Русский
Русский
English
Статистика
Реклама

Токамак

Как укротить термоядерный синтез и зачем он нам нужен?

19.11.2020 16:18:00 | Автор: admin


Мы уже писали о неожиданных и примечательных идеях и разработках в области получения энергии от ядерного распада. А также о том, что приходится делать, когда с ядерными реакторами что-то идёт не так. Свобода, как известно, лучше несвободы, а синтез лучше распада. Именно так подумали учёные ещё сто лет назад, когда сделали первые шаги по укрощению термоядерного синтеза. В этой статье мы кратко расскажем, что такое термоядерный синтез, на каком этапе находятся научные разработки и когда стоит ждать внедрения нового способа добычи энергии. В конце концов, именно за этим он и нужен человечеству.

Staring at the Sun: история открытия термоядерного синтеза


С развитием науки человечество начало задаваться вопросом о том, как работает Солнце, почему не гаснет и продолжает выделять тепло и свет. Ещё в двадцатых годах прошлого века почти сто лет назад британский учёный Артур Стэнли Эддингтон выступал с идеями протон-протонного цикла, то есть совокупности термоядерных реакций, в ходе которых водород в звёздах превращается в гелий. И сопутствует этой реакции выделение колоссальных объёмов энергии, что легко можно ощутить, просто выйдя на улицу в солнечный день.

Чуть позже, уже в тридцатые годы, учёные из Кембриджского университета под руководством австралийца Марка Олифанта в результате ряда экспериментов обнаружили нуклоны (общее название составляющих атомное ядро протонов и нейтронов) гелия-3 и трития, принимающие участие в этих реакциях, а их немецкий коллега, Ханс Бете, получил Нобелевскую премию по физике за вклад в теорию ядерных реакций и, особенно, за открытия, касающиеся источников энергии звёзд. Уже в 1946 году сэр Джордж Паджет Томсон и Моисей Блэкман описали и запатентовали идею Z-pinch, то есть системы удержания плазмы при помощи магнитного поля или магнитной ловушки, которая легла в основу дальнейших экспериментов по созданию первых устройств управляемого термоядерного синтеза.


Лабораторная магнитная ловушка, фото: Sandpiper / Wikimedia Commons

Бесконечная мощь: преимущества, недостатки и препятствия для реализации


От истории перейдём к общей теории. Управляемый термоядерный синтез это процесс получения более тяжёлых атомных ядер из более лёгких с целью (в теории) использования выделяемой энергии для добычи электричества. По своей сути он противоположен реакции распада, которая применяется в традиционной ядерной энергетике. В основном для проведения реакции термоядерного синтеза используются дейтерий и тритий (так называемая реакция D-T), хотя также возможны варианты с дейтерием и гелием-3, между ядрами дейтерия (D-D) и другими сочетаниями изотопов.

Сами по себе атомные ядра взаимодействуют не особо охотно из-за кулоновского барьера, то есть силы электростатического отталкивания между ними. Чтобы преодолеть её и начать реакцию в земных условиях, вещество необходимо нагреть до достаточно высокой температуры, причём речь в данном случае идёт о сотнях миллионов градусов. Именно от этого процесса термоядерный синтез и получил своё название. Сочетание дейтерия и трития в данном случае требует минимальной температуры для начала реакции (тех самых 100 млн градусов), поэтому в экспериментальных установках оно используется чаще всего.


Реакция термоядерного синтеза D-T. Источник: Toshiba Energy Systems &Solutions Corporation

Также в ходе реакции появляется большое количество нейтронов, но об их значении поговорим чуть ниже, а сперва постараемся пояснить, почему коммерческое применение этого процесса вообще будоражит умы человечества последние 70 лет. Итак, преимущества управляемого термоядерного синтеза:

  1. Сравнительная доступность изотопов для реакции. Дейтерий достаточно легко можно получить из морской воды, запасов которой на Земле более чем достаточно. Тритий в природе не встречается, так как имеет период полураспада всего в 12,3 года, но его получают из лития-6 и тяжёлой воды ядерных реакторов, от использования которых мы в ближайшие годы отказаться не готовы.
  2. Колоссальная энергоэффективность реакции при сжигании, например, 1 грамма угля выделяется 34 тысячи джоулей энергии, а газа или нефти 44 тысячи. Слияние атомов дейтерия и трития даёт 17,6 МэВ (мегаэлектронвольт), то есть около 170 млрд джоулей тепла в пересчёте на 1 грамм массы вещества.
  3. Электростанции на базе управляемой термоядерной реакции из-за особенностей конструкции не должны способствовать увеличению парникового эффекта, то есть производить парниковые газы, угарный газ и пылевые облака выгодное отличие от, например, ТЭС.
  4. Так же выгодно эти электростанции должны отличаться от АЭС, так как термоядерный реактор намного безопаснее. Реакция синтеза требует огромных затрат энергии и в земных условиях не может бесконечно длиться без подпитки извне. Это значит, что даже в случае аварии и повреждения оболочки мы не столкнёмся с расплавлением, радиоактивным заражением всего и вся на многие километры вокруг, а также с цепной реакцией или взрывом.

К тому же, при термоядерном синтезе не выделяются вещества, которые впоследствии возможно использовать для изготовления грязного оружия.


Токамак JET, фото: EFDA JET / Wikimedia Commons

Но почему же тогда сам принцип управляемого термоядерного синтеза, разработанный в середине прошлого века, до сих пор не реализован на практике либо реализован только в качестве экспериментальных установок, которые так и не начали производить электроэнергию? Давайте рассмотрим недостатки и ограничения этого процесса.

Сперва вернёмся к нашим нейтронам. В процессе реакции с применением D-T образуется нейтронный поток, который бомбардирует стенки защитной оболочки реактора. В результате мы имеем дело с так называемой наведённой радиацией, которая сильно усложняет обслуживание оборудования и, вполне возможно, приведёт к необходимости его периодической замены, так как со временем от бомбардировки нейтронами материалы становятся не только радиоактивными, но и хрупкими. Для решения этой проблемы предлагается использовать малочувствительные к радиации материалы, которые прослужат дольше, но их применение увеличит и без того колоссальные расходы на постройку электростанций термоядерного синтеза. Также рассматривается применение других действующих веществ, чтобы получить безнейтронные реакции, но о требованиях к плотности и температуре реакции для них мы уже говорили выше.

Ещё при текущем уровне развития технологий учёные и инженеры не могут добиться того, чтобы расход энергии на нагрев и доведение вещества в реакторе до состояния плазмы, а затем на поддержание его в этом состоянии, несмотря на постоянную потерю тепла (а также на охлаждение системы, работу электромагнитов и других подсистем), упал ниже, чем количество выделяемой в ходе реакции энергии. Например, британский токамак JET достиг соотношения между поступающей и отдаваемой энергией всего в 67%, то есть 0,67 Q. Q показатель, который выражает отношение количеств затраченной и полученной в такой системе энергии, и для того, чтобы реакция термоядерного синтеза считалась самоподдерживающейся, он должен быть равен хотя бы 5, а для выработки полезных мощностей намного выше. На сегодняшний день реакторов с таким значением в мире не существует.

Финальным вопросом, конечно, является окупаемость и стоимость. Чтобы добиться точной имитации реакций внутри Солнца, недостаточно просто взять тритий и дейтерий и поднести к ним условную спичку. Реактор термоядерного синтеза это невероятно сложная, громоздкая и дорогая конструкция, в которой нашлось место массивной системе охлаждения, огромному количеству электромагнитов разных типов и даже собственным электростанциям.

По оценкам, расходы на строительство экспериментального токамака ITER (о нём ниже), которое ещё не завершено, могут превысить 20 млрд долларов. При этом реактор вообще не рассчитан на производство электроэнергии, то есть единственной прибылью от эксплуатации ITER будет опыт совместной работы учёных и экспериментальные данные.

Практическая магия: основные типы конструкции и вехи их развития


Условно установки для управляемого термоядерного синтеза можно разделить на четыре типа: токамаки, стеллараторы, зеркальные ловушки и импульсные системы. На их примере мы предлагаем рассмотреть как развитие идей, которые в дальнейшем могут привести к производству электроэнергии при помощи термоядерного синтеза, так и тупиковые ветви, которые по тем или иным причинам в ближайшие годы (или никогда) не выйдут за рамки теории и экспериментов.

Токамак это сокращение от тороидальная камера с магнитными катушками, каковая камера главный элемент реактора, который служит для удержания плазмы. Намотанные вокруг камеры реактора магнитные катушки в данном случае применяются для того, чтобы создать специальное поле, удерживающее плазму от соприкосновения с её стенками, чего современные теплоизолирующие материалы просто не выдержали бы. В то же время через саму плазму также пропускается ток, который служит и для её нагрева, и для создания полоидального магнитного поля. В современных условиях это поле не может существовать дольше нескольких секунд, а без него плазма теряет свою стабильность, поэтому говорить о применении токамаков для постоянного производства электроэнергии ещё рано, хотя поддерживать ток более длительное время можно при помощи микроволнового излучения или введения в плазму нейтральных атомов дейтерия/трития.


Токамак KSTAR, Южная Корея, фото: Michel Maccagnan / Wikimedia Commons

Идеи токамаков впервые описали в Советском Союзе ещё в 50-х годах прошлого века, а первый такой реактор был построен в Курчатовском институте в 1954 году. Долгое время токамаки оставались чисто советской разработкой, но в 1970-х британские учёные подтвердили рекордные результаты разогрева плазмы, достигнутые на советском токамаке Т-3, и технологией заинтересовались по всему миру.

На сегодняшний день токамаки считаются наиболее перспективной разработкой, и в мире их количество превышает количество установок других типов. Среди достижений в этой сфере стоит отметить китайский EAST (Experimental Advanced Superconducting Tokamak, построен при поддержке РФ), который достиг в 2018 году температуры плазмы в 100 млн градусов, европейский JET (Joint European Toru), который находится в Великобритании и считается крупнейшим токамаком в мире, а также уже упомянутый выше ITER, на котором остановимся более подробно.


Схема токамака ITER. Источник: Oak Ridge National Laboratory ITER Tokamak and Plant Systems (2016) / Wikimedia Commons

Идея постройки ITER (International Thermonuclear Experimental Reactor, международный термоядерный экспериментальный реактор) обсуждалась ещё в 1985 году, на встрече Рональда Рейгана и Михаила Горбачева, но реальное строительство началось только в 2010 году. В работе над реактором принимают участие множество стран, включая Японию, государства ЕС, Россию, США, Южную Корею, Китай и Индию. Итогом совместного проекта станет гигантское сооружение весом в 23 000 тонн, которое сместит JET с пьедестала самого крупного токамака на планете и теоретически будет способно довести показатель Q до 30, хотя создатели ITER не ставят перед собой цель добиться выработки электроэнергии задача токамака окончательно доказать саму возможность использования термоядерного синтеза в этой сфере и проложить путь (именно так переводится с латыни сокращённое название реактора) для DEMO, первого токамака с положительным балансом, который запустится не раньше середины XXI века.

На долю Японии в проекте ITER выпали разработка и производство одного из важнейших элементов сверхпроводящих катушек, необходимых для формирования магнитного поля вокруг камеры реактора. В частности, компания Toshiba занимается разработкой конструкции гигантских 16,5-метровых катушек для тороидального поля, которые весят около 300 тонн. При этом необходимо соблюдать крайне строгие допуски на размеры каждой детали всего в несколько миллиметров поэтому большим подспорьем становятся технологии и методы, изобретённые во время работы над японскими экспериментальными токамаками, JT-60 и JT-60SA.

Стеллараторы (от лат. stella звезда) получили своё название из-за схожести процессов в реакторе с теми, что происходят внутри звёзд. Первый образец был построен в 1951 году в США под руководством его изобретателя, Лаймана Спитцера. Основное отличие стеллараторов от токамаков заключается в конструкции магнитной ловушки: в стеллараторах для удержания плазмы в камере применяется только внешние катушки, которые создают силовые линии, вращающиеся вокруг камеры. Такая конструкция теоретически позволяет использовать магнитную ловушку в непрерывном режиме. В стеллараторах, как и в токамаках практически всегда применяется смесь дейтерия и трития, которая вводится в вакуумный сосуд камеры. В современных вариантах конструкции отказались от камеры в форме обычного тора в пользу сложных моделей, созданных с применением компьютерного моделирования. Их цель добиться максимальной эффективности удержания плазмы.


Стелларатор Wendelstein 7-X. Источник: Max-Planck-Institut fr Plasmaphysik, Tino Schulz / Wikimedia Commons

Несмотря на возможность непрерывного воздействия на плазму и изменённую конструкцию камеры стеллараторы не получили такого широкого распространения, как токамаки. В первую очередь это связано с большей сложностью конструкции и меньшей их эффективностью в современных условиях. Wendelstein 7-X, построенный в г. Грайфсвальд в Германии в 2015 году стал крупнейшим стелларатором в мире и своеобразной эпитафией этой разработке. По расчётам учёных он должен был довести время непрерывного воздействия электромагнитов на плазму до 30 минут, чтобы продемонстрировать возможность использования стеллараторов для долгосрочной генерации электроэнергии. При этом в 2018 году в ходе эксперимента температуру плазмы удалось поднять только до 40 000 градусов Цельсия, а время работы довести до 100 секунд. Следующие испытания запланированы на 2021 год.

Импульсные системы этот тип установок для управляемого термоядерного синтеза остаётся по большей части теоретической разработкой. Ещё академик Андрей Сахаров в 1960 году доказал, что термоядерный синтез возможен без использования магнитных ловушек, предложив противоположный классическому подход. В данном случае речь идёт не о сверхразреженной плазме, которую электромагнитные поля удерживают на месте долгое время, а о сверхплотном (и крайне недолговечном) её варианте. Миниатюрные мишени с замороженным D-T составом в импульсных системах предлагается взрывать при помощи мощных лазеров или пучков излучения, чтобы добиться своеобразного аналога взрывов топлива в бензиновых двигателях, только на уровне термоядерных реакций. Такая система с периодическими взрывами может обеспечить почти непрерывную цепочку из термоядерных реакций, вырабатывающих энергию, при этом (в теории) не повреждая оболочку реактора.


Лазерный ангар NIF/ Источник: Lawrence Livermore National Laboratory, Lawrence Livermore National Security, LLC, and the Department of Energy National Ignition Facility / Wikimedia Commons

Из существующих разработок в этой сфере стоит упомянуть проект MagLIF и установки NIF (National Ignition Facility, или Национальный комплекс лазерных термоядерных реакций) Ливерморской национальной лаборатории имени Лоуренса в Калифорнии. Несмотря на сохраняющийся потенциал этой идеи в 2012 году правительство США планировало прекратить финансирование программы из-за мизерных практических результатов. По состоянию на сегодняшний день эксперименты продолжаются, но сложность самих мишеней и необходимость регулярной доставки их в камеру, в которой затем происходит взрыв, эквивалентный тонне тротила, оставляют этот тип установок далеко позади токамаков и стеллараторов по уровню практичности.

Зеркальные ловушки первый эксперимент с использованием открытых магнитных ловушек был проведен ещё в 1955 году во всё той же Ливерморской национальной лаборатории имени Лоуренса. Идея ловушек заключалась в том, чтобы использовать не закрытый тор, а магнитный сосуд вытянутой формы, открытый с двух противоположных концов. Новая плазма в этом случае должна была разогреваться до нужной температуры, отдавать энергию и выходить через боковые отверстия (либо отбиваться магнитным полем обратно, как от зеркал отсюда и название). Благодаря такой форме и механизму их стоимость оказалась намного ниже, чем у конкурирующих разработок, так что какое-то время зеркальные ловушки казались крайне перспективной разработкой. Но со временем экспериментаторы столкнулись с нестабильностью плазмы, плохо изученной на момент начала разработок, что привело к проблемам и невозможности достичь необходимых для термоядерного синтеза температур. В дальнейшем в конструкцию неоднократно вносились изменения, но амбициозная американская установка MFTF, например, была закрыта ещё до начала пробных запусков, так как токамаки в итоге оказались проще, мощнее и дешевле.

Из интересных разработок этого типа стоит отметить российский ГДЛ (газодинамическая ловушка) из Новосибирска, который создаётся на базе советского проекта 50-х годов, открытой ловушки пробкотрон Будкера. По состоянию на 2018 год учёным Новосибирского Института ядерной физики СО РАН удалось достичь температуры в 10 млн градусов, а в 2020 году они получили грант от Минобрнауки РФ на закупку нового оборудования для продолжения экспериментов.

Красивое завтра: вместо выводов


Среди учёных, занимающихся проблемами термоядерного синтеза, ходит шутливое высказывание, что до успеха исследований и начала коммерческого применения реакторов осталось всего-то лет 30, причём отвечают они так уже далеко не первый десяток лет (стабильность!). Тем не менее, технологии продолжат развиваться, а человечество искать способы приручить термоядерный синтез и создать миниатюрное искусственное Солнце, которое обеспечит наши потребности в электроэнергии без риска повторить Чернобыльскую катастрофу и без постоянного вреда для экологии планеты. Прямое влияние на эти исследования могут оказать такие разработки, как ITER, и мы рады, что Япония и корпорация Toshiba принимают в них непосредственное участие. А что будет дальше посмотрим через 30 лет.
Подробнее..

Энергетика от мха до плазмы

22.03.2021 00:17:09 | Автор: admin

Мы часто слышим, что за последние годы использование энергии человечеством увеличилось настолько, что ископаемые ресурсы закончатся через пару десятков лет. Но то же самое говорили и в 70-х годах прошлого века. Откуда мы тогда сегодня берем энергию для существования и что нам делать дальше? Для развития технологий необходимо понимать, как эффективно преобразовывать ее в работу, ведь энергия - ресурс даже в астрономических масштабах не бесконечный. Практически вся энергия, которая существует на Земле и которую люди могут извлечь из солнечной системы - энергия Солнца, у которого конечное время жизни, а вся энергия во Вселенной ограничена тем, что дал нам Большой Взрыв. Но что такое энергия?

Никто не может дать четкого определения, так как нет более общего класса понятий, которым мы можем описать энергию. Все, что мы можем - изучать ее свойства и характеристики. Ричард Фейнман в своих знаменитых лекциях по физике говорил: Важно понимать, что в сегодняшней физике мы не имеем представления об энергии. Мы не можем сказать, что энергия поступает в маленьких сгустках определенного количества. Мы точно знаем: вся материя в конечном счете является энергией, сумма которой во Вселенной никогда не изменится, поэтому рассуждать мы будем о способах изменения ее формы.

Откуда вообще взялась энергия во Вселенной и что она значит для нас?

История энергии началась в момент Большого Взрыва. Возможно, в один момент появилось два связанных между собой понятия: энергия и пространство-время. Возможно, энергия являлась первопричиной всего в нашем мире, с этим ещё предстоит разобраться, но сейчас уже точно ясно одно: энергия является сутью физической формы материи, всё во Вселенной является сосредоточением той или иной формы энергии. Теория расширения ранней Вселенной намекает нам на то, что изначально все вещество являлось однородной изотропной средой, в процессе расширения которого произошло остывание и конденсация всех известных науке элементарных частиц. Появилось 4 фундаментальных взаимодействия: сильное, слабое, электромагнитное и гравитационное.

Через много-много лет после Большого Взрыва, когда люди только начали применять энергию, никто не знал про 4 фундаментальных взаимодействия. Изначально люди грели себя и готовили пищу с помощью химических реакций горения. Так продолжается и по сей день, основным источником энергии для нас сегодня является электричество, вырабатываемое на всевозможных ТЭС(тепловая электростанция) и ТЭЦ(теплоэлектроцентраль).

По сути вся жизнь человека - постоянный поиск энергии. Это может быть громким заявлением, но вы только подумайте: мы ведь кушаем только чтобы получать энергию для функционирования мозга и движения. Жизнь человечества строится на способах добычи энергии. Поэтому энергетика является одним из важнейших аспектов жизни людей и всего во Вселенной.

Почему современная энергетика неэффективна?

Давайте отбросим понятие энергии на второй план и подумаем: какие способы добычи энергии сегодня известны?

Первый и самый популярный способ - что-нибудь сжечь: дерево, нефть, газ. В процессе образуется много лишнего, а все ископаемые ресурсы очень скоро закончатся. Второй - извлечь работу из гравитации: ГЭС, приливные станции, - но проблема тут в размерах и в расположении станций, к тому же не везде есть вода. Еще можно подумать о солнечной энергетике: тут вроде все хорошо, но роль играет расположение и низкая плотность энергетического потока.

Почти вся используемая энергия досталась нам благодаря Солнцу, просто в разных видах. Растения тысячелетиями накапливали энергию солнца, росли и погибали, образовывали нефть, природный газ и уголь. Сама Земля, ее вода и атмосфера существуют из-за Солнца. Необходимо более универсальное решение проблемы эффективности добычи энергии.

Достаточно посмотреть на эту диаграмму, чтобы понять, что человечество не очень то и далеко ушло от своих предков, которые просто жгли древесину, мох и уголь:

Рисунок 1. Изменение глобального потребления энергии по видам источников

Получается, что за 200 лет люди ничего толком не изменили в энергетике, лишь нарастили темпы преобразования и добычи энергии:

Рисунок 2. Потребление энергии по видам ее источников в 2019 году

Мало того, что добыча энергии таким способом не так эффективна по сравнению с энергией, которую мы научились извлекать альтернативными методами, так еще и большой вопрос в том, больше ли пользы мы получаем от такой энергии, чем вреда. Для количественной оценки этого заявления давайте посмотрим на статистику.

Энергия в человеческом эквиваленте

Что вы представляете, когда слышите слова альтернативная энергетика? Большинство людей сразу представляют себе солнечные панели и ветряные мельницы, но редко думают о ядерной и термоядерной энергии. Ядерная энергетика получает меньше внимания из-за громких аварий, которые страшны людям скорее не из-за катастрофических последствий, а из-за неправильной трактовки СМИ и всеобщего незнания базовых аспектов этой энергетики. Теоретическое обоснование эффективности добычи энергии таким способом известно уже как минимум полвека.

За 70 лет существования атомной энергетики зафиксировано только 33 серьезных происшествия. Несмотря на это, есть очень много скептически настроенных людей и даже организаций, которые выступают за отмену строительства АЭС. Давайте взглянем на цифры:

Из-за Чернобыльской аварии напрямую погиб 31 человек. Из-за последствий По самой пессимистичной статистике от European green party кол-во смертей к 2065 году приблизится к 60 тыс, но ученые склоняются к цифрам намного меньше этой.

WHO считает, что цифра вырастет только до 4 тыс. Это самая серьезная радиационная авария за всю историю энергетики, намного превосходящая по последствиям все остальные.

Авария на Фукусиме, которая является второй по масштабу радиационной аварией в мире, привела к 573 смертям, но эта цифра отличается от количества смертей в Чернобыле тем, что это не последствия радиации, а смерти напрямую не связанные с инцидентом, а связанные, например, со стрессом эвакуации, из-за которого в основном пострадало пожилое население. От радиационного загрязнения по самым пессимистичным подсчетам погибнет до 1000 человек.

Конечно, нельзя делать вывод о серьезности аварии только на основании количества погибших, ведь здесь не учтены экономические последствия и число онкозаболеваний и всевозможных вредных мутаций. Эти заболевания, даже если не приводят к смерти, также являются последствиями ядерных аварий. Сейчас проводится исследований по воздействию малых доз радиации на организм. Если раньше склонялись к безвредности малых доз радиации (типа организм может до определенного уровня облучения самовосстанавливаться без последствий), то сейчас есть больше доказательств "беспорогового" воздействия радиации, т.е. даже самая малая доза наносит вред. Но однозначного ответа здесь пока нет.

А теперь, сравним эти происшествия с авариями на других типах электростанций.

Аварии на ГЭС или на солнечной станции не выбросят в атмосферу гигантское количество радиационных частиц, на избавление от которых уйдет очень много денег и сил, но вспомним наводнение Баньцяо. Крушение дамбы вызвало затопление ближайших поселений, количество смертей от инцидента + от вызванного голода и нищеты составило 80-240 тысяч смертей.

Но даже такие большие цифры меркнут по сравнению со смертями от ископаемого топлива. Газы, выделяющиеся при его сгорании, попадают в атмосферу и в наши легкие, а это, всвою очередь, вызывает многие распространенные заболевания: рак легких, сердечные заболевания, острая инфекция нижних дыхательных путей, инсульт и подобное.

Рисунок 3. Подсчет количества смертей и парниковых газов в год на каждый тераватт в час выработанной энергии от разных видов энергетики

Так какой же способ самый лучший на сегодняшний день? Судя по графику, атомная энергетика - самый чистый источник энергии. Плюс АЭС построить можно где угодно, даже на подводной лодке, а выделенной энергии топлива из одного реактора хватит, чтобы заменить 3 миллиона солнечных панелей.

Атомная энергетика и ее проблемы

Что это такое? Основа энергетики - распад атомного ядра (в основном тяжелых ядер урана). Все изотопы урана радиоактивные, но чуть-чуть, из-за их огромного периода полураспада: у урана-235 и урана-238 0.7 млрд лет и 4.4 млрд лет соответственно. Почему используют именно уран? Все дело в его уникальной способности делиться при взаимодействии с нейтронами сколь угодно малой кинетической энергии. Такие элементы называют делящимися. К этой группе относятся ядра с нечетным числом нейтронов (присоединяемый нейтрон чётный): 233U, 235U, 239Pu. Реакция деления ядер экзотермическая. Это значит, что при ее протекании выделяется некоторое количество теплоты. В реакторе эта теплота служит источником энергии для нагрева воды.

Топливо для реактора изготавливается в виде таблеток, высотой и диаметром около сантиметра, из которых в дальнейшем собирают тепловыделяющий элемент (ТВЭЛ). В одном ТВЭЛе может помещаться несколько сотен топливных таблеток, длина его как правило 3.5-4 метра. Затем их собирают в тепловыделяющие сборки (ТВС). Это основной функциональный элемент АЭС: из них формируется активная зона реактора.

Рисунок 4. Схема и принцип работы реактора на примере реактора на быстрых нейтронах.

В одной ТВС в зависимости от типа реактора (об этом мы поговорим позже) находится от нескольких десятков до нескольких сотен (около 300 для современных реакторов типа ВВЭР) ТВЭЛов, а в активную зону обычно помещается от нескольких сотен до полутора тысяч ТВС. Получается, что весь реактор имеет несколько миллионов таблеток с топливом внутри, и это при том, что один грамм урана содержит в себе столько же энергии, сколько 3-4 тонны угля.

Для работы реактора его необходимо сначала запустить. Этот процесс немного отличается от работы реактора, когда он уже запущен. Изначально, когда ТВЭЛы погружаются в реактор, он подкритичен. Для количественной оценки того, как эффективно делятся ядра в реакторе, придумали понятие коэффициента размножения нейтронов - критичность. Физически это просто отношение количества выделенных нейтронов в момент деления ядер к количеству нейтронов, которые выделились в предыдущий момент распада ядер. Все просто: если коэффициент больше одного идет цепная ядерная реакция с увеличением мощности реактора (ректор надкритичен), если равен 1 количество делящихся ядер в каждый момент времени одинаково (реактор критичен), а если меньше 1 идет уменьшение мощности реактора (реактор подкритичен). Для начала цепной реакции необходима пороговая масса урана, то есть достаточное количество спонтанно делящегося вещества. При выполнении этого условия реактор переходит в надкритическое состояние.

В ТВЭЛах происходит цепная реакция деления топлива. Один из ее видов: уран распадается на осколки деления (уран-235 распадается на барий-139 и криптон-95, например) плюс один или несколько нейтронов (и гамма излучение), которые в дальнейшем сталкиваются с другими атомами урана-235. Изначально уран находится в состоянии с некоторой энергией покоя, и для перехода в возбужденное состояние с последующим радиоактивным распадом требуется дополнительная энергия, с помощью которой возможно преодолеть энергетический барьер и разделиться. В нашем случае этой энергией является нейтрон (тепловой нейтрон), который, сталкиваясь с ядром, передает ему свою кинетическую энергию. Ядро делится и выделяет еще несколько нейтронов (в среднем одно ядро урана-235 при распаде выделяет 2,5 нейтрона, именно это и позволяет происходить лавинообразному увеличению количества делящихся атомов в реакторе), которые сталкиваются с другими ядрами и так далее.

Рисунок 5. Цепное деление ядра

Для протекания реакции из реактора вынимаются регулирующие стержни, которые изготовлены из поглотителя нейтронов. Поглощающие стержни изготовлены из материалов, которые имеют очень большую площадь захвата нейтронов. Это сплав, который способен захватывать и поглощать нейтроны на большом расстоянии от атома. Чаще всего изготовлен из бора, так как сплав бора со сталью не взаимодействует с топливом реактора и имеет большую площадь захвата нейтронов.

Рисунок 6. Захват нейтронов ураном. Барн - единица поперечного сечения площади захвата нейтронов атомом. Чем больше площадь захвата нейтронов элементом - тем больше нейтронов он поглощает.

Самое важное в работе АЭС - поддержание скорости цепной реакции. При ее выходе из-под контроля (отключения системы охлаждения, например) может произойти то же самое, что происходит внутри атомной бомбы при взрыве в самом его начале - неконтролируемая цепная реакция. Но волноваться из-за этого не стоит, все реакторы сейчас оборудованы настолько большим количеством защитных механизмов, что катастрофа очень маловероятна.

К сожалению, ядерное топливо - ресурс исчерпаемый, его на Земле намного меньше, чем угля или нефти, а создавать его мы не научились (тяжелые элементы появляются в экстремальных условиях в результате взрывов сверхновых). Да и отходы куда-то девать надо - их сейчас либо обогащают, либо, как маленькие дети прячут игрушки под кровать (закапывают под землю). Еще существуют быстрые реакторы (сейчас есть БН-600 и БН-800 в России) и так называемые реакторы-размножители. Они позволяют вовлечь в использование уран 238 и отходы АЭС, использующих уран 235. Таким образом ресурсная база атомной энергетики увеличивается с сотен и тысяч лет, до миллионов лет. С экономикой быстрых реакторов пока есть вопросы, но технически они уже давно реализуемы.

Атомную энергетику стоит рассматривать как временный и довольно неплохой вариант. Есть ли сейчас вариант лучше этого?

Да, оказывается вариант есть, и он намного лучше всего, что человечество научилось делать до этого. Имя ему - ядерный синтез.

Атомная энергетика наоборот

В 50-х годах советские и британские ученые придумали использовать не распад ядер (как на АЭС), а синтез. Распад ядер - тяжелые элементы делятся с выделением энергии, а синтез - легкие элементы слипаются с образованием более тяжелых, выделяя энергию.

При слиянии дейтерия (изотоп водорода, отличающийся наличием нейтрона) и трития (тоже изотоп водорода, у которого 2 нейтрона) получается гелий и нейтрон. Такая реакция даёт значительный выход энергии(17.6 МэВ). Для сравнения, если взять смесь дейтерия-трития и урана одинаковой массы, при синтезе энергии выделится в 3 раза больше.

Есть правда и незначительные недостатки: тритий в природе не встречается, нежелательная наведенная радиация зачастую бывает опасной.

Можно подумать, что в термоядерной энергетике все отлично: отходов не так много, расположить можно где угодно, выдает огромную энергию на единицу массы, но ведь что-то мешает пользоваться ей.

Для того, чтобы произвести слияние ядер, нужно чтобы положительно заряженные ядра атомов преодолели кулоновский барьер - силу электростатического отталкивания между ними. То есть расстояние между ядрами должно быть такое, чтобы сильное взаимодействие начало преобладать над кулоновскими силами (порядка одной стомиллиардной доли сантиметра).

Рисунок 7. Зависимость сил притяжения/отталкивания от расстояние между ядрами. На расстоянии порядка размеров ядра силы сильного ядерного взаимодействия начинают преобладать над кулоновскими и ядра сливаются.

Для этого нужно затратить огромную энергию. Есть 2 варианта как это реализовать: либо сильно сжать, либо сильно нагреть.

Внутри Солнца работает первый вариант: температура внутри ядра 15-16 млн Кельвинов, что, вообще говоря, не так много, но из-за массы, которая в 300 тыс раз больше массы Земли, плазма под высоким давлением удерживается гравитацией.

К сожалению, на Земле такую конструкцию реализовать затруднительно. Такого большого давления мы не создадим, поэтому остается только сильно нагреть.

Термоядерный синтез возможен при одновременном выполнении двух условий:

  1. соблюдение критерия Лоусона.Критерию Лоусона показывает, будет ли реакция давать больше энергии, чем тратится.

  1. скорость соударения ядер соответствует температуре плазмы, к этому мы и стремимся. В этом случае энергии хватит для преодоления электростатического отталкивания. Поэтому для управляемого термоядерного синтеза необходима высокотемпературная водородная плазма.

Следует пояснить, что понятие температуры здесь не то, что мы привыкли видеть. Температура - это мера средней кинетической энергии частиц. Из-за столкновений с большим импульсом возможно их слияние.

На самом деле, чтобы пошла самая простая реакция синтеза с изотопами водорода, нужна температура порядка миллиарда Кельвинов (водород - самый легкий элемент, а чем тяжелее элемент - тем большая нужна температура). Решение этой проблемы было найдено самой природой. Существует так называемый максвелловский хвост. Из-за максвелловского распределения, какие-то частицы будут двигаться быстрее, а какие-то медленнее, поэтому уже в районе 100 млн Кельвинов найдутся частицы, которые будут слипаться. Также есть еще туннельный эффект. Если кратко, то благодаря квантовым эффектам, даже если ядра имеют энергию немного меньше барьера, они смогут с большой вероятностью туннелировать сквозь него.

Рисунок 8. Распределение энергии частиц.

Вот мы и подошли к вопросу о том, почему же вокруг нет термоядерных реакторов. Просто потому что это очень горячо. Нужно все эти разлетающиеся изотопы как-то удержать, чтобы они ничего не касались, потому что такую температуру ни одно вещество не выдержит. Проблема не столько в том, чтобы разогреть до нужной температуры, сколько в том, чтобы эту температуру как-то удержать.

Варианты удержания плазмы

Начнем с самого простого способа удержания плазмы: не удерживать, а просто выстрелить. Такие системы называются импульсными. В них управляемый термоядерный синтез осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий сверхмощными лазерными лучами или пучками высокоэнергичных частиц .Такое облучение вызывает последовательность термоядерных микровзрывов.

Но этот вариант довольно плохо изучен по сравнению со вторым - магнитным удержанием.

Советские физики Тамм и Сахаров придумали магнитное удержание плазмы еще в 50-х годах. Они руководствовались тем, что плазма - ионизированное вещество, поэтому магнитным полем мы можем создать ловушку. Желательно, чтобы она была замкнутой, чтобы ионы могли бесконечно кружиться. Тут на помощь прикатился бублик(тор). Эту конструкцию обматывают электромагнитными катушками, получается тор с пружинкой поверх него - это не дает плазме ударяться о стенки. Также сверху и снизу устанавливают обкладки, которые позволяют сжимать/разжимать плазму и передвигать ее. Такое устройство принято называть токамак: ТОроидальная КАмера с МАгнитными Катушками. Для выработки электроэнергии вода циркулирует в стенах бублика, поглощает тепло и производит пар. Паровая турбина вырабатывает электричество. К сожалению, ничего эффективнее человечество еще не придумало.

В 50-м году в Курчатовском институте показали такой вариант. Так начался международный проект по созданию термоядерного реактора.

Стоит заметить, что токамак - не единственный способ удержания плазмы, есть вариант еще с закрученным тором - стелларатор. С такой конструкцией даже пытались проводить эксперименты: W7-X. Wendelstein 7-X сложнейшая экспериментальная система. Цель экспериментов с такими установками - доказать, что управляемый термоядерный синтез способен давать энергию. Пока что некоторые ученые ставят это под сомнение. Но проблема в том, что форма для таких электромагнитных катушек очень сложная, а в 60-х годах, когда это придумали, не хватало мощности для расчетов.

Рисунок 9. Слева токамак, справа стелларатор. Серые кольца - магниты, желтым показана термоядерная камера.

Что такое ITER. Какие цели у проекта

ITER(International experimental Thermonuclear Reactor) - Экспериментальный международный термоядерный реактор . ITER относится к термоядерным реакторам типа токамак.

История ITER берет начало в 80-х годах прошлого столетия. Многие страны объединились, так как решили, что ни одна страна не потянет постройку на своих плечах. Это самая дорогая экспериментальная установка в мире, в ITER до 2025 года планировали вложить почти 20 млрд евро, но учитывая постоянные переносы и новые проблемы, вполне вероятно, что сумма вырастет. Только в 2010 году разобрались со всеми бумажками и начали рыть котлован.

В токамаках возможно осуществить несколько типовреакций слияния. Тип реакции зависит от вида применяемого топлива.Токамак ITER с самого начала проектировался под DT-топливо (дейтерий - тритиевое). Дваядра дейтерия и тритиясливаются с образованием ядра гелия и высокоэнергетического нейтрона.

Рисунок 10. ITER Токамак.

Грубо говоря, задача установки - продемонстрировать возможность коммерческого использования термояда, а для этого нужно, чтобы отношение выработанной энергии к затраченной составило хотя бы 10:1. Также целью является отработка разных решений по управлению и т.д., а дальнейшим шагом должно стать строительство установки - DEMO - следующая итерация ИТЕРа.

У ИТЕРа нет задачи построить станцию по выработке электричества для использования людьми. Это экспериментальная установка, которая покажет, что в принципе это возможно в реальности, а не на бумаге, ведь у физиков уже давно все сошлось, а сейчас это очень сложная инженерная задача.

На декабрь 2025-го запланирован пуск первой плазмы в реакторе, который продемонстрирует работоспособность. Планируется, что работать на термоядерном топливе установка начнет в июне 2035 года. До этого предстоит завершить еще несколько крупных этапов, которые приведут станцию в полностью рабочее состояние. На сайте ИТЕР есть рум тур по стройке.

Давайте представим, что все идет по плану и в 2025 году мы получаем первую плазму, ITER показывает, что коммерческое использование термояда выгодно, но что происходит дальше?

Все побегут строить токамаки и мы будем купаться в электричестве? Но ведь все не так просто, даже сам ITER будет очень сложно повторить.

Как говорится, термоядерная энергетика is a new black в мире энергии, но ей предстоит еще долгий путь, прежде чем мы начнем ее повсеместно использовать.

Энергетика будущего

Человечество проделало несколько больших шагов по освоению энергии. Сначала мы научились разводить костер, потом использовать уголь и нефть. Сегодня мы умеем разделять атомы и, возможно, в скором времени научимся их синтезировать. Каждый такой шаг связан с индустриальной революцией, которая характеризуется масштабом добычи энергии, доселе никому невиданным.

Если пофантазировать, логичным шагом дальнейшего развития человечества будет освоение новых территорий и ресурсов, только уже не на нашей планете, а в космосе(если человечество не уничтожит себя раньше). Для этого потребуется невообразимое количество энергии. К счастью, ответ на вопрос где взять столько энергии? находится прямо над головой (Солнце). Как мы уже говорили выше, человечество пока только на пути к созданию собственного солнца на Земле.

Если мы хотим освоить метод добычи солнечной энергии, нам нужно будет построить очень большую конструкцию. Например, хорошим вариантом будет сфера Дайсона. Она охватывает звезду, чтобы захватить ее энергию.

Рисунок 10. Конструкции сфер Дайсона автор - https://kurzgesagt.org/

Существует много способов ее постройки, один из них - рой сфер, которые будут крутиться вокруг Солнца, собирать энергию и передавать ее в другое место. Такой способ дал бы людям неограниченный доступ к энергии. Но построить ее не так просто, есть 3 основные проблемы: материал, конструкция и энергозатраты. Кратко пройдем по каждой проблеме.

Для постройки сферы Дайсона потребуется столько материала, что придется разобрать целую планету или даже больше. Лучший кандидат на эту роль - Меркурий, так как он ближе всего расположен к Солнцу, а еще и богат металлом.

Чем проще и надежнее будет конструкция - тем лучше. Солнечные батареи не совсем то, что нужно(маленькое время жизни, дорого, и требуют починки). Проще и надежнее всего - гигантские зеркала, которые будут отражать солнечный свет на центральную станцию.

Однако даже если максимально эффективно использовать все земные ресурсы, нам не хватит энергии, чтобы организовать такую масштабную стройку. Это может быть возможно только в далеком будущем, когда люди смогут успешно осваивать хотя бы планеты солнечной системы. По мнению известного популяризатора науки Карла Сагана, наш уровень по шкале Кардашева равен примерно 0,72. Мы потребляем всего 0,17% от общего энергетического потенциала планеты. Шкала Кардашева - один из способов оценки уровня развития цивилизации по количеству используемой энергии. По ней у цивилизации есть 7 ступеней развития, а человечеству далеко даже до первого типа (цивилизация, которая использует всю энергию своей планеты). Однако это не значит, что нам нужно уничтожать планету для своих нужд. Есть множество способов извлечь энергию из всего, что есть во Вселенной.

Во всех аспектах ископаемое топливо является самым грязным, опасным и неэффективным, в то время как ядерные и современные возобновляемые источники энергии значительно безопаснее и чище, они могут помочь людям сделать шаг вперед и совершить следующую индустриальную революцию.

В заключение отметим: мы рассмотрели только самую верхушку айсберга термоядерной и ядерной энергетики, которые по многим параметрам являются самыми перспективными, однако, на данный момент не так важно перейти на них, как научиться эффективно использовать возобновляемые источники энергии и полностью отказаться от ископаемого топлива. Ведь Земля для нас - единственный дом, который не может бесконечно удовлетворять потребности людей. Даже сейчас постройка термоядерной станции несет за собой огромные потери ископаемых ресурсов, так как практически вся энергия на ее постройку будет добыта с помощью них. Нужно лишь научиться использовать ту энергию, которую Земля сможет восстановить по мере ее использования.

Полезные материалы:

  1. Теряет ли Вселенная энергию

  2. История энергетики от Вацлава Смила

  3. Как работает термоядерная энергетика (видео)

  4. Можно ли уничтожить или создать энергию

  5. Что такое энергия (видео)

  6. На пути к термоядерной энергетике (лекция)

  7. Диаграммы и графики взяты с сайта

  8. Интерактивная карта ITER

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru