Русский
Русский
English
Статистика
Реклама

Boston dynamics

История развития Boston Dynamics от Плоского Одноногого Прыгуна до танцующего Atlas

13.01.2021 16:08:51 | Автор: admin

В научной фантастике, особенно в классических произведениях американских писателей середины прошлого века, очень часто встречаются роботы. Чаще всего они помогают человеку, иногда живут сами по себе, а порой даже воюют с людьми, которые их создали. Но практически всегда это прямоходящие антропоморфные машины, с двумя ногами и с двумя руками. Удивления достойно то, с каким упорством писатели и сценаристы фильмов стараются наделить машины человеческими чертами.

Современные роботы куда практичнее, они максимально приспособлены для какой-нибудь узкой задачи и выглядят максимально не похоже на людей.

Но есть одна компания, которая, вопреки всем соображениям практичности, создает роботов, максимально похожих на человека и животных Boston Dynamics. А недавно они научили своего робота танцевать!

Смотрите этот ролик под катом.

Несмотря на все сложности и многочисленные перепродажи компании в разные руки, BD не унывает. У нее амбициозные планы. Научные исследования идут параллельно с коммерческой деятельностью, о чем говорит зажигательный видеоролик, который пару недель назад, под самый Новый год, буквально взорвал интернет. На данный момент у него больше 25 миллионов просмотров, и популярность не спадает.


Это не компьютерная графика, ролик сделан с настоящими роботами, которые реально выполняют именно то, что видно на экране. Первые две минуты сняты одним кадром, без склеек и монтажа. Даже антураж специально выбран для подчеркивания максимального реализма. Это не хромакей и не гламурная сцена. Это ничем не украшенный испытательный зал лаборатории, за стеклом которого можно разглядеть какие-то станки и механизмы, обычные рабочие места, разметку на полу для видеооператора.

Изящные движения, высокие прыжки, синхронные действия, все это идеально демонстрирует возможности современной робототехники. Как же в Boston Dynamics (BD) добились такого успеха? В этой статье я предлагаю вам краткий экскурс по истории компании, ее успехах и неудачах, а также немного расскажу о том, как снимался этот танец роботов.

В детстве я прочитал один фантастический рассказ, в котором инженер создал самовоспроизводящихся и самообучающихся роботов, а они устроили небольшую войну между собой, борясь за высокотехнологичные ресурсы для апгрейда. В этом рассказе мне запомнилась одна деталь: первый робот, получив самостоятельность, заменил практичный антигравитационный привод на примитивные ноги, как у своего создателя. Инженер был категорически против, но робот не стал слушать его аргументов. Впоследствии это сыграло с роботом злую шутку: он споткнулся во время сражения и был раздавлен сородичами, чего не произошло бы, оставь он антиграв.

Практически все современные роботы, на колесах или же на гусеницах, это просто и надежно. Нет проблем с равновесием, эксплуатация чаще всего ограничивается помещениями с ровным полом.


Роботы на складе Amazon

BD решили воплотить в реальность мечту научных фантастов:


Робот Atlas

Как все начиналось


Эволюция человека и животных наглядно доказала, насколько универсальны конечности. С их помощью можно ходить, бегать, карабкаться по склонам гор и стволам деревьев, шагать по лестнице. Приматы зашли в этой универсальности дальше всего.

Долгое время прямохождение не давалось инженерам. Гироскопы были слишком громоздкие, аналоги компактного вестибулярного аппарата с обратной связью не получалось создать из-за примитивной электронно-технической базы. Но появление доступных микроконтроллеров позволило воплотить в реальность эту мечту инженеров. Из всех коллективов, занимающихся шагающими роботами, известнее всего Boston Dynamics.

Вдохновителем и бессменным руководителем этой лаборатории является Марк Рэйберт.


Марк Рэйберт

В 1973 году он закончил Бостонский Северо-Восточный университет по специальности Электротехника, а в 1979 получил субсидию на разработку первой прыгающей машины, от известного американского ученого и изобретателя Айвена Сазерленда.


Айвен Сазерленд

В 1980 году он сумел заинтересовать своей разработкой DARPA (тогда еще ARPA), получил от них первое финансирование и открыл Leg Laboratory. Первоначально она располагалась в Университете Карнеги-Меллона, где Марк работал профессором, а потом, вслед за ним, переехала в Массачусетский Технологический.


Leg Laboratory

На сайте MTI еще сохранилась страничка этого научного коллектива, созданная задолго до современных трендов дизайна и веб-разработки. Теплый и ламповый web1 выглядит довольно трогательно. Очень рекомендую зайти по ссылке и посмотреть, с чего начиналась история этого известного научного коллектива.

В 1983 году была готова их разработка под названием 3D One-Leg Hopper:


Одноногий прыгун мог балансировать или передвигаться прыжками в заданном направлении и сохранять равновесие, если его пытались уронить. Необычный способ передвижения был выбран, потому что обсчитывать балансировку на одной ноге проще всего.

На следующем видео можно посмотреть роботов созданных в Leg Laboratory. Все они чисто исследовательские механизмы, без всякой практической ценности, созданные исключительно для изучения работы суставов, приводов на разном принципе работы и математических алгоритмов движения. Некоторые являются составляющими частями более сложных конструкций. Часть из них не способна сохранять равновесие самостоятельно и движется с помощью штанги с противовесом. Голые роботы заставляют вспомнить фильм про Терминатора, а интерьеры лаборатории мастерскую Джейме и Адама из Разрушителей мифов


Накопленный опыт исследований Марк выразил в своей книге Legged Robots That Balance, вышедшей в 1986 году.

От лаборатории к компании. Работа на военных


Время не стоит на месте. Чтобы получить больше финансовой независимости, Марк в 1995 году принимает решение покинуть Университет. Он окончательно уходит в собственную компанию, основанную в 1992 году. Название этой фирмы сейчас на слуху даже у тех, кто не интересуется современными технологиями, благодаря зрелищным видео, демонстрирующих достижения современной робототехники: Boston Dynamics.

Как и в самом начале своей карьеры, Марк получает финансирование от военных. DARPA дает его компании задания на разработку рабочего мула, который сможет переносить значительные грузы по местности, где обычным машинам не проехать. По ТЗ робот должен уметь карабкаться, преодолевая значительный уклон, преодолевать заросли кустарника, проходить по скользким и сыпучим поверхностям, то есть уметь все то, на что способен пехотинец или мул.

Выполнение этого задания было делом не простым. Только в 2005 году была представлена модель BigDog.


Проект был чрезвычайно амбициозен. Это была первая разработка подобного плана, и ее медийный успех превзошел все ожидания. Новости о роботе можно было услышать из каждого утюга, множество видеороликов получали рекордные просмотры.

До сего момента наиболее широко известные модели шагающих роботов были чисто развлекательными изделиями при передвижении, неуклюжими и неповоротливыми. Они падали от малейшего толчка, а передвигаться могли только по идеально ровному полу. Но BigDog выглядел как машина из будущего, универсальная практичная. Люди были заворожены зрелищем автономного механизма шагающим как живое существо и способным переносить значительный груз. Детище компании Марка полностью соответствовало завету легендарного Артура Кларка: Любая достаточно развитая технология неотличима от магии. Дошло даже до того, что люди снимали пародии на это механическое существо:


К сожалению, технически робот был не настолько успешен, как можно было судить по видео. Даже второе поколение, выпущенное в 2008 году, имело слишком много недостатков. В 2013 году Министерство обороны США отказалось от продолжения этой программы. Одной из главных проблем был сильный и демаскирующий шум двигателя внутреннего сгорания, от которого инженерам так и не удалось избавиться. Вторая проблема была в том, что несмотря на формальное выполнение ТЗ, характеристики робота все-таки были недостаточны для того, чтобы полноценно участвовать в реальных боевых задачах. Проходимость хоть и впечатляла, но военным ее не хватало. Автономность составляла всего 30 км, это расстояние робот проходил со скоростью пешехода. Поскольку робот был технически чрезвычайно сложным устройством, опытные образцы имели серьезные проблемы с надежностью. Первые варианты едва выдерживали полчаса непрерывной работы, прежде чем в механизме что-то ломалось, и он становился неспособным к дальнейшему функционированию. Последние модели робота уверенно работали до трех часов, но это все равно чрезвычайно мало, а отремонтировать такое сложное устройство в полевых условиях практически невозможно. Поломка поставила бы под угрозу любую реальную боевую операцию, если бы в ней возлагались большие надежды на этого помощника. Кроме того, производство робота было очень и очень дорогим.

Тем не менее, хоть от развития этой модели отказались, военные не прекратили сотрудничество с BD. В продолжении исследований было выпущено еще несколько разновидностей шагающих, бегающих, даже прыгающих и ползающих роботов.


На тумбе стоит Little Dog (младший электрический брат BigDog), Spot, BigDog, WildCat, LS3 (старший военный брат BigDog)


SANDFLEA Блоха.

Робот-кроха (15 см в высоту), способный подпрыгивать на высоту более двух метров с помощью баллончика со сжатым газом.


RHEX.

По размерам, примерно как SANDFLEA, способен перебираться через небольшие препятствия и ползать даже по болотистой местности.

Финансовые вопросы


Работая с военными, компания несколько раз переходила из рук в руки. В конце 2013 года компанию купил Google. Сложно сказать зачем они это сделали. Возможно просто в процессе скупки разных компаний вместе с несколькими другими робототехническими компаниями и стартапами, возможно в погоне за портфелями патентов и в расчете на прибыль. За время сотрудничества BD и Google не смогли найти общий язык. После того, как Google покинул Энди Рубин, который выступил инициатором сделки, будущее компании оказалось подвешенным. Сам Энди говорил, что его разочаровала скорость разработки, ведь даже на предварительные исследования уходило очень много времени. В интернет-гиганте не желали вкладывать столько денег в компанию, коммерческих результатов от которой приходится ждать 10 лет и больше. Вдобавок, видео, в котором последнюю модель человекообразного робота толкают и сбивают с ног, не понравилось рекламному отделу Google


(На 1,22 робота толкают клюшкой и отбирают коробку, на 2,04 его сбивают с ног толчком в спину)



Кроме того, антропоморфность робота вызвала удивительное сопереживание у зрителей, которые разглядели в демонстрации алгоритмов баланса издевательства и сочувствовали роботу.

В интернет попало письмо, написанное руководителем PR-отдела Google Кортни Хон, в котором она пишет, что человекоподобные роботы напрягают людей тем, что они видят в них угрозу, будто эти роботы способны отнять у них работу. Наконец, в 2016 году Google решает продать BD. По слухам, купить компанию хотели Amazon и Toyota. В итоге она досталась японскому холдингу Softbank.

На этом финансовые приключения BD не закончились. Совсем недавно стало известно, что компания в очередной раз продается. В декабре прошлого года Softbank с Hyundai сошлись на скромной сумме, около миллиарда долларов.

Тем не менее, все это не мешало разрабатывать новых роботов. Кроме Atlas, над которым издевались клюшкой, был разработан робот с гибридным способом передвижения: Handle. Ноги робота заканчиваются колесами, которые позволяют ему быстро перемещаться по ровной поверхности, спускаться по лестницам. При необходимости он может даже подпрыгнуть


Первая коммерческая модель


Сравнительно недавно на сайте компании открылся раздел с магазином, и BD, впервые за почти 30 лет, предлагает коммерческую модель: Spot. Несмотря на собачью кличку (Спот пятнышко), робот предлагается для коммерческого использования на индустриальных объектах и не предназначается для домашней эксплуатации. Скромные размеры (робот немного больше Немецкой овчарки), предполагают скромные возможности: всего полтора часа в активном режиме, в то время как аккумулятор заряжается два часа.


Над дизайном очень хорошо поработали. Робот уже не напоминает Терминатора и двигается довольно изящно, его конечности не топчутся на месте, как у прошлых версий четвероногих роботов. Цена в базовой комплектации $75.000. Сложно сказать, много это или мало, потому что подобных предложений на рынке можно пересчитать по пальцам одной руки. Несмотря на пандемию и общий спад, компания заявляет, что произвела около 400 роботов этой модели и не собирается останавливаться на достигнутом.

Танец


После того, как вспомнили историю компании и рассмотрели некоторые модели роботов, можно немного поговорить о том, как же создавался зажигательный танец. Для этого я подготовил сокращенную версию интервью с Аароном Сондерсом, вице-президентом по инженерным вопросам Boston Dynamics, которое взял у него журнал IEEE Spectrum, издаваемый американским Институтом инженеров по электронике и электротехнике.

Рок-н-ролльный сингл, который звучит в ролике, был записан группой The Contours в 1962 году. Песня Do You Love Me одно из самых известных их произведений. Хореографом выступила Моника Томас из коллектива MAD KING THOMAS.

До этого момента, роботы и инженеры BD никогда не занимались ничем подобным. Имеющийся набор движений включает много элементов ходьбы, бега и прыжков, некоторые упражнения из гимнастики и даже паркура. Но заставить механизмы плясать еще никто не пробовал. Изначально танец создавался при помощи программы компьютерного моделирования, в которой проводили адаптацию человеческих танцевальных движений под физические возможности роботов. После того, как выбиралось то или иное движение, симуляцию показывали инженерам. Они смотрели на экран и говорили что-то вроде: Это будет легко!, или: Это будет сложно!, или: Это меня пугает!. По мере работы над проектом был разработан набор инструментов, с помощью которых программировались балетные движения роботов на высоком уровне. Таким образом, танец показанный в ролике, это не скрипт, где вручную записываются все мельчайшие детали, это продукт работы программного конвейера, объединяющего отдельно разработанные элементы и преобразующего их в массив данных, которые потом загружаются в машину.

Сложнее всего было запрограммировать вращательные движения, потому что они больше всего отличаются от элементов, которые используются при беге и прыжках. Тем не менее, ловкость и баланс, которые необходимы для выполнения уже отработанных движений, оказались достаточными для программирования танца. До этого эксперимента основной упор был сделан на движении ног, прыжках и беге. В этом случае больше всего используется нижняя часть тела роботов. Следующий шаг усложнения моделей поведения развитие танцевальных движений, использование рук для того, чтобы толкать или тянуть. Одной из новых задач, поставленных перед командой, было расширение мобильности за счет верхней части тела робота.

В Атласах не используются контроллеры с машинным обучением, но в них используется то, что в компании называют рефлексивным управлением (предиктивные контроллеры работающие с прогнозирующими моделями, учитывающие динамику и равновесие, оптимизируя траекторию в режимах онлайн и оффлайн).

Этот эксперимент позволил много узнать о надежности роботов и их возможностях. Коммерческий робот Спот, в отличии от чисто исследовательских моделей Атлас, разрабатывался для непрерывной эксплуатации. Он показал отличные результаты и мог танцевать целый день, почти не требуя обслуживания. Атласов же сделано всего несколько экземпляров, они не предназначены для длительной и непрерывной работы. В этом отношении они больше похожи на вертолет, у которого время подготовки и технического обслуживания больше, чем время полета. Спот больше походит на автомобиль, который больше ездит, чем обслуживается.

Атласы пришлось специально модифицировать для этой программы, увеличив их мощность. Хотя трюки и прыжки с перекатами, который демонстрируют эти роботы, выглядят очень резкими, движения в танце требуют еще больше скорости и силы.




Сложно сказать, как дальше будет развиваться компания. Сам Марк уже не молод, ему 71 год. Google не смогла найти в BD коммерческий потенциал. Когда Softbank покупала компанию, сумма сделки не разглашалась, потому сложно сказать, выгодной ли была продажа BD корейскому автомобильному гиганту, или нет. Никаких особых коммерческих успехов за то время, что компания провела с Softbank, вроде бы, не наблюдалось. Hyundai надеется использовать компанию для развития автопилотов в своих машинах и роботизации производства. Может, ей удастся извлечь практическую выгоду из союза с BD.

Дело в том, что Марк и его коллеги это Ученые, с большой буквы. Они занимаются исследованиями в чистом виде, не задумываясь о монетизации своих знаний. Теоретические знания полученные за тридцать лет огромны. Найдется ли им практическое применение в ближайшем будущем, сказать очень сложно. Хоть и кажется, что это прикладные инженерные исследования, труды по которым лежали невостребованные столетиями, что далеки от теоретической физики и высшей математики, у них много общего. Например, одно из главных ограничений, это питание. Экспериментальный робот Гепард даже не задумывался для автономного использования. Это был испытательный стенд для обкатки технологий, не работающий без постоянного подключения к розетке. У БольшогоПса основной проблемой был двигатель внутреннего сгорания, у Пятнышка автономность (всего полтора часа, даже без учета навесного оборудования), и скорость как у пешехода.

Может, использование машинного обучения в контроллерах приведет к очередному техническому прорыву, может, изобретут более емкие и компактные источники питания. Сложно предсказать будущее компании. Пожелаем им удачи!



Подробнее..

Как работает Spot от Boston Dynamics? Возможный ответ

12.10.2020 10:15:25 | Автор: admin
Привет, Хабр!

Недавно SantrY опубликовал статью Как это устроено: робот Spot от Boston Dynamics. Автор замечает, что устройство весьма успешного алгоритма поддержания равновесия и передвижения по пересеченной местности компания хранит в секрете.

К счастью, инженеры Boston Dynamics не единственная команда, занимающаяся разработкой ходячих роботов такого типа. Успехов в создании четвероногих роботов добились и инженеры из Лаборатории систем робототехники (Robotic systems lab) Швейцарской высшей технической школы Цюриха (ETH Zurich).


Новейшая модель робота ANYmal C результат работы инженеров из Швейцарии, которую можно заполучить у компании ANYbotics

Примечание. Эта статья написана на основе, но не является переводом, работы Pter Fankhauser.
Диссертация.
Видео с защитой диссертации



Робот ANYmal


Основной рабочей лошадкой инженеров из Цюриха выступает четвероногий робот ANYmal С и его прямые предки. При первом же взгляде на него сразу видны сходства с роботом Spot. Это неудивительно, ведь они созданы для решения одних и тех же задач.

Эти роботы предназначены для работы в промышленности. Например, проверка соответствия построенного здания документации и построение цифровой копии здания в строительстве, или мониторинг работы оборудования в опасных и неблагоприятных условиях, в шахтах и электростанциях.

Для работы в таких условиях робот должен уметь преодолевать различные препятствия, ступеньки, бордюры, мусор, узкие проходы, стены, колонны, ямы, сохранять баланс с учетом ограничений в подвижных узлах и в конструкции самого робота. Также для выполнения таких работ желательна автономность, хотя бы возможность повторять ранее записанный маршрут.

Для того, чтобы четвероногий робот мог перемещаться по сложной местности, он должен быть способен:
  • получать информацию о местности перед собой с помощью датчиков,
  • строить модель местности и карту высот,
  • управлять двигателями ног для выполнения нужного действия,
  • планировать свое перемещение по местности.


Датчики для получения информации о местности


Информацию об окружении можно получить различными способами. Как правило используются датчики измерения расстояния, установленные в передней части робота. Принципы работы таких датчиков различны: могут быть использованы лидары, стереокамеры, камеры, работающие по принципу Time-of-Flight, или камеры со структурированным освещением.

Датчикам предъявляются требования по угловым полям зрения в вертикальной и горизонтальной плоскостях, минимальное и максимальное измеримое расстояние, разрешающая способность, высокая скорость определения расстояния, а также возможность работы при фоновом, зачастую солнечном, освещении.


Схема работы датчиков расстояния

Погрешность измерения расстояния. При определении расстояния неизбежно возникают ошибки. Выделяют два типа шумов, вызывающих погрешность при измерении расстояния. Осевой шум шум вдоль оси измерения расстояния и латеральный шум в плоскости перпендикулярной оси. И осевой и латеральный шум усиливаются при измерении расстояния до более удаленных объектов. Порядок шумов можно оценить по его средне-квадратичному отклонению.

Так для камеры Microsoft Kinect v2 (работает по принципу ToF) осевой шум на удалении 1 м составляет 2 см, латеральный шум 5 мм. Из-за осевого шума возникают ошибки при определении положения объектов, из-за латерального при определении границ объектов.

Разрешающая способность датчиков. Линейная разрешающая способность (чаще используется плотность количество измеряемых точек в квадрате размера 1 см на 1 см) также падает с ростом расстояния до объекта. Создатели ANYmal выбрали подход с частым и быстрым измерением расстояния, но с возможной потерей разрешающей способности. Задав желаемый шаг дискретизации карты местности во всем поле зрения датчика, можно определить оптимальную разрешающую способность датчика. При оптимальной разрешающей способности датчика расстояние до каждой клетки будет измерено хотя бы один раз за заданный шаг времени. Это позволяет определять местность перед роботом с малой задержкой по времени, но достаточно точно для движения робота.

Например, используя стереокамеру Intel RealSense ZR300 с номинальным разрешением 480 на 360 пикселей, полем зрения 59 на 40, частотой регистрации карты расстояний 60 Гц (17 мс на один кадр), установленный на ANYmal высотой 83 см под углом 45 к поверхности земли, позволит получить карту высот местности с шагом 1 см на 1 см при разрешающей способности 312 на 234 пикселя. Оптимизация разрешающей способности датчика также благоприятно сказывается на времени обработки полученных данных.

Построение карт высот местности


Для перемещения робот должен создать для себя в режиме реального времени карту высот местности вокруг себя. В роботе ANYmal используется подход с построением относительной, а не глобальной карты.

При глобальном подходе карта строится относительно некой мировой системы координат. Текущее положение робота на этой карте вычисляется на основе проприоцепции. Величина линейного перемещения от начального определяется на основе количества пройденных шагов. Недостатком такого подхода является накопление ошибки с каждым перемещением робота. После достаточно долгой работы реальное положение робота будет сильно отличатся от того, где робот считает он находится. Робот не сможет нормально функционировать, т.к. он будет совершать действия, не соответствующие реальным препятствиям перед ним.

При относительном подходе каждый раз строится локальная карта местности вокруг робота. Недостатком такого подхода является потеря точности глобального расположения начальной и конечной точек.


Схемы глобального (вверху) и относительного (внизу) подходов к построению карт высот

Последовательность работы алгоритма построения карты высот:
  1. получение данных с датчиков расстояния,
  2. расчет и обновление значений высот клеток местности перед роботом с учетом шумов при измерении расстояния и текущего положения робота,
  3. движение робота,
  4. обновление карты высот с учетом движения робота.


Схема работы алгоритма построения карты высот

Результат этих шагов карта высот местности относительно робота в реальном времени.


Пример карты высот для препятствия

При необходимости дальнейших трудозатратных вычислений, например, проверка столкновений, запускается процесс слияния карты. При этом определяется верхняя и нижняя границы значения высоты каждой клетки. Реальная высота клетки заведомо лежит в интервале, заданном этими границами.

Управление ногами


Движение робота можно разбить на 3 уровня абстракции:
  • высокий уровень заданные роботу цели по перемещению или по поведению,
  • средний уровень управление позой всего робота,
  • низкий уровень непосредственно команды, посылаемые на двигатели на подвижных частях.



Схема работы системы управления ногами

Средний уровень выступает посредником между высоким и низким уровнями абстракции. Для облегчения разработки роботов был разработан Free Gait API.

Команды высокого уровня могут быть созданы с помощью скрипта, сигнала с пульта управления или с планировщика движения.

На низком уровне команды на поворот передаются на двигатели в узлах ног. С помощью датчиков определяется текущее положение тела и подвижных частей робота, которые передаются обратно на средний уровень.

В Free Gait API поведение высокого уровня преобразуется в команды. Команда представляет собой набор последовательных шагов. В каждом шаге есть разделение на движение ноги и движение тела робота. В шаге задается конечная цель для положения одной из ног в декартовых координатах или в координатах углов поворота суставов, траектория движения ноги (последовательность промежуточных целей), а также цель и траектория движения тела робота (его центра масс) в декартовых координатах в пространстве.

При такой реализации робот всегда стоит на 3-х ногах и может автоматически поддерживать равновесие, сохраняя положение центра масс внутри опорного треугольника.
С помощью последовательности команд можно создавать шаблоны движений, например, шаблоны перешагивания через препятствие, подъема по ступеньке, нажатия на кнопку, прыжков и т.д. Шаблоны могут активироваться если местность перед роботом совпадает с каким-либо заданным типом препятствия или если в поле зрения попала метка AprilTag.

Важным в движении робота является определения наличия контакта ноги с поверхностью, чтобы в дальнейшем на неё можно было надежно опереться. Из-за погрешностей работы датчиков позы робота и определения карты высот местности контакт ноги в реальности может не произойти как ему положено, в момент окончания шага. В API присутствуют шаблоны действий для сохранения равновесия робота, которые активируются в зависимости от типа ошибки раннего или позднего контакта.

Планирование перемещения


В конечном итоге системы построения карты местности и управления ногами объединяются для реализации полноценного автономного перемещения робота по пересеченной местности.

Процесс можно разбить на несколько этапов.


Схема планирования движения

Получение карты высот местности вокруг робота. При этом необходимо учитывать ошибки при измерении, указывая для высоты каждой клетки местности доверительный интервал. Карта высот имеет только геометрическую информацию, для планирования не учитывается упругость поверхности. Это частично компенсируется алгоритмом постановки ноги в случае промаха с контактом. Также на этом этапе создается карта расстояний до препятствий с целью проверки на столкновения.

Оценка пригодности участка местности для упора в него ногой. Для робота ANYmal участки проверяются только на опасность потери равновесия роботом. Остальные участки считаются пригодными. Численная оценка пригодности осуществляется на основе вычисления угла наклона, кривизны, шероховатости и неопределенности в высоте поверхности.

Планирование шагов. На этом этапе формируется последовательность позиций робота между начальной и конечной точками. На каждой позиции робот виртуально занимает заданную базовую позу. Один шаг ногой это перемещение одной конечности на соответствующую виртуальную позицию. После каждого шага последовательность шагов перепланируется.

Оптимизация упора ногой. На этом этапе для каждого шага ведется поиск самой безопасной позиции для упора ногой в окрестности рассчитанной виртуальной точки упора. Участки окрестности проверяются как на пригодность с точки зрения равновесия и безопасности, так и на кинематическую достижимость. Проверка кинематики осуществляется при оптимизации позы робота. Критериями для оптимального положения и ориентации тела робота являются стабильность и достижимость заданного положения ноги. Задача этой оптимизации в ANYmal решается с помощью последовательного квадратичного программирования (Sequential Quadratic Programming, SQP), бортовой компьютер находит оптимальное положение ноги за 0,5-3 мс.

Проверка столкновения при движении ноги. На этом этапе находится такая траектория движения ноги от начальной к конечной точкам, при которой нога не столкнется с препятствием или самим роботом. Здесь решается задача минимизации длины сплайна траектории с учетом возможного столкновения от полученной ранее карты расстояний до препятствий. Также учитывается и доверительный интервал для высот участков местности.

Если все этапы успешно пройдены, робот делает шаг и начинается процесс вычисления следующего шага.

Заключение


Лучше всего успех в разработке ходячих роботов продемонстрирует видео.

Видео

Подробнее..

Boston Dynamics магия или имитация?

21.06.2020 02:15:26 | Автор: admin

Содержание



Магия это могия. Кто могёт, тот и Маг!
Александр Шевцов
Магия и культура в науке управления


Введение


Рассуждая о роботах, не упомянуть такое наше всё в робототехнике как компания Boston Dynamics это ведь как-то непрофессионально, да? Но и говорить о ней профессионально уже не так-то просто (а в двух словах точно не получится), в силу приобретённой компанией широкой известности и рождённых этой известностью стереотипов, сложившихся в среде неспециалистов, в частности, неанглоязычных. И всё же, будем вести речь именно с профессиональной точки зрения, по возможности, минимально отвлекаясь на шумиху и домыслы. Ну разве что несколько слов о стереотипах а дальше только профессионально!


Сразу предупреждаю: под катом очень много букв. Будьте осторожны, чтобы не завалило!


О стереотипах


Приведём некоторые суждения, с которыми доводилось сталкиваться применительно к разработкам Boston Dynamics. Как водится в случаях, когда тему обсуждают неспециалисты, эти суждения максимально упрощены и категоричны:


  1. Boston Dynamics это прорыв в области робототехники и искусственного интеллекта. Скоро роботы станут полностью подобны человеку. Наступает эра интеллектуальных роботов! Приключения Электроника, Двухсотлетний человек и всё такое.
  2. Скоро роботы станут полностью подобны человеку. Тогда они смогут обходиться без нас и поднимут восстание / уничтожат человечество / займут наши рабочие места (выбирать по вкусу)! Терминатор, Я,робот, кожаные ублюдки и всё такое.
  3. Наши, отечественные роботы в подмётки не годятся иностранным. Сияющий град на холме вновь продемонстрировал миру идеальную общественную систему, которая единственная создаёт всё самое лучшее в мире!
  4. Роботы Boston Dynamics это имитация. На самом деле, они ничего не могут, а опубликованные видеоролики это то ли 3D-графика, то ли копирование роботами записанных движений человека.

Робот Atlas


Конечно, все эти утверждения очень наивны. Каждое из них отражает собственные мечты или страхи произносящего их в предельно упрощённом виде и имеет мало отношения, собственно, к технике. Техника же здесь выступает лишь средством обоснования своей позиции.


Неправильно требовать, скажем, от психологов, юристов или бухгалтеров знаний по теории и практике робототехники. В конце концов, у них есть своя работа, которой они посвящают всё своё время, и они не обязаны разбираться в технических тонкостях. Но мы инженеры. Так что давайте воспользуемся этими разнонаправленными догмами в качестве отправной точки, чтобы вернуться из мира эмоций в мир техники. И тогда мы увидим, что с Boston Dynamics всё сложно, а потому совсем не так, как представлено в этих утверждениях. Для начала коротко, а далее будет подробнее. Ну, что, рванём покровы?


  1. Роботы Boston Dynamics это очень качественно (даже так: на пять с плюсом) выполненные проекты, демонстрирующие современный, сегодняшний уровень технологий из разных областей техники, объединённых в едином устройстве. А раз сегодняшний уровень, то и прорывом их называть затруднительно. Что до искусственного интеллекта, то и сами разработчики честно признают недостаток интеллектуальности своих роботов. Но запомним: пять с плюсом.
  2. Ох уж этот так называемый искусственный интеллект! Надо бы написать отдельную статью про него. Роботы не могут и никогда не смогут делать всё, как человек. И в этом есть положительный аспект. Потому что они никогда не поднимут восстание (как и ваш автомобиль, холодильник или телефонный автоответчик). Не займут все рабочие места (хотя бы потому, что их тоже должен кто-то разрабатывать и обслуживать). И уж если в XIX в. мы пережили внедрение ткацких станков, то тем более переживём внедрение роботов в веке XXI-м.
  3. Почему-то русское национальное самокопание заставляет нас требовать от себя быть лучшими во всём. Вот непременно во всём, и без полутонов. А так в мире не бывает. Да, Boston Dynamics сейчас обошла российских разработчиков в шагающих роботах. Ну, так она и весь мир обошла, не только нас. Однако, если у России, например, самый большой и современный в мире ледокольный флот; если Росатом, по сути, сегодня уже единственный в мире способен проектировать и строить современные АЭС (а вот такие плавучие АЭС до нас вообще никто и никогда не строил); если современные российские комплексы вооружения на равных конкурируют с зарубежными аналогами на мировом рынке То чего нам стесняться каких-то шагающих роботов? А вон немцы и японцы лучшие в автомобилестроении, станкостроении и промышленной робототехнике (хотя и на эту тему ведь тоже можно спорить). А китайцы Ну, и так далее.
  4. Нет, видеоролики от Boston Dynamics это не имитация. Но и ничего сверъестественного роботы на них, и правда, не делают (повторим, речь о роликах именно от Boston Dynamics). Зато у американцев тоже всё в порядке с юмором, и подшутить над своими коллегами они очень любят. А тем, кто принял за чистую монету розыгрыши от Bosstown Dynamics (найдите отличия в написании), хочется пожелать: чаще улыбайтесь!

Про Bosstown Dynamics ещё скажем пару слов ниже, а пока для тренировки давайте попробуем отличить другой розыгрыш от настоящего робота:


На одном из этих роликов настоящий робот BigDog. На каком? Догадались?


О научно-технических прорывах, магии и подмётках


В прежние времена все люди знали, что среди них есть волшебники, а мир полон чудес. И никто в этом не сомневался. Кто же такой маг? Да кто могёт, тот и маг!


С тех пор в человеческом сознании ничего не изменилось. Поменялся только язык. Сегодня магию инженеры называют словами наука, технологии и производство. И, да, все инженеры-робототехники во всех странах понимают, как устроены и как работают роботы от Boston Dynamics. Но для остальных людей они прорыв, чудо техники в общем, магия. Ведь так хочется поверить, что кусок железа с пластиком, смешно балансирующий на двух опорах за счёт согласованного движения гидроцилиндров, которые перемещает перекачиваемое насосом масло в соответствии с изменяющимися управляющими напряжениями на выходе коробочки с электронными платами, где по заданному программистами закону скачут электромагнитные поля, гоняя электроны через полупроводниковые p-n-переходы, он вдруг ожил и вот ну всё-всё понимает!


Если же мы присмотримся поближе к истории Boston Dynamics, то увидим нет, не столько прорывы, сколько долгую, долгую, настойчивую, кропотливую, долгую настойчивую долгую работу. Начиная с созданной главой и вдохновителем компании Марком Рэйбертом в 1980 г. в Университете Карнеги Меллона (Carnegie Mellon University, CMU) лаборатории Leg Lab, которая затем, в 1986 г. вслед за ним переехала в Массачусетский технологический институт (Massachusetts Institute of Technology, MIT).


Роботы лаборатории Leg Lab


Возможно, эти Одноногий прыгун (1983 1984 гг.), Четвероног (1984 1987 гг.), Плоский двуног (1985 1990 гг.) и 3-мерный двуног (1989 1995 гг.), Штатив (1988 1989 гг.), Уни-ру одноногий кенгуру (1991 1993 гг.), Весенняя индейка (1994 1996 гг.), Дегенеробот (1994 1995 гг.), Краб (с 1995 г.), РобоП (1996 1997 гг.), Весенний фламинго (1996 2000 гг.) показались вам смешными? Но именно они-то и были прорывом для своего времени! Ведь как раз в них уже тогда были воплощены мировые научные достижения в части алгоритмов поддержания равновесия шагающими и прыгающими роботами. Все результаты публиковались в статьях, защищались диссертации по приведённым ссылкам всё это можно найти. Да и не только в Leg Lab занимались этим направлением. Весь научный мир (и в нашей стране тоже) увлечённо развивал теорию и практику управления шагающими и прыгающими механизмами.

Сотрудники Leg Lab. В центре в первом ряду Марк Рэйберт

Сотрудники Leg Lab. В центре в первом ряду Марк Рэйберт


Я не случайно так долго перечислял этих робочудиков. Да и то, назвал не всех, над которыми работала лаборатория (как с Марком Рэйбертом, так и после его ухода из лаборатории в 1995 г.). Честное слово, я белой завистью завидую инженерам из Leg Lab / Boston Dynamics, которые имеют возможность вот уже четыре десятилетия (!) непрерывно работать и работать над тем, к чему они пришли. Тратить десятки миллионов долларов финансирования, которое лаборатория с 1980 г. получала от ARPA / DARPA и прочих военных на каждый из роботов, ни один (!) из которых так и не поступил в американскую армию. А если взять вообще все разработки, то только один робот (Spot) и только в 2019 г. Boston Dynamics робко начала продавать. О финансовом результате при таком раскладе, как говорится, либо хорошо, либо ничего, так что помолчим.


Зато теперь, благодаря этому вашему Дудю, мы знаем, каким образом и за чей счёт идеальная общественная система может позволить себе подобные вещи (см. здесь с 2:31:35 по 2:31:50). Вот не знали-не знали, а тут вдруг взяли и узнали.


Для сравнения, многие (если не большинство) учёные и инженеры в России в 1990-х гг., одновременно с научно-технической деятельностью, решали и несколько другие задачи, например: как прокормить семью на следующей неделе и куда для этого пойти подрабатывать то ли грузчиком на стройку, то ли продавцом в ларёк? Только в 2010-х гг. Россия смогла хоть в какой-то степени вернуться к роботам (я имею в виду интерес на государственном уровне). Потому что в 2000-х гг. почти заново начинали работать многие промышленные предприятия (те, что дотянули), и их задачи в то время были связаны с первоочередными потребностями, обеспечивающими (не больше и не меньше) выживание страны. Несколько из таких направлений я перечислил выше, хотя их было гораздо больше. И это были не роботы.


Вот и посчитайте, сколько времени у России было полностью потеряно для робототехники. Примерно лет 20. Это было как раз то время, когда Boston Dynamics дорешала свои научно-технические вопросы с шагающими роботами и приступила к созданию своих всемирно известных теперь робошедевров; когда нынешние гиганты в промышленной робототехнике, такие как, например, Fanuc и KUKA, становились этими самыми гигантами; когда современная компонентная база (без которой роботы остались бы вон теми табуретками на верёвочках) в частности, электронная за рубежом миниатюризировалась, совершенствовалась и выходила на уровень массового производства и массовой же доступности.


Не стоит удивляться, что, при более или менее сравнимых стартовых (в 1980-х гг.) позициях, в начале 2010-х мы видим на той стороне уже крупные транснациональные концерны со сложившейся кооперацией, с которыми практически невозможно конкурировать на, к тому же, уже поделённых мировых рынках робототехники, а у нас отдельных энтузиастов и отсутствующую отечественную компонентную базу.


Это отвлечение специально для любителей сравнивать робота Фёдора от НПО Андроидная техника с роботом Atlas. Конечно, нет железной уверенности, что, не держи нас семеро, мы бы всем показали робототехническую кузькину мать. Но и сравнивать пирожные с сапогами тоже некорректно.


К тому же, в профессиональной научной и инженерной среде принято с уважением относиться к коллегам. В конце концов, все работают на одном поле и все друг у друга чему-то учатся. И кто-то обязательно будет лучшим. Это вовсе не означает, что у остальных нет достижений. Они есть, и любое достижение достойно уважения. А категоричны в суждениях обычно дилетанты.


Но всё это уже другая тема. А мы вернёмся к нашей.


Так что же было дальше? А дальше всё более или менее всем известно. В 1992 г. Марк Рэйберт на основе своей группы из MIT Leg Lab основал Boston Dynamics, которая при финансовой поддержке ARPA / DARPA продолжила работу над своими роботами. В 2013 г. компания была куплена корпорацией Google. Однако уже к 2016 г. IT-гигант успел полностью разочароваться в своём железячном приобретении, и в 2017 г. компанию приобрела японская телекоммуникационная корпорация SoftBank.


Разработки компании также широко известны, ознакомиться с ними можно на её официальном сайте и на YouTube-канале Boston Dynamics. Наибольший фурор произвели BigDog (2004 г.), Atlas (2016 г.) и Spot (2016 г.).


Uptown Funk


Ловкость рук и никакого мошенства


Давайте постараемся хотя бы коротко разобраться, как же работает вся эта магия или, вернее, могия.


Мы не будем описывать всех роботов Boston Dynamics. Их поверхностное описание и так можно найти везде, а для детального понадобится написать толстую книгу. Так что будет всё вперемешку. Ведь принципы построения конструкции, алгоритмы управления и навигации, интерфейс с человеком у них схожие. Развитие шло поступательно, технические решения заимствовались от предшественников, а дорабатывались отдельные подсистемы. Скажем, если у BigDog конечности приводились в движение гидроприводами, а гидронасос для них крутил двигатель внутреннего сгорания (ДВС), то в Spot для снижения шумности всё это заменено на электродвигатели. Atlas же по-прежнему использует гидравлический силовой агрегат, но тоже уже без ДВС. Это интересные, но детали, а мы окинем всё единым взглядом.


О законах динамики


В технической кибернетике (науке, изучающей управление техническими объектами) находят применение две группы методов управления. Первый подход основан на точном математическом описании процессов управления. В случае управления движением механизмов теоретическим базисом для него является ньютоновская (классическая) механика и классическая теория автоматического управления. Проблемой управления в данном подходе является определение законов управления, позволяющих достичь желаемого динамического отклика механизма, представляемого как цепь из твёрдых тел, связанных сочленениями (степенями свободы). С этой целью вначале решается обратная задача динамики, т.е. определяются силовые воздействия на звенья механизма, требуемые для обеспечения желаемого закона его движения.


Решение обратной задачи динамики для разомкнутой последовательной механической цепи, которую представляет собой манипулятор, находят обычно при помощи дифференциальных уравнений с использованием методов Лагранжа Эйлера или Ньютона Эйлера (хотя есть и другие) [1]. Для тех, кто хочет познакомиться с этими методами, так сказать, пощупать их руками, могу посоветовать взять, для начала, первый из них, базирующийся на уравнениях Лагранжа второго рода. Пример решения обратной задачи динамики для несложной системы твёрдых тел с подробным понятным разбором я нашёл на сайте Института фундаментального инженерного образования ЮРГПУ (НПИ).


Кстати, тот же математический аппарат теоретической механики (раздел динамика твёрдого тела), только для случая прямой задачи динамики, используется, в том числе, в робототехнических симуляторах, которых сегодня существует большое множество. В частности, разработчики Boston Dynamics использовали симулятор Gazebo. Я же в своё время работал, возможно, с менее удобным для моделирования роботов, но более универсальным пакетом Adams от MSC Software.

Симуляция в Gazebo: Atlas подключает шланг к трубе

Симуляция в Gazebo: Atlas подключает шланг к трубе


Второй подход к управлению не требует строгого математического вывода искомых законов управления объектами, а ориентирован на получение, по возможности, простых и интуитивно понятных зависимостей. Такие методы управления часто рождаются на основе наблюдений за живой природой и попыток (разной степени успешности) переложения её изобретений на технику. Это избавляет от необходимости теоретического обоснования полученного решения (включая, например, такие прелести, как доказательство устойчивости системы управления), однако может превратиться в бесконечную подгонку числовых параметров по месту.


К данной категории можно отнести (из того, что вспоминается сходу), управление на основе нечёткой логики, искусственных нейронных сетей, обучения с подкреплением и пр. К упрощённым методам можно отнести и метод программирования роботов-манипуляторов обучением, когда манипулятор вручную проводят по траектории, которую он должен будет повторять.


Каждый подход обладает своими преимуществами и недостатками, но подробнее об этом в другой раз. Пока же отметим, что, например, системы управления промышленных манипуляторов, которые, работая на производстве, должны обеспечивать субмиллиметровые точности при позиционировании и движении по заданным траекториям, строят с применением, преимущественно, первого подхода. А вот для многошарнирных механизмов с десятками степеней свободы, гибкими (вследствие стремления к снижению массы) звеньями и сложным взаимовлиянием движений классические уравнения динамики становятся практически нерешаемыми. Зато от таких механизмов, как правило, и не требуют высокой точности. Всё это роднит их с живыми организмами, которые тоже не решают в уме дифференциальных уравнений, хотя, зачастую будучи ещё сложнее устроены, прекрасно справляются с управлением собственным телом. Специально для сложных устройств и придуман второй подход.


Робот для испытаний костюмов химзащиты: Petman, великий и ужасный предшественник Atlas'а


Алгоритмы, разработанные в Leg Lab и перенесённые в Boston Dynamics, ожидаемо относятся ко второй группе методов. Шагающему роботу не очень важна точность движений, т.к. его задачи выглядят примерно так: дойти из точки A в точку B, избегая падений. Как конкретно он это сделает, пользователя обычно не волнует.


В статьях сотрудников лаборатории описывается так называемое интуитивное управление. Движение роботов реализуется путём совмещения трёх интуитивно понятных относительно простых компонентов движения: поддержание заданной высоты тела за счёт вертикальных подскакиваний; управление наклоном тела за счёт моментов в шарнирах таза в фазах установки ног на поверхность; и поддержание равновесия за счёт установки ног в ключевые позиции исходя из принципа симметрии [2] [3]. Развивается идея виртуальных приводов, позволяющая управлять не по отдельности каждым реально существующим приводом (например, приводами лодыжек, колен, таза), а несуществующими, но интуитивно понятными приводами (например, движений тела) [4]. Подобный подход реализуется для всех разработанных конструкций роботов, с учётом особенностей каждой конструкции.

Симуляция BigDog при отработке алгоритмов движения

Симуляция BigDog при отработке алгоритмов движения


Так что шагающие роботы Boston Dynamics не обеспечивают точности, достаточной, например, для сварки трубопроводов. Зато они успевают быстро решить, куда примерно поставить ногу, чтобы робот не упал на текущем шаге, и так для каждого шага.


Тема динамического управления роботами практически бесконечная. Свои алгоритмы и методики придумывает и перепридумывает чуть ли не каждый разработчик. Здесь мы только показали, с чего можно начать разматывать эту ниточку.


В завершение темы, отметим, что неправы те, кто считает видеоролики с роботом Atlas имитацией на том основании, что его ходьба и бег чересчур напоминают человеческие локомоторные движения. У роботов, мол, другие методы балансировки, и махи руками при ходьбе им не нужны [5]. Биологи молодцы, что рассказали нам про локомоторные движения. Будем знать. Я же как инженер добавлю к этому, что законы механики они не разбирают, кто вы: робот, гепард или обезьяна. Они просто действуют, редиски, и ничего тут не поделаешь! Пошла ваша правая нога вперёд возникла даламберова сила инерции, которая тем более значительна, чем большее ускорение вы придали ноге, а в результате равная ей по величине сила противодействия отталкивает ваше тело с правой стороны назад, стремясь развернуть его вокруг точки опоры левой ноги. И вы хоть тресните, но либо компенсируйте её мышцами, либо выбрасывайте вперёд и что-нибудь слева (ну, например руку? или, может быть, скажем руку?) для балансировки. Да вы не верьте на слово, попробуйте сами побегать, прижав руки к бокам. Вам неудобно не размахивать руками не из-за рудиментарных цепей нейронов, издавна запрограммированных почему-то на именно такие локомоторные движения. Наоборот, именно такие локомоторные движения зашиты в нейроны потому, что так удобнее передвигаться.


А Atlas что, рыжий? Его тоже балансировать надо. И раз уж у него есть руки, то почему не использовать их? Или кто-то хотел, чтобы робот выглядел, как человек, а бегал, как пингвин? Ну, кто хочет, может так и делать. Первые самые простые роботы именно такими и были. А фишкой Boston Dynamics является как раз естественность движений роботов. И даже если кого-то смущает, что для обучения робота использовались записи движений реального человека (я пока не нашёл сведений от разработчиков на этот счёт), то, вернувшись на несколько абзацев выше, мы увидим, что это обычный подход для робото- (и не только) техники. Уж такая она...


Ловкость ног. И рук. И никакого мошенства.


Кстати, Boston Dynamics вовсе и не скрывает [6], что, например, для съёмок приведённого выше короткого ролика потребовалось сделать более 20 подходов. Что они публикуют только самые лучшие получившиеся видеоролики, а не средние и не типичные. (Ну Вообще-то, так делают все Только тс-с-с! Чур, я этого не говорил!) И что их роботы не очень интеллектуальны. Ребята, забудьте вы про этот искусственный интеллект. Это совсем не то, что можно себе навоображать, да и слово интеллект затесалось, можно сказать, случайно: в английском варианте artificial intelligence слово intelligence не равнозначно слову intellect.


Навигация и управление


Не скрывает компания и аспектов, касающихся управления роботами. На канале Адама Сэвиджа можно найти видео, где он разбирает, как управлять роботом Spot, одновременно освещая некоторые вопросы, связанные с его сенсорикой и системой навигации.

Адам Сэвидж: танец со Spot

Адам Сэвидж: танец со Spot


Адам демонстрирует два способа управления: вручную с пульта (либо при помощи джойстиков, либо указанием каждой следующей целевой точки на экране, транслирующем видео с камер робота) или автономный. Для задания маршрута автономного перемещения используются метки, похожие на QR-коды (их видно также на ролике ниже), которые размещаются вдоль всего маршрута. После этого Spot необходимо вручную (с пульта) провести от метки к метке, при этом робот запоминает маршрут. Spot способен определять свою ориентацию относительно меток и удаление от них, т.к. их размеры и разметка ему известны. Во время движения робот строит 3-мерную модель окружающего пространства, обнаруживает препятствия и обходит их. Также он видит поверхности передвижения, распознаёт изменения высот на них и подстраивается, например, поднимаясь и спускаясь по ступенькам. А ещё он самостоятельно решает, какие конечности и как перемещать для выполнения задания, двигаться ему передом или задом наперёд и т.п.


Также на YouTube-канале Boston Dynamics имеется видео с наглядной демонстрацией принципов автономной навигации. На нём видно 3-мерную сцену, которую робот строит для обхода препятствий, а также навигационную карту, которую, видимо, он построил при предыдущих проходах.


Spot: автономная навигация


Рассмотрим принцип работы системы навигации роботов Boston Dynamics на примере робота BigDog [7] (как мы помним, у остальных роботов в общих чертах всё так же).


Система навигации основана на использовании комбинации стереозрения, данных LIDAR'а, блока инерциальных измерений (IMU, inertial measurement unit), GPS-приёмника и других датчиков (включая датчики сил), позволяющих оценить положение, ориентацию и параметры движения робота во внешнем окружении. Кстати, систему стереозрения для него создавала знаменитая Лаборатория реактивного движения, в которой в начале своей трудовой деятельности работал и Марк Рэйберт.


Облака точек, поступающие от LIDAR'а и стереокамер, сегментируются для построения связных объектов из разрозненных точек. Сегменты, соответствующие препятствиям, отделяются от сегментов поверхности передвижения, которых робот не должен бояться. Причём такие препятствия как деревья и стены выявляются, преимущественно, LIDAR'ом, а булыжники и лежащие брёвна стереозрением. Объекты, полученные после сегментации, запоминаются и продолжают отслеживаться с течением времени. Память робота некоторое время сохраняет и те объекты, которые он уже не может видеть.


Для навигации используется общепринятый в робототехнике подход. Препятствия наносятся на карту стоимостей, cost map (имеются в виду, согласно математической терминологии, стоимости перемещения между точками маршрута), на основе которой и осуществляется планирование оптимального пути к конечной точке движения. Планировщик пути использует разновидность известного алгоритма поиска А*.


Процесс планирования пути проиллюстрирован ниже. На первой картинке синими точками показан массив сырых данных LIDAR'а за несколько секунд. На второй соответствующие им объекты: деревья коричневым, поверхность бледным. На третьей картинке показан вид сверху на карту стоимостей: зелёная область средняя стоимость, лиловый цвет высокая стоимость, жёлтая область (по которой проведена голубая лента построенного пути к цели) низкая стоимость.



Планировщик пути примерно раз в секунду генерирует новый путь, стараясь при этом следовать плану, который был выработан на предыдущих шагах (но не гарантируя этого). Алгоритм удержания пути направляет робот с целью следования по самому свежему пути, одновременно сглаживая траекторию, если робот в данный момент на нём не находится.


Можно обсуждать ещё много интересных технических деталей, касающихся особенностей реализации алгоритмов автономной навигации роботов Boston Dynamics, однако это выходит за рамки данного материала. Часть информации можно найти опубликованной, например, в материалах конференций. Какая-то часть, видимо, разработчиками не разглашается. Но можно уверенно сказать, что все роботы Boston Dynamics используют приблизительно схожие алгоритмы. Например, на роликах с роботом Atlas видно всё те же метки, помечающие маршрут его движения и объекты, с которыми он работает. А на публичных демонстрациях Atlas'а присутствует человек-оператор, вручную управляющий роботом с пульта.


От себя добавлю, что компания использует и ещё один способ управления роботами, кроме двух перечисленных выше, а именно, жёсткое программирование их движений. Выполнение движений в цикле по записанной фиксированной программе это, конечно, не полноценное управление роботом, но именно это периодически и взрывает сеть самыми вирусными роликами от Boston Dynamics.


Взлёты и падения


Чем мне нравятся ребята из Boston Dynamics, так это своим юмором. Они не особо скрывают, в том числе, и падений и неудач своих роботов, а скорее всего, и сами веселятся над неудавшимися дублями на съёмках (хотя можно позавидовать их покер-фейсам в роликах во время издевательств над роботами). Когда в кювет съезжает и переворачивается колёсный робот, это не вызывает особого интереса. А если заваливается и без того забавный механический гуманоид, нелепо размахивая тем, что у него вместо рук и ног, то все зрители гомерически ржут. Ну, и правда, разве это не смешно?







Как по мне, так эти падения только подтверждают то, что всё по-честному, без имитаций, и никакого мошенства! Обычная инженерная магия. Временами корявенькая, но у всех свои недостатки.


Восстание роботов


Недавно смешные ребята из студии Corridor решили поддержать традицию шуток про роботов Boston Dynamics, выпустив пару остроумных и красивых видео на тему (вот это и это). Надо сказать, что они попали в точку, эксплуатируя сразу две распространённых реакции на демо-ролики компании (особенно на тот, где роботу хоккейной клюшкой мешают выполнять его работу, а потом ещё и роняют, толкая трубой): сочувствие страданиям робота и страх перед возможной местью роботов за прошлые издевательства.



Правда, часть не слишком внимательных зрителей (особенно, не англоязычных) приписали авторство роликов самой Boston Dynamics, восхитившись или испугавшись (в зависимости от собственных ожиданий) прогресса робототехники. Несмотря на надпись Bosstown Dynamics, на видео-постскриптумы в самих роликах и на то, что вслед за первым роликом студия выпустила и подробное видеоразъяснение о том, как они подделали робота (позже оно появилось здесь в русской озвучке). Впрочем, это не так важно. Думаю, если поставить Boston Dynamics задачу снять подобный ролик, они бы плюс-минус похоже справились и со своими роботами, почти без компьютерной графики, склеив тысячу отдельных фрагментов запрограммированных движений. С компьютерной графикой это просто дешевле.


Кажется, ознакомившись хотя бы с настоящим нашим материалом, можно однозначно понять, что уровень современной передовой робототехники совершенно не тот, каким он предстаёт в фантазиях ребят из Corridor (даже если бы их ролики не были очевидным розыгрышем). Но и это тоже не главное.


Главная ошибка в массовом восприятии роботов заключается в том, что люди интуитивно наделяют их тем, чего у них нет и быть не может: душа (а следовательно, чувствами и интеллектом). Вот так вот. Стараясь следовать научному подходу, я не люблю в вопросах науки и техники категоричных оценочных суждений. Но это именно тот, особый случай, когда полезнее сказать прямо, чем оперировать корректными, но замысловатыми научными абстракциями. Ещё раз: у роботов нет, не может быть и никогда не будет чувств и интеллекта.


Когда вы знаете до винтика конструкцию спроектированного вами механизма и до каждого полевого транзистора устройство расположенных в нём разработанных вами плат; когда вы собственными руками устанавливали электродвигатели и подшипники в шарниры и вытирали гидравлическое масло с протёкшего шланга; когда это вами написанная программа обрабатывала массивы чисел, соответствующих отражениям вращающегося лазерного луча LIDAR'а, установленного ещё на лабораторном столе, а не на роботе; когда вы сами методом триангуляции вычисляли расстояния до объектов пространства по изображениям, полученным со стереопары; когда вам приходится ещё и чинить сломавшихся роботов чуть ли не после каждой демонстрации то у вас не возникает вопросов, откуда робот берёт информацию об окружающем мире и каким образом он шевелит конечностями.


Куски BigDog. Это они будут подчинять себе человечество?


Если это ваши пальцы печатали буковки программного кода, отвечающего за принятие решения о точке (ближе-дальше, левее-правее) установки ног робота на поверхность для поддержания равновесия; если именно вы выбирали используемые роботом алгоритмы навигации для движения на пересечённой местности; если вы собственноручно подбирали, например, числовые параметры, определяющие жадность -жадного (-greedy) алгоритма машинного обучения, выполняющего поиск оптимальной стратегии удержания заданной траектории; да потом ещё и многократно отлаживались, отслеживая значения всех переменных программы то вы не питаете иллюзий о степени интеллектуальности вашего робота. Просто это вы сами весь его искусственный интеллект и запрограммировали.


Простыми словами, этот, так сказать, искусственный интеллект всего-навсего звучное название для алгоритмов программной самонастройки параметров, заданных человеком, по критериям, заданным человеком, в пределах, заданных человеком. Какое уж тут восстание!


Роботы ничего не чувствуют. Не более, чем дверной косяк, который иногда для плачущего ребёнка показательно шлёпают, чтобы наказать за набитую шишку (хотя я никогда не слышал о борцах за права дверных косяков). Роботы ничего не думают. Не более, чем игрушки-трансформеры, для которых детишки во время игры в битву роботов придумывают поведение и диалоги.


Так что теоретики восстания роботов могут расслабиться. Чтобы роботы захватили мир, практикам-инженерам придётся запрограммировать каждый шаг, шажок и подшагивание на пути к захвату мира. С учётом всех вариантов и подвариантов, когда неизбежно что-то пойдёт не так. А после завершения стадии программирования ещё и многократно отладить программу захвата мира роботами на реальном объекте. Интересно было бы посмотреть на процесс!


Робот это такой же механизм, как автомобиль, цеппелин или требушет. Восстание требушетов по моему, звучит! Уж и тех требушетов больше нет, но пока они были, они ведь так и не захватили мир? Потому что ни требушеты, ни роботы миры не захватывают. Следите лучше за теми, кто ими управляет.


А всё дело в том, что человек неплохо научился обманывать свой собственный мозг. Конечно, мы видели и такие фантазии, в которых обретают своё враждебное человеку сознание всякие грузовики, газонокосилки и автоматы с газировкой (см., например, фильм Максимальное ускорение). Но это выглядит не страшно, а, скорее, смешно. Никто не верит. Зато в добрую или злую волю подобных себе существ человек верит легко (даже в упомянутом фильме в итоге пришлось коряво приплетать зловредный инопланетный разум без него бы, наверное, совсем не зашло). Вот эту человеческую фобию и нащупали производители волнующих историй про восстание роботов, и продолжают радостно её поддавливать, стараясь максимально правдоподобно обмануть органы чувств человека, чтобы машины казались ему похожими на него самого.

Топливозаправочная колонка-убийца — кадр из фильма Максимальное ускорение

Топливозаправочная колонка-убийца кадр из фильма Максимальное ускорение


Просто надо понимать, что казаться чем-то не значит этим быть.


Иное дело, когда машина, неотличимая от человека, действительно непосредственно управляется кем-то, как в фильме Суррогаты. Но это уже совсем другая история, не имеющая отношения к восстанию машин.


Заключение


Мы начинали с того, что будем поменьше отвлекаться на стереотипы о Boston Dynamics, а в результате весь рассказ вокруг стереотипов и крутился. Вот она, цена славы! И всё же, подведём итоги.


Роботы от Boston Dynamics это не прорыв. Это шедевр.

Шедевр непревзойденное творение, высшее достижение мастерства. [8]

Все прорывы были сделаны раньше. Связаны они были с успехами в разработке алгоритмов шагания и поддержания равновесия, причём не только командой Leg Lab, а совместными усилиями учёных и инженеров всего мира. Ещё были научно-технические прорывы и достижения в разработке другими производителями компонентов, позволивших сделать роботы действительно мобильными: компактная микроэлектроника, энергоёмкие аккумуляторы, эффективные гидравлические и электромеханические агрегаты, техническое зрение (программные алгоритмы и аппаратура: стереокамеры, LIDAR'ы).


Тогда-то и настало время для шедевров робототехники. Есть много коллективов, создававших шагающих, бегающих и прыгающих роботов. Просто на сегодняшний день Boston Dynamics в этом, кажется, лучшие.


В чём же конкретно они лучшие? Так сказать, в чём история успеха? В первую очередь, конечно, в настойчивости. 40 лет непрерывно работать в одном направлении это заслуживает уважения! С инженерной же точки зрения, вот сильные стороны роботов Boston Dynamics:


  • те самые алгоритмы поддержания равновесия и передвижения шаганием и прыжками,
  • отточенная, вылизанная за много итераций и оптимизированная по весу конструктивная компоновка,
  • отличная динамика приводов,
  • современная сенсорика, обеспечивающая все доступные на сегодня возможности для управления,
  • в последнее время приятный внешний вид, красивые закруглённые формы; видна работа профессиональных дизайнеров.

А вот если мы посмотрим с точки зрения конечного пользователя или с коммерческой, то энтузиазма у нас поубавится. Инженерам-то, конечно, интересно решать сложные технические задачи, но для пользователей это всего лишь очередная игрушка. На несколько минут (или часов). Которая быстро надоест. Но очень дорогая игрушка, по стоимости сравнимая с автомобилем. Сложная игрушка, которую надо будет ещё и обслуживать, как тот же автомобиль. И которую поэтому пока не очень понятно, кто будет покупать. И ещё менее понятно, когда она окупит вложения.


Почему игрушка? Да потому, что реального полезного применения этим роботам немного. И кардинальных преимуществ по техническим характеристикам, в сравнении с другими, более доступными устройствами, у них, увы, нет.


Наконец, развеем мифы. Роботы Boston Dynamics (как и все другие) не могут и никогда не смогут делать всё, как человек. Похоже выглядеть да. Решать типовые задачи, на которые уже сегодня можно натренировать и какой-нибудь другой автомат (банкомат, видеосистему для распознавания лиц) да. Имитировать эмоции да.


А переживать эмоции: радость, грусть, удовлетворение, сострадание, злость; чувствовать чувства; думать мысли нет. Самостоятельно развиваться нет. Захватывать мир нет.


И ещё, если смотреть по состоянию на сегодняшний день, роботы Boston Dynamics, по современным меркам, не очень интеллектуальны, и производитель этого не скрывает. В них сделан упор на стабильность работы. А, скажем, современные беспилотные автомобили в части навигации могут решать задачи и посложнее. См., например, беспилотники от Яндекс [9].


Ну, а попутно разрушаем ложные ожидания от так называемого искусственного интеллекта. Искусственный интеллект это всего лишь звучное название для скучных алгоритмов, даже если кто-то ожидал чудес.


Чудес не будет. У инженеров всего лишь магия, как и написано в эпиграфе.



http://www.robotexnik.info/publ/robotics/boston-dynamics/1-1-0-10



  1. См., например: Шахинпур, М. Курс робототехники. Пер. с англ. М.: Мир, 1990. 526 с.: ил. ISBN 5-03-001375-X (глава 5)
  2. Jerry Pratt, Gill Pratt. Intuitive Control of a Planar Bipedal Walking Robot
  3. Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter. BigDog, the Rough-Terrain Quadruped Robot
    Приблизительный частичный перевод можно найти здесь
  4. Jerry Pratt, Ann Torres, Peter Dilworth, Gill Pratt. Virtual Actuator Control
  5. Американский робот Atlas: Так ли он крут?
  6. Youre Expecting Too Much Out of Boston Dynamics Robots
  7. David Wooden, Matthew Malchano, Kevin Blankespoor, Andrew Howard, Alfred A. Rizzi, and Marc Raibert. Autonomous Navigation for BigDog
    Приблизительный частичный перевод можно найти здесь
  8. Шедевр Википедия
  9. Беспилотный автомобиль Яндекс
  10. Boston Dynamics сайт компании
  11. YouTube-канал Boston Dynamics
  12. BigDog Beta (early Big Dog quadruped robot testing) Youtube-канал Seedwell
  13. MIT Leg Laboratory
  14. Robots from MIT's Leg Lab
  15. Atlas (robot) Wikipedia
  16. How Boston Dynamics' Spot Robot Works!
  17. Как Boston Dynamics создала самых знаменитых роботов в мире и когда они начнут помогать людям
  18. Искусственный интеллект Терминология
  19. Hapless Boston Dynamics robot in shelf-stacking fail
  20. Boston Dynamics' Atlas Falls Over After Demo at the Congress of Future Scientists and Technologists
  21. ROBOT FAIL!!! Boston Dynamics
  22. SpotMini robot failed on stage Amazon Re: MARS 2019
  23. YouTube-канал Corridor
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru