больше половины ореха, то при вращении все его части когда-нибудь попадают в поле зрения детектора. Сама же синограмма имеет характерную структуру и кажется, что её фрагмент возможно экстраполировать до полного размера.

Будем строить такую синограмму, чтобы 1) она в области измерений совпадала с экспериментальной синограммой, 2) существовал объект, которому соответствовала бы наша синограмма (это нетривиальный факт, но не любая функция является синограммой). Предложенный нами для этого итерационный алгоритм называется Field Of View Extension Algorithm - FOVEA (любопытные хабровчане могут порыться в интернете и отгадать, почему аббревиатура составляет именно это слово).

Вот пошаговое описание алгоритма:

  1. Создадим массив D_{iterative} , заполненный 0 . В нём мы будем итеративно обновлять значения элементов восстанавливаемого цифрового объёма.

  2. Рассчитаем синограммы S_{iterative} от D_{iterative} .

  3. Заменим рассчитанные на Шаге 2 значения S_{iterative} доступными нам экспериментальными значениями - S_{experimental} .

  4. Проведём томографическое восстановление D_{iterative} из синограммы S_{iterative} методом FBP.

  5. Рассчитаем синограмму S_{iterative} от D_{iterative} .

  6. Сравним (например, рассчитав L2 норму) S_{iterative} и S_{experimental} в той области, где мы знаем экспериментальные значения. Если расхождение малое, т.е. экспериментальная и модельная синограммы совпадают, то конец расчёта: искомая реконструкция лежит в D_{iterative} . В противном случае переходим на Шаг 3.

Ниже приведены результаты реконструкции обрезанной синограммы методами FBP и FOVEA.

Из иллюстраций ясно, что на неполных данных мы избавились от области засветки (в зелёном прямоугольнике и усы вверх). Уже это позволяет увидеть больше деталей восстановленного ореха. Но, кроме того, нам удалось увидеть те части ореха, которые вообще не были видны до этого (в красных эллипсах).

Конечно, хорошо иметь полные данные и увидеть орех целиком (см рисунок ниже), но иметь алгоритм, который позволяет из испорченных данных вытянуть дополнительную информацию, тоже хорошо.

Над методами томографии высокого пространственного разрешения продолжают биться ученые всего мира. Ведь так хочется увидеть каждый нейрон в нашей голове и разгадать, наконец, как работает человеческий нейрокомпьютер. Для этого нужно нанометровое разрешение. 1 кубический миллиметр содержит квинтиллион вокселей размером 1 нанометр. Если значение вокселя кодируется числом с плавающей точкой одинарной точности (float32), то только для хранения результатов реконструкции потребуется 4 эксабайта (4 106 Тбайт) памяти. Но в голове ни много ни мало, а порядка 30 миллионов таких кубических миллиметров. Поэтому сегодня в высоком разрешении томографируют не весь мозг, а отдельные его участки, для чего их необходимо извлечь из головы. Что-то нам подсказывает, что методы томографирования через замочную скважину будут актуальными еще долго...

Подробнее..

Для начинающих как выбрать файл в 1С?

31.10.2020 18:19:25 | Автор: admin

Добавим новую форму с кнопкой, нажав на которую будет открываться окно выбора файла. Дальнейшая обработка файла в данном примере не рассматривается. Рекомендуется тренироваться на копии базы или пустой конфигурации. Пример создан на конфигурации 1С:CRM 3.0.

Сначала подготовим конфигуратор.

Заходим в конфигуратор 1С. Если конфигурация не открыта, открываем ее и снимаем с поддержки. В меню "Конфигурация" нажимаем "Открыть конфигурацию". Далее в меню "Конфигурация" нажимаем "Поддержка" и выбираем "Настройка поддержки". В окне нажимаем кнопку "Включить возможность изменения" и устанавливаем переключатели как на картинке. Нажимаем "Ок".

Теперь создадим простую обработку.

Находим в левой таблице объектов объект "Обработки", нажимаем на ней правой кнопкой мыши и выбираем "Добавить". Далее потребуется заполнить Имя обработки, указать, в какой подсистеме 1С хотите вызвать обработку, и добавить новую форму в разделе "Формы".

После создания формы появится окно как представлено ниже.

Теперь создадим команду формы "Загрузить" нажав на плюс в верхнем правом окне. Обязательно укажите свойство "Действие". Это будет название процедуры 1С.

Далее добавляем на форму кнопку "Загрузить", нажав на плюс в левом верхнем окне. Обязательно укажите свойство "ИмяКоманды". Здесь укажем название команды, которую создали на предыдущем шаге "Загрузить". В результате на форме появится кнопка "Загрузить".

Далее напишем небольшой код.

Внизу окна нажимаем на закладку "Модуль". У нас здесь уже есть пустая процедура. Добавляем в нее код.

//выбор файла

ДиалогВыбора = новый ДиалогВыбораФайла(РежимДиалогаВыбораФайла.Открытие); ДиалогВыбора.Заголовок = "Выберите файл";

ДиалогВыбора.Фильтр = "Excel документ, .xls|.xls";

ДиалогВыбора.МножественныйВыбор=Ложь;

Если ДиалогВыбора.Выбрать() Тогда

ИмяФайла = ДиалогВыбора.ПолноеИмяФайла;

КонецЕсли;

В результате получится так как на рисунке ниже.

И в конце остается проверить в пользовательском режиме. Для этого нажимаем "Начать отладку" или F5. Конфигуратор спросит обновить ли конфигурацию базы данных. Отвечаем "Да" и у нас открывается 1С (режим пользователя). Далее находим подсистему, куда добавили обработку (в нашем случае это "Маркетинг") и проверяем.

На простейшем примере было показано как написать код, прикрепить его на форму и вызвать в пользовательском режиме 1С.

Спасибо за внимание!

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru