Русский
Русский
English
Статистика
Реклама

Uart

Как перестать бояться и полюбить 1-wire

25.11.2020 22:06:19 | Автор: admin
Мне очень нравится протокол 1-wire своей простотой и удобством для применения в системах умный дом. Недавно я писал программную эмуляцию одной микросхемы и погрузился во внутренности этого протокола. Чтобы накопленные знания могли принести пользу не только мне, я решил написать данную статью. Но в статье я хочу рассказать не про абстрактные диаграммы сигналов и кодирование данных перепечаток такого материала есть достаточно, а хочу рассказать про более практические вещи. А именно: рассмотрю проверенные лично схемы адаптеров, собранные из простых и доступных деталей, и расскажу, как из Linux получить доступ к устройствам 1-wire. Попутно расскажу про сам протокол, будет и пример низкоуровневой работы, и пример доступа из JavaScript, а также рекомендации владельцам Raspberry Pi. Эта статья в первую очередь для тех, кто хочет разобраться с протоколом практически с нуля, чтобы начать его использовать в своих проектах. Возможно те, кто уже хорошо знаком с протоколом, также найдут что-то новое для себя.

Протокол 1-wire является проводным протоколом (в отличие от беспроводного), для кого-то это преимущество, а для кого-то недостаток. Сеть 1-wire состоит из шины, к которой подключаются устройства 1-wire. На шине может присутствовать множество подчиненных устройств и только один мастер. Подчиненные устройства могут общаться только с мастером и только по его запросу. Шина 1-wire состоит только из одной линии данных (отсюда и название однопроводный), но для работы также необходима линия земля, а для питания устройств еще и линия питания. При небольшом количестве подчиненных и их небольшом энергопотреблении возможно также так называемое паразитное питание от линии данных. Таким образом, для подключения устройства по 1-wire Вам понадобится 3 (или 2) провода и мастер сети. Мастером сети может быть, например, микроконтроллер или ПК + адаптер 1-wire.

Физический уровень


Как же по одной линии происходит взаимодействие с множеством устройств? На физическом уровне линия устроена по принципу монтажного И, это значит, что линия будет в состоянии логической 1 (уровень около 5V), если все устройства на линии перевели ее в состояние логической 1, а в состоянии логического 0 (около 0V), если хотя бы одно из устройств перевело ее в состояение логического 0. На практике это реализовывается подключением линии через резистор (называется резистором подтяжки) к напряжению питания, а каждое из устройств может только замыкать линию с землей при помощи встроенного транзистора. Такой тип выхода устройств называется открытый коллектор или открытый сток, англ. open-drain. Резистор подтяжки обычно расположен в мастере сети (адаптере).
image

Очевидно, что при паразитном питании ток поступает через резистор подтяжки, и чем больше ток потребления устройств, тем ниже будет проседать напряжение линии. Стандартом регламентировано напряжение лиии 4.5-5.5V, хотя многие устройства и могут работать при значительно более низких напряжениях, но не все. Для снижения проседания напряжения можно уменьшить сопротивление резистора подтяжки, но согласно стандарту, сопротивление не должно быть менее 500 Ом. На практике сопротивление резистора подтяжки можно взять 1кОм, если будет использоваться паразитное питание, и, например, 4.7кОм, если питание будет по отдельной линии.

GPIO адаптер


Простейший адаптер 1-wire можно построить с помощью GPIO:

По такой схеме устроен адаптер при использовании GPIO микроконтроллера, работающего от напряжения 5V, соответсвенно на его портах допустимо напряжение до 5V. Но на портах Raspberry Pi допустимо напряжение до 3.3V, поэтому резистор подтяжки можно подключать только к 3.3V. Такой адаптер будет работать с некоторыми устройствами, но, как уже говорилось, не все устройства могут работать с пониженным напряжением. Эту проблему легко решить с помощью двунаправленого преобразователя логических уровней:

Диод между истоком и стоком на схемах иногда не обозначают, но он всегда есть в реальных транзисторах.

Схема адаптера с использованием GPIO для Raspberry Pi будет выглядеть следующим образом:

В этой схеме убран резистор подтяжки, подключенный к истоку, с этим хаком схема продолжит работать. Т.к. напряжение на GPIO (и на истоке) станет меньше чем 3.3V (напряжение на затворе) на величину напряжения затвор-исток, при которой открывается транзистор. Напряжения на GPIO будет достаточно, чтобы GPIO его воспринимал как логическую 1.

Канальный уровень


Для понимания принципа работы следующего типа адаптера, разберемся, как работает мастер 1-wire на канальном уровне. В 1-wire есть всего четыре примитива канального уровня: отправка ресет, чтение присутствия, отправка бита 0, отправка бита 1 и она же по совместительству чтение бита. Для понимания принципа будет достаточно рассмотреть только два последних: отправка бита 0 реализуется путем установки на линии логического 0 в течение 60-120мкс, отправка бита 1 путем установки 0 в течение около 8мкс, чтение бита путем последующего чтения состояния линии, если линия вернулась в 1, значит подчиненное устройство передало бит 1, если задержалась в 0 не менее, чем на 15мкс значит подчиненное таким способом передало бит 0.

Пассивный адаптер


Следующий типа адаптера построен на использовании UART. Если по UART на скорости 115200 BAUD передать байт FFh, то на TX появится логический 0 только во время передачи стартового бита, это около 8мкс, подчиненные устройства это воспримут как отправку бита 1, а если передать байт 00h появится логический 0 примерно на 78мкс, подчиненные устройства это воспримут как отправку бита 0. А что если TX соединить с RX? Мы будем получать из UART ровно то, что передали: передали FFh получили FFh. А если эту линию принудительно задержать в логическом 0 чуть дольше, то получим уже не FFh, а, например, FEh, FCh, F8h, F0h и т.д. Таким простым способом реализуется чтение бита. Схема адаптера, построенного на использовании UART, он еще называется пассивным адаптером, будет такой:

По такой схеме также часто строится адаптер для микроконтроллера, имеющего аппаратный UART. В схеме необходимо использовать только диод Шоттки, т.к. важно малое падение напряжение на диоде. Диод в этой схеме это хак для преобразования выхода пуш-пулл (англ. push-pull) в подобие выхода открытый коллектор. В выходе пуш-пулл к выходу коммутируется транзисторами либо земля, либо напряжение питания, а в выходе открытый коллектор коммутируется только земля, а для обозначения логической 1, выход переводится в высокоимпедансное состояние, в этом состоянии выход можно подтянуть резистором к любому напряжению и он беспрепятственно приобретает это напряжение.

Здесь стоит упомянуть адаптер для RS232, хоть этот интерфейс уже практически и не встречается. На канальном уровне UART и RS232 это один и тот же протокол, но на физическом они отличаются: в UART используется напряжение 0V и 5V (или 3.3V, такой адаптер будет немного позже), а в RS232 +12V и -12V соответственно. Вот схема адаптера 1-wire для RS232, взятая из Dallas Application Note 74:


Как мы помним, в Raspberry Pi на всех портах допустимо напряжение до 3.3V, поэтому нужен вот такой пассивный адаптер для UART 3.3V:

В этой схеме также необходимо использовать только диод Шоттки.

Аппаратные адаптеры


Существует еще и третий тип адаптеров аппаратные, это микросхемы-конвертеры в 1-wire, выпускаются они для трех протоколов: USB, UART, i2c. У них есть преимущества по сравнению с предыдущими типами, например, в пассивном адаптере используется прием/передача целого байта для приема/передачи одного бита, а в аппаратном на этом получаем выигрыш в 8 раз (на самом деле аппаратно реализованы и другие функции: ресет, алгоритм поиска), кроме скорости это и упрощение, и сокращение кода, что очень актуально для микроконтроллеров.

Но главное преимущество аппаратных адаптеров это активная подтяжка. Разберемся с этим подробнее, для наглядности рассмотрим случай с паразитным питанием. При кратковременном нахождении линии в логическом 0, устройства питаются от своих встроенных конденсаторов, разряжая их, а при возвращении линии в логическую 1, конденсаторы начинают заряжаться, потребляя повышенный ток от линии. Как мы помним, ток идет через резистор подтяжки, имеем RC-цепь с переходным процессом с постоянной времени t=R*C, что проявляется в медленном нарастании напряжения на линии. Очевидным выходом в этой ситуации является кратковременное уменьшение сопротивления резистора подтяжки для сокращения постоянной времени переходного процесса. Эта техника и называется активной подтяжкой, реализовывается путем коммутации линии с напряжением питания на несколько микросекунд (вспоминаем тип выхода пуш-пулл). Это очень помогает на длинных или не очень качественных линиях, т.к. сами проводники также имеют сопротивление.

Конверторы из USB и i2c мне не доводилось использовать, а вот схему с применением микросхемы-конвертера из UART (DS2480B) я приведу, но позже и в чуть более продвинутом исполнении.

Гальваническая развязка


В предыдущих рассмотренных схемах линии земля, питание и данные прямо или косвенно соединяли внутренние схемы всех устройств. Такой вариант подойдет, если устройства будут под Вашим контролем и в безопасной среде, скажем в пределах квартиры или дома. Но если, например, датчик, работающий по 1-wire необходимо установить на крышу (метеостанция), то необходимо задуматься о защите. В данном случае речь идет о защите внутренних схем дорогостоящего оборудования от повышенного напряжения или статических разрядов. Защитить ПК или Raspberry Pi можно, отвязав его гальванически от всех линий 1-wire.

Развязывать необходимо две вещи: питание (и вместе с ним землю) и сигналы. Питание адаптера можно обеспечить от отдельного БП или использовав DC-DC преобразователь с гальванической развязкой (например B0505S). Сигналы можно развязать с помощью оптронов, это пара светодиод-фототранзистор в закрытом общем корпусе. Оптрон позволяет передавать сигнал только в одном направлении, а линия 1-wire является двунаправленной и, к сожалению, нет простых схем сделать двунаправленную гальваническую развязку. Это же касается GPIO, USB и i2c. А вот в UART обе линии RX и TX являются однонаправленными, поэтому получится сделать адаптер как пассивный, так и на аппаратном 1-wire-UART конвертере. Необходимо учесть, что в пассивном адаптере используется скорость UART 115200 BAUD, а аппаратный производит обмен данными на скорости 9600 BAUD. При выборе оптронов необходимо обращать внимание на параметры tON, tOFF, они должны быть существенно меньше 1/BAUD.

К сожалению у меня не нашлось быстрых оптронов, а PC817C, которые были в наличии, уверенно работали только до 19200 BAUD. Примерно таким образом я бы реализовал пассивный адаптер с гальванической развязкой, но, в отличие от остальных схем, эту схему я не проверял:

Полевой транзистор в этой схеме использован для создания большого входного сопротивления приемной части. Бонусом гальванической развязки является то, что схема одинаково будет работать и при напряжении UART 5V, и при 3.3V.

И, как было обещано, схема адаптера с применением 1-wire-UART конвертера (микросхема DS2480B) с гальванической развязкой:

Это самый совершенный из всех перечисленных адаптеров.

Приведу также свой вариант его реализации на макетной плате:

Две перемычки используются для подачи GND и +5V на DC-DC в случае UART 5V, а при подключении к UART 3.3V одна убирается и контакт подключается к +5V, второй перемычкой землю также можно сделать отдельной от земли UART.

Эмуляторы адаптеров


За неимением микросхемы DS2480B можно воспользоваться ее программной эмуляцией на любом микроконтроллере AVR, который имеет аппаратный UART. Такой МК установлен практически во всех Arduino. Здесь приведу схему, как из популярного программатора USBasp на микроконтроллере ATmega8A сделать 1-wire адаптер:

Для прошивки Вам, естественно, понадобится второй программатор. Код эмулятора и готовую прошивку можно скачать отсюда, код взят из проекта tinyowd, в эмуляторе не реализована активная подтяжка и некоторые функции.

Сетевой уровень


На сетевом уровне мастер при общении с подчиненными устройствами уже может оперировать байтами. Как мы помним, на канальном уровне при отправке бита 1 происходит и одновременное чтение, и в ответ можно получить бит 0. Таким образом при отправке байта, на его основе формируется байт ответа, в котором некоторые биты могут быть обнулены.

Все подчиненные устройства слышат мастера однвременно, но отвечать должно только одно. Для этого после начальной процедуры отправка ресет, чтение присутствия осуществляется процедура адресации подчиненного, после которой весь последующий обмен данными осуществляется только с выбранным подчиненным, а все остальные устройства эти данные игнорируют до следующего цикла отправки ресет.

Существует всего четыре команды сетевого уровня, которые понимают все без исключения подчиненные: CCh (SKIPROM), 33h (READROM), 55h (MATCHROM), F0h (SEARCHROM). Но есть и некоторые другие, например, ECh (ALARM), A5h (RESUME) и Overdrive-варианты предыдущих команд, которые понимают не все устройства. На самом деле две первые команды адресуют не одно а все устройства, первая (SKIPROM) используется для широковещательной рассылки команд, например запустить на всех устройствах измерение температуры, а сама температура будет прочитана позже по отдельности с каждого устройства. Вторая (READROM) используется только когда известно, что устройство на шине может быть только одно. Но для проверки на сетевом уровне есть еще контрольная сумма адреса, так что, если ответят несколько устройств, контрольная сумма это позволит выявить.

Адреса 1-wire, их еще называют идентификаторами, имеются только у подчиненных устройств. Адреса имеют длину 8 байт, из которых независымые только 7, а восьмой байт содержит контрольную сумму этих семи байтов адреса. Адреса всех устройств уникальны, они прошиваются при изготовлении и изменить их уже нельзя. Первый байт адреса всегда одинаков для одного типа микросхем, т.е. по нему можно однозначно определить название микросхемы. Этот байт носит название адрес семейства.

После процедуры адресации подчиненного последующий обмен данными уже относится к сеансовому и более высоким уровням модели ISO OSI и может отличаться для разных семейств устройств.

Низкоуровневая работа


Продемонстрирую, насколько просто происходит работа с DS2480B. Для этого в одном терминале из командной строки bash запускаем:
while IFS= read -rd "" -n1 c;do printf "%02x\n" "'$c";done </dev/ttyAMA0

Эта команда будет читать из UART и выводить на экран в шестнадцатеричном формате каждый прочитанный байт. В другом терминале будем отправлять байты в UART.

Первым делом отпрявляем RESET для сброса DS2480B, для этого снижаем скорость UART ниже 9600 BAUD и предаем 00h, DS2480B при чтении в стоп-бите обнаружит логический 0, воспримет это как команду сброса и приведет свое состояние в исходное (окажется в режиме команд):
stty -F /dev/ttyAMA0 raw pass8 4800echo -ne '\x00' > /dev/ttyAMA0

После чего возвращаем скорость на 9600 BAUD:
stty -F /dev/ttyAMA0 9600

Отправляем любую команду (в данном случае это команды DS2480B) для калибровки скорости DS2480B, на которую DS2480B никак не отреагирует, например, безобидную команду чтения параметра конфигурации 01h:
echo -ne '\x01' > /dev/ttyAMA0

Отправляем команду C1h, которая генерирует отправку ресет на шине 1-wire, в ответ получим CDh если на 1-wire последовал импульс присутствия, или EDh если присутствия не последовало (ответ наблюдаем в другом терминале):
echo -ne '\xc1' > /dev/ttyAMA0

Переключаем DS2480B в режим данных, в ответ ничего не получаем:
echo -ne '\xe1' > /dev/ttyAMA0

В режиме данных все байты, которые передаются в UART транслируются конвертером побитно в 1-wire и при передаче битов 1 автоматически происходит чтение бита, которое может обнулять биты в исходном байте. Модифицированный таким образом байт конвертер отправляет обратно в UART. Отправляем команду 33h, теперь это уже команда READROM сетевого уровня протокола 1-wire, в ответ получим 33h без изменений:
echo -ne '\x33' > /dev/ttyAMA0

В ответ на READROM устройство (для простоты подключаем на шину только одно устройство) отправит свой ID, для этого ему необходимо послать 64 единичных бита (идентификаторы состоят из 8 байт), которые в ответе будут модифицированы:
echo -ne '\xff\xff\xff\xff\xff\xff\xff\xff' > /dev/ttyAMA0


Вот что будет в другом терминале после выполнения всех вышеперечисленых команд:
cd33288df444020000a6

Идентификатор подчиненного устройства здесь будет 288df444020000a6, где 28 адрес семейства (датчики температуры DS18B20), a6 контрольная сумма адреса, проверять ее должны мы, а не DS2480B.

Естественно, в Linux так никто не работает с 1-wire. Но при программировании микроконтроллеров или драйверов, все происходит именно подобным образом.

Высокоуровневая работа


В ОС Linux есть два подхода к высокоуровневой работе с устройствами 1-wire:
  • с помощью приложений в пространстве пользователя,
  • с помощью драйверов ядра.

Первый способ исторически появился раньше и на сегодняшний день все еще является более предпочтительным. Самой полной реализацией является пакет owfs, в котором есть поддержка большого числа адаптеров и подчиненных устройств. Приложение, как правило, получает доступ к адаптеру через файл устройства в /dev/ и всю низкоуровневую работу с ним выполняет самостоятельно.

При работе с драйверами ядра, вся низкоуровневая работа с устройствами выполняется в ядре, которое предоставляет доступ приложениям к 1-wire через интерфейс netlink и дополнительно через специальную файловую систему /sys/.

Драйверы ядра


Драйверы ядра делятся на драйверы для адаптеров и драйвры для подчиненных устройств. Драйверы адаптеров создают уровень абстракции W1, объединяя шины 1-wire от всех доступных адаптеров. Далее есть два варианта использования уровня абстракции W1: использование его в приложениях, например, в owfs как еще один вид адаптера, или использование поверх него драйверов подчиненных устройств (тоже в ядре).

Для работы с 1-wire с помощью драйверов ядра достаточно загрузить драйвер адаптера. Например, для DS2490 (это аппаратный 1-wire-USB конвертер):
sudo modprobe ds2490

Для DS2482 (это аппаратный 1-wire-i2c конвертер) предварительно необходимо загрузить драйвер для конкретного i2c контроллера и затем сообщить ему адрес адаптера на шине i2c:
sudo modprobe i2c-<контроллер>sudo modprobe ds2482sudo echo 'ds2482 0x18' > /sys/bus/i2c/devices/i2c-0/new_device

Для GPIO:
sudo modprobe w1-gpio

В случае Raspberry Pi в файле /boot/config.txt добавить строку, или можно даже несколько:
dtoverlay=w1-gpio,gpiopin=4dtoverlay=w1-gpio,gpiopin=17dtoverlay=w1-gpio,gpiopin=27

Тогда при загрузке ядра модуль w1-gpio загрузится автоматически. К сожалению, в ядре (на момент написания статьи это linux-rpi-5.4.y) драйверы для DS2480B и пассивного адаптера не реализованы.

При загрузке любого драйвера адаптера автоматически загрузится модуль wire, который запустит периодический поиск подчиненных устройств на шине адаптера и автоматически загрузит модули для найденных подчиненных устройств. В каталоге /sys/bus/w1/devices/ появятся подкаталоги с именами, равными идентификаторам найденных устройств, в подкаталогах единственным полезным является файл w1_slave.

Несмотря на простоту этого способа, я его не рекомендую по причине того, что драйверы все еще сырые, для некоторых устройств реализован не весь функционал, а для многих устройств драйверов вообще нет.

OWFS


Центральной частью пакета owfs является демон owserver, который работает с адаптерами через файлы устройств в /dev/ или через другие интерфейсы ядра и предоставляет доступ ко всем устройствам 1-wire для других приложений по собственному протоколу поверх TCP, мультиплексируя запросы от клиентов и кешируя ответы от устройств.

Для установки owfs необходимо выполнить аналоги следующих команд для своего дистрибутива:
sudo apt-get update -ysudo apt-get install -y owfs ow-shell

Или скомпилировать из исходных кодов отсюда: github.com/owfs/owfs/releases

Следующим шагом необходимо добавить адаптеры в файл конфигурации. Пример файла конфигурации /etc/owfs.conf:
## USB адаптер на микросхеме DS2490#server: usb## i2c адаптер на микросхеме DS2482#server: device /dev/i2c-0## UART адаптер на микросхеме DS2480Bserver: device /dev/ttyAMA0## Пассивный адаптерserver: passive /dev/ttyUSB0## доступ к адаптерам через драйверы ядра#server: w1## [адрес:]порт, на котором owserver принимает соединения от клиентовserver: port localhost:4304## [адрес:]порт, на котором owhttpd принимает соединения от клиентовhttp: port localhost:2121

В owfs нет поддержки адаптера, использующего GPIO, поэтому единственным способом получить доступ к GPIO из owfs является использование драйвера ядра w1-gpio и получение к нему доступа через уровень абстракции W1. Такой способ потребует запуска owserver от имени root. В любом случае, я не рекомендую адаптер на GPIO для серьезного использования, т.к. он реализован программно (техника bitbang) и грузит процессор.

После запуска owserver, к нему можно обращаться командами, например:
owdir /owwrite /1d.40420f484e59/pages/page.6 'Электроэнергия кв.1'

Как можно заметить, контрольная сумма адреса не указывается, owserver сам ее вычисляет. К owserver также можно обращаться и с другого хоста:
owget -s 10.0.0.1:4304 /1d.40420f484e59/counter.A

Естественно, для этого в /etc/owfs.conf должно быть:
server: port 10.0.0.1:4304

Следует предостеречь, что в owserver нет никаких разграничений прав доступа, поэтому любой, кто может подключиться к порту owserver может как читать, так отправлять команды и записывать на подчиненные устройства.

Для языков программирования C, python, perl, php есть библиотеки, из которых тем же способом через TCP можно получить доступ к owserver. Протокол у owserver очень простой, поэтому можно легко написать реализацию для любого другого языка.

Доступ из JavaScript


Еще один демон из пакета owfs, который может быть полезен owhttpd, он также обращается к owserver по TCP, а с другой стороны предоставляет доступ на порту 2121 по http. Но самое полезное находится в нем по адресу http://сервер:2121/json/, что открывает возможности для обращения к устройствам 1-wire из веб-страницы на JavaScript с помощью XMLHttpRequest.

var r = new XMLHttpRequest();r.open("GET", "http://127.0.0.1:2121/json/uncached/", true);r.responseType = "json";r.onload = function () {  var i, h = "";  if (this.status == 200 && typeof this.response === "object")    for (i in this.response)      h += i + "<br>";  document.getElementById("owlist").innerHTML = h;};r.send();

Здесь то же самое предостережение: доступ к owhttpd также позволяет как читать, так и записывать на подчиненные устройства всем, кто может подключиться к порту owhttpd. Поэтому приведенный выше способ годится только, например, для вэб-интерфейсов администратора для внутреннего использования.

Полезные советы


Т.к. owserver обращается к адаптерам через файлы устройств в /dev/, то можно с помощью udev передать права на устройства другому пользователю, например, создать пользователя owfs и от его имени запускать owserver. Для этого в файле /etc/udev/rules.d/85-onewire.rules добавить строки примерно с таким содержимым:
KERNEL=="ttyAMA0", SUBSYSTEM=="tty", SYMLINK+="owbus0", OWNER="owfs"KERNEL=="ttyUSB[0-9]*", SUBSYSTEM=="tty", SUBSYSTEMS=="usb",  ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", ATTRS{serial}=="FTVNG262", SYMLINK+="owbus1", OWNER="owfs"

Если необходимо организовать несколько 1-wire шин, то потребуется несколько UART интерфейсов. Для этого можно восопользоваться несколькими USB-UART конвертерами. А в Raspberry Pi 4 можно активировать до пяти аппаратных UART, для этого в /boot/config.txt нужно добавить:
dtoverlay=disable-btdtoverlay=uart2dtoverlay=uart3dtoverlay=uart4dtoverlay=uart5

Файлы устройств после перезагрузки будут называться /dev/ttyAMA[0..4], эти UARTы будут работать на выводах:
AMA0 TX=GPIO14(пин  8) RX=GPIO15(пин 10)AMA1 TX=GPIO0 (пин 27) RX=GPIO1 (пин 28)AMA2 TX=GPIO4 (пин  7) RX=GPIO5 (пин 29)AMA3 TX=GPIO8 (пин 24) RX=GPIO9 (пин 21)AMA4 TX=GPIO12(пин 32) RX=GPIO13(пин 33)

Напомню, что так же, как и в случае с GPIO, если мы используем встроенный UART на Raspberry Pi, необходимо применение преобразователя логических уровней или гальванической развязки, т.к. все GPIO на Raspberry Pi работают с напряжением до 3.3V.

Сравнение с ModBus


Для понимания, какое положение занимает 1-wire в сравнении с другими подобными протоколами для автоматизации, я провел сравнение с популярным протоколом ModBus. ModBus также использует модель мастер-подчиненные и в связке с RS485 также может работать используя всего два провода.

+-----------------------+------------------+--------------------------+|                       | 1-wire           | ModBus                   |+-----------------------+------------------+--------------------------+| Проприетарный         | Да               | Нет                      || Документация          | Открыта          | Открыта                  || Физический уровень    | 1-wire           | RS485, RS232, TCP/IP,... || Канальный уровень     | 1-wire           | UART                     || Сетевой уровень       | 1-wire           | ModBus                   || Уровень приложения    | 1-wire           | ModBus                   || Только два провода    | да               | возможно в RS485         || Паразитное питание    | да               | нет                      || Напряжения            | 0..5 V           | до +/-12V в RS485        || Дифференциальный сигн.| нет              | да, в RS485              || Скорость обмена       | фикс. ~15 kbit/s | выбирается, до 10 Mbit/s || Фронты сигналов       | < 8 us           | < 1/BAUD                 || Точность тактирования | +/-50%           | +/-5%                    || Длина линии           | до 300м          | до 1200м (10^8/BAUD)     || Размер пакета         | не ограничен     | до 253 байт              || Размер адреса         | 56 бит           | 8 бит                    || Контрольная сумма     | 16 бит           | 16 бит                   |+-----------------------+------------------+--------------------------+

Как можно заметить, 1-wire более медленный, не такой гибкий и не такой помехозащищенный, что не дает ему права называться промышленным. Но его характеристик более чем достаточно для домашней автоматизации в системах умный дом. А используемые напряжения и простота адаптера для микроконтроллера делают его идеальным для разработки собственных устройств на МК.

Выводы


Протокол 1-wire на самом деле является очень легким в освоении. Я надеюсь, что статья поможет пролить свет на многие ранее не понятные моменты, которые могли быть препятствием на пути к использованию данного протокола.

Для знакомства с протоколом владельцам Raspberry Pi я рекомендую начать со сборки адаптера на GPIO. В файле /boot/config.txt добавить:
dtoverlay=w1-gpio,gpiopin=4

Установить owfs и записать в /etc/owfs.conf всего три строки:
server: w1server: port localhost:4304http: port localhost:2121

Владельцам ПК или ноутбука рекомендую приобрести USB-UART конвертер (он Вам еще не раз пригодится, они бывают на микросхемах FT232, PL2303, CP210X и др. подойдет любой) и собрать пассивный адаптер. Установить owfs и записать в /etc/owfs.conf тоже всего три строки:
server: passive /dev/ttyUSB0server: port localhost:4304http: port localhost:2121

И в том и в другом случае после перезагрузки выполнить:
owdir /

Следующим шагом рекомендую сборку адаптера на DS2480B с гальванической развязкой.

Приведу несколько полезных 1-wire подчиненных устройств, которые стоит попробовать:
  • DS18B20 самый популярный датчик температуры, диапазон измеряемых температур: -55C +125C, точность 0.5C, возвращает температуру уже в градусах цельсия: 8 бит на целую часть и 4 бит на дробную;
  • DS2450 четырехканальный АЦП, можно использовать для аналоговых датчиков, выводы также могут работать на выход, тип выхода открытый коллектор, можно использовать для управления реле;
  • DS2423 двухканальный счетчик импульсов (уже не производится, но есть программные эмуляторы), можно использовать, например, для дистанционного снятия показаний с бытовых приборов учета;
  • DS2438 контроллер аккумулятора, он идеально подходит для подключния датчиков влажности, имеет АЦП и датчик температуры, еще два вывода можно использовать для датчика освещенности, т.е. почти мини-метеостанция.


PS: Если некоторые очевидные моменты в статье расписаны излишне подробно, прошу отнестись к этому с пониманием, т.к. статья рассчитана на читателей с разным уровнем подготовки. И наоборот, если какие-то моменты освещены слишком скомкано или не понятно, прошу написать об этом в комментариях.
Подробнее..

Создание терминала для СКУД и УРВ

21.06.2021 12:17:59 | Автор: admin

Вступление

Ранее, в предыдущих статьях, я рассказывал о бизнес-процессах, которые можно закрыть различными решениями нашего программного обеспечения, однако настало время рассказать о разработке железа, а именно терминале, который способен служить 2 целям - контролю доступа и учету рабочего времени в связке с нашей системой учета рабочего времени.

Историю можно начать с того, что наша компания очень долгое время сотрудничает со всемирно известной сетью фастфудов - KFC (на территории Беларуси и Украины). Головной болью такой сферы, как HoReCa, был и будет учет рабочего времени сотрудников. Учитывая огромную текучку кадров, в том числе и обычных студентов, которые пришли подработать на непродолжительное время, становится сложно проконтролировать, сколько часов отработано тем или иным сотрудником. Плюс немаловажным моментом стало то, что сотрудники часто перемещаются с ресторана на ресторан, а это требует дополнительного контроля. Как же быть?

Нашей компанией было принято решение разработать терминал учета рабочего времени, который бы регистрировал рабочие (или не рабочие) интервалы рабочего времени сотрудников с привязкой к конкретному месту работы. При этом нужна была поддержка нескольких видов идентификаторов - биометрия по отпечатку пальцев, RFID и PIN с возможностью фотофиксации событий доступа.

Поэтому был придумал предельно простой и быстрый сценарий действий на терминале:

  1. Прийти на рабочее место, подойти к терминалу и пройти идентификацию (приложить палец, карту к считывателю или ввести PIN)

  2. Выбрать на тачскрине Работа, после чего отправиться на свое рабочее место и приступить к работе

  3. При необходимости перерыва подойти к терминалу, пройти идентификацию, выбрать Перерыв

  4. При возвращении на рабочее место - подойти к терминалу, пройти идентификацию, выбрать Работа

  5. По окончанию рабочей смены подойти к терминалу, пройти идентификацию и выбрать Завершить работу.

То есть все события должны были фиксироваться на терминале, после чего все данные залетали бы на облако системы рабочего времени TARGControl. И там, административным персоналом, формировались табели и отчеты по объектам (ресторанам), что позволило бы корректно начислять заработную плату сотрудникам.

Разработка

Имея на руках техническое задание, была разработана структурная и функциональная схема. Далее пошло самое интересное: мы начали рассматривать различные варианты одноплатных компьютеров, которые бы смогли обеспечить нужный функционал терминала. Среди вариантов были следующие компьютеры: Banana Pi M4, Orange Pi PC+, ODROID-C4, NanoPi M4 и Raspberry PI Computer Module 3+. Произведем небольшое сравнение данных моделей.

Banana Pi M4

Orange Pi PC+

ODROID-C4

NanoPi M4

Raspberry PI CM3+

Память

Слот MicroSD с поддержкой расширения до 256 ГБ и флэш-память eMMC 8 ГБ с поддержкой до 64 ГБ

TF-карта (макс. 32ГБ) / слот для карты eMMC

8 ГБ флэш-память EMMC

1x разъем EMMC (доступно 8/16/32/64 ГБ)

1 слот Micro SD

нет встроенной eMMC, но есть разъем eMMC,
1 слот для MicroSD до 128 GB

8 GB eMMc + поддержка 1 слота microSD

RAM

1 GB DDR4 (опционально 2 GB)

1GB DDR3

4GB DDR4

Двухканальный 2GB DDR3-1866

1GB LPDDR2 SDRAM

CPU

Realtek RTD1395 ARM Cortex-A53 Quad-Core 64 Bit 1.8 GHz

H3 Quad-coreCortex-A71.2 GHz

Amlogic S905X3 Quad-Core Cortex-A55 ARMv8.2-A 64-bit 1.5GHz

RK3399- Cortex-A72 + Quad Core Cortex-A531.8 GHz

Broadcom BCM2837B0 с четырьмя ядрами Cortex A53 1.2 GHz

GPU

Mali 470 MP4 GPU OpenGL ES 1.1/2.0

Mali400MP2 GPU 600MHz
с поддержкой OpenGL ES 2.0

Mali-G31, поддержка OpenGL ES 3.2 и API Vulkan последнего поколения

Mali-T864поддержка OpenGL ES1.1/2.0/3.0/3.1, OpenCL, DX11 и AFBC

Broadcom VideoCore IV

Сеть

Ethernet 10/100/1000 Мбит / с
Опциональный USB-ключ Wi-Fi. Поддержка PoE

10/100 Ethernet RJ45

RJ45 Ethernet порт (10/100/1000)

Порт Gbps Ethernet

10/100 для подключения маршрутизатора или коммутатора с функцией PoE

После детального изучения и анализа цены (все модели находились в примерно одном ценовом диапазоне на момент их анализа - 2019 год), мы все же пришли к выводу, что лучше всего подойдет Raspberry PI Computer Module 3+. Почему Raspberry ? Да, некоторые характеристики уступают конкурентам, однако главным преимуществом стало то, что по Raspberry банально больше поддерживаемых библиотек и лучше техническая поддержка, т.к Raspberry на рынке с 2012 года и вокруг него сформировалось активное комьюнити.

Решение со встроенной памятью eMMC, предусмотренное в CM3, позволяет не использовать флеш-карту в качестве носителя ОС. Большое количество циклов перезаписи eMMC повышает надежность и срок службы памяти по сравнению с флеш-картами. При этом мы зарезервировали разъем для SD карт. Сразу можно сказать, что заявленной памяти для терминала хватает с лихвой, ибо сохраняемые события весят от силы пару килобайт. Что касается хранения фотографий, то здесь все сложнее: программно мы поставили ограничение в 5000 фото, но так как у нас зарезервирована флеш-карта, то данный лимит можно расширить до приемлемого значения.

Разработку управляющей платы мы начали с организации необходимых питающих напряжений. На нашей плате нам необходимо было обеспечить 3 значения напряжений: 5.0В, 3.3В и 1.8В. Внешний источник питания у нас 12В 3А. Для получения 5В и 3.3В мы использовали схему на основе широтной импульсной модуляции. Для источника питания 1.8В мы задействовали линейный понижающий преобразователь. Это выглядит, примерно, следующим образом.

Схема питания терминалаСхема питания терминала

Исходя из схемы видно, что для электрической части терминала была организована схема защиты питания от короткого замыкания и переполюсовки.

Отметим также и схему защиты питания внешних считывателей, представленную ниже.

Схема защиты питания считывателя от диверсийСхема защиты питания считывателя от диверсий

То есть если закоротить питание, считыватель уйдет в защиту (питание считывателя отключится), а терминал продолжит работу. Номиналы резисторов R51 и R52 задают выходной ток. Изменяя номинал резистора R51 можно менять ток ограничения в значительных пределах (у нас стоят заданные на схеме номиналы исходя из рассчитанной нами нагрузки).

Питание мы организовали, самое время перейти к периферии.

К слову, Raspberry поддерживает UART-интерфейс и 2 USB версии 2.0. Через один из доступных USB мы решили организовать доступ к Ethernet с помощью микросхемы LAN9514 . Второй USB используется для подключения периферии, например индикатор алкоголя. Также задействовав GPIO для подключения кнопок, электромагнитных замков, защёлок, алкостестера в дискретном режиме работы и картаприемников.

Схема реализации Ethernet и USBСхема реализации Ethernet и USB

У CM3 на борту всего 2 UART. Один нам пригодится для организации интерфейса RS-485, а второй - debug. Поэтому мы использовали микросхему FT4232HL, для увеличения количества интерфейсов. У нее есть входной интерфейс USB, который поддерживает связь с LAN9514, он же в свою очередь коннектится с CM3.

Схема расширения количества UART-овСхема расширения количества UART-ов

Вот теперь у нас стало больше на целых 4 UARTa (задействуем всего 2). Один используется для подключения биометрического модуля отпечатков пальцев от южнокорейского производителя Suprema-SFM6020-OP6-8M/16M (8M - 5К отпечатков, 16М- 25К отпечатков).

Второй для подключения карточного модуля 7941D (поддерживает 2 частоты Emarine (125 кГц) и Mifare (13,56 МГц).

Suprema-SFM6020-OP6-8MSuprema-SFM6020-OP6-8M

Один из выделенных UART, как и планировали, мы задействовали под RS-485, позволяющий подключать внешние карточные или биометрические считыватели, а также передавать информацию во внешние системы при необходимости интеграции. Схема 485-го представлена ниже.

RS-485RS-485

В этой схеме мы прибегли к некоторым хитрым схемотехническим решениям, объединив и подключив линии RE и DE через транзистор, что позволило нам автоматизировать на аппаратном уровне переключение режимов приема/передачи.

Что касается интеграции с другими системами традиционным для СКУД способом, для передачи минимальной информации у нас организован выходной Wiegand. Есть и два входных Wiegand'а для подключения внешних считывателей. Ниже представлены их электрические принципиальные схемы.

Входной WiegandВходной WiegandВыходной WiegandВыходной Wiegand

Немаловажным моментом будет, что терминал имеет 2 реле для управления замком, турникетом или шлагбаумом. Рассмотрим данный момент на примере подключения турникета (стандартная ситуация для СКУД). Есть два режима управления турникетом, потенциальный режим и импульсный. При потенциальном режиме управления для разблокировки турникета в направлении А срабатывает выход L1 OUT (в направлении В выход L2 OUT). При окончании данного времени или при совершении прохода выходной сигнал возвращается в исходное состояние.

В импульсном режиме для разблокировки выхода L1 OUT и L2 OUT срабатывают кратковременно, посылая управляющий импульс на турникет (обычно 0,2-0,3 секунды). При получении импульса турникет разблокируется в соответствующем направлении на время 5 секунд либо пока не будет совершен проход в данном направлении.

Для контроля прохода в направлении А или направлении В используются две линии, на которые контроллер турникета выдает импульсные сигналы при совершении прохода в том либо другом направлении. Данные импульсные сигналы подключаются к входам SENS1 для прохода в направлении А и SENS2 для прохода в направлении В.

Например, для работы с турникетами PERCo в контроллере должен быть установлен импульсный режим управления. Для этого время срабатывания сигналов L1 OUT и L2 OUT должно быть установлено в пределах от 0,2 до 1 секунды.

Подключение турникета PERCoПодключение турникета PERCo

Как описано в самом начале статьи, по нашему техническому заданию, на терминале должна была быть организована фотофиксация, поэтому решили выбрать камеру от Raspberry, которая в терминалах имеет 2 исполнения:

  1. RPi D - 72.4 градуса обзор, 5 mpx, размер камеры 25x24 мм (старое исполнение).

  2. RPi G - 160 градусов обзор, 5 mpx, размер камеры 25x24 мм (теперь используем только этот вариант).

Схема организации интерфейсов DSI и CSIСхема организации интерфейсов DSI и CSI

Выбирая дисплей, выбор снова пал на знакомый бренд - 7-ми дюймовый touch-screen от Raspberry с разрешением 800x480 и DSI интерфейсом.

Исходя из размеров дисплея, считывателя и общей компоновки плат, были определены габариты корпуса для терминала - 210 x 173 x 44. Корпус решено было сделать цельнометаллическим алюминиевыми с гальваническим покрытием, что обеспечивало хотя бы минимальную вандалоустойчивость. Дисплей, конечно же, так не защищен.

Корпус терминалаКорпус терминала

Собрав все воедино мы получили терминал данного вида.

Знакомьтесь, терминал D1!Знакомьтесь, терминал D1!

Немного отклоняясь от темы, можно сказать, что мы были обмануты Raspberry, когда они в 4-ом поколении Compute Module поменяли форм-фактор и мы уже не смогли его просто заменить в нашей текущей плате и были вынуждены переходить на новое поколение путем разработки новой платы, но об этом в следующих статьях.

На данный момент с 2019 года нашей компаний было продано более 500 терминалов данной модели, а это показывает, что решение оказалось весьма успешным и надежным. В данной статье я коснулся лишь одной части - железа, однако большая работа была проделана и над прошивкой терминала. В следующей статье я расскажу, как реализована программная часть терминала. В случае возникновения вопросов или критических замечаний, прошу последовать в комментарии для бурного обсуждения!

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru