Русский
Русский
English
Статистика
Реклама

Atmega328p

Гены Ардуинщика

21.06.2020 16:16:20 | Автор: admin


В очередной раз, при обдумывании самоделки на Atmega, встал вопрос проектирования соединений. В моем случае 12 внешних коннекторов и 21 связь. Расположение, соединение, пересечения, программирование, ошибки, ошибки, ошибки.

При кажущейся простоте задачи поломать мозг придется день, а то и два. Без опыта месяц.
И лень взяла свое.

Как это делается


Обычный алгоритм в таком случае:

  • используем макетную плату (самодельную или Arduino) не меняя или добавляя разъемы и разводку
  • подгоняем под макетку внешние коннекторы, чтобы не было пересечений
  • пишем программный код для настройки контроллера и макросы-переменные.

А что если последовательность пинов в коннекторах уже жестко заданы?

Как например у драйвера L298N. Пересечения проводов или дорожек сильно усложнят проектирование, сборку и эксплуатацию.

Попробуем решить задачу с помощью генетического алгоритма. И для начала определимся с моделью.

Список разъемов


  • Шина i2c для компаса I2C(SDA, SCL)
  • UART для связи с внешним миром UART(RXD, TXD)
  • Ультразвуковой сенсор SONAR1(Echo, Trig)
  • Управление маршевыми двигателями DRIVE(ENA, IN1, IN2, IN3, IN4, ENB) с помощью L298N длинный коннектор как раз для шлейфа
  • Энкодер на колесе:
  • левый ENCODER_L(IN)
  • правый ENCODER_R(IN)
  • Сенсор-выключатель впереди робота:
  • левый SENS_L(IN)
  • правый SENS_R(IN)
  • Включение питания Мозга (OPI PC) CPU(EN)
  • Включение турбины VAC_CLEAN(EN)
  • Включение веника BROOM(EN)
  • Напряжение батареи и потребляемый ток PWR(LVL, CUR).

Модель


Получается ген длиной 21 хромосом, которые отображают пины микроконтроллера, а точнее их соединения с коннекторами.

VCC и GND пины коннекторов игнорируем, так как шины мы можем вынести за коннекторы.
Каждая ячейка может иметь значение от 1 до 32 (количество лап у микросхемы). Значения в гене не могут повторяться.

Не допускается пересечений проводников (соединения делаются последовательно, если следующий пин занят проскакиваем далее)

Количество вариантов соединений:

$32^{21}=$ 40564819207303340847894502572032.

Правда это количество рассчитано для сочетаний с повторениями, но такой способ позволяет быстро оценить сложность.

Ускоряемся


Для уменьшения пространства поиска используем функции пина коннектора (ADC, INT, PWM, PCINT). Например, если пин может быть только ADC, то вести к нему линию PWM или дискретного входа бессмысленно.

Данный фильтр уменьшает количество вариантов до 8 748 869 014 201 881 088. Разница ощутима. Но миллиарды миллиардов вариантов это тоже много.

Так же ранее использовались ручные эмпирические правила:

  • начинаем процесс соединения с уникальных пинов (SDA, SCL, RXD, TXD)
  • после соединяем разъемы с большим количеством пинов
  • последними соединяем пины с более общим спектром функций.

Но волшебный Collections.shuffle задающий последовательность коннекторов для обработки, решает эту задачу успешно на автомате.

Решение


Запускаем алгоритм и получаем решение для Atmega328p TQFP32. У меня на бюджетном ноутбуке находит менее чем за минуту.

1 SONAR1.Echo
2 SONAR1.Trig
9 DRIVE.ENB
10 DRIVE.IN4
11 DRIVE.IN3
12 DRIVE.IN2
13 DRIVE.IN1
14 DRIVE.ENA
15 ENCODER_L.IN
16 VAC_CLEAN.EN
17 CPU.EN
22 PWR.LVL
23 PWR.CUR
24 SENS_R.IN
25 SENS_L.IN
26 ENCODER_R.IN
27 I2C.SDA
28 I2C.SCL
30 UART.RXD
31 UART.TXD
32 BROOM.EN

Алгоритм находит решение за пару тысяч эпох. Иногда не находит и за миллион. В таком случаем просто надо перезапустить программу, потому что инициализация происходит случайно.
Без фильтра по функциям пинов алгоритм так же находит решение. Правда за 74 минуты и 13 перезапусков алгоритма по миллиону эпох на каждый. Перед каждым запуском делаем shuffle последовательности соединений.

Остается только соединить проводами макетку или нарисовать дорожки на плате с микроконтроллером.

Детали


Чтобы описать всё, надо будет написать не одну статью. Я постарался комментировать непонятные и самые интересные моменты в java-коде.

Желающие углубиться в тему могут заглянуть в git-проекта.
Подробнее..

Победа над nRF24L01 на три шага ближе

25.02.2021 00:07:45 | Автор: admin

Многие испытывают трудности при соединении по эфиру радиомодулей nRF24L01. Об этом свидетельствует тема на форуме Амперки, открытая в конце 2014г. За пять с небольшим лет в теме накопилось более 120(!) страниц. Это при том, что автор темы не просто обозначил проблему, а поделился своим трехнедельным опытом победного для него боя. Кроме того, он тут же в первом сообщении создал навигатор по страницам темы, где приводит ссылки на решения проблемы другими. Этот своеобразный путеводитель постоянно обновляется.



Я тоже не из тех счастливчиков, которым легко удалось связать радиомодули. Ниже мой подход к решению проблемы.



Модули nRF24L01 работают в полудуплексном режиме. Это как разговор порации: каждый из корреспондентов в один момент времени либо говорит, либо слушает. То есть, каждый из двух узлов работает в режиме и приемника и передатчика: передатчик, отправив сообщение ждет на подтверждение приема сообщения со стороны приемника.



Как правило, все тесты, которые мне встречались в Инете, сводятся к проверке работы и качества связи пары радиомодулей в полнофункциональном режиме, когда передатчик, послав пакет, ждет на подтверждение приема пакета приемником.



Я же разделил эту задачу на несколько простых задачек. Вначале модули проверяются на работоспособность и правильность подключения (шаг 1), затем один из пары работающих радиомодулей тестируется на работу в режиме передатчика без ожидания отклика с приемника (шаг 2) и последний этап улучшение качества связи в этой связке передатчик-приемник (шаг 3).



Итак ...





Шаг 1



Загрузить в контроллер платы Ардуино скетч сканера эфира, который можно найти среди примеров Arduino IDE: Файл -> Примеры -> RF24 -> scanner. Ниже под спойлером есть этот скетч с несущественным изменением. В нем изменено время между стартом и остановкой сканирования одного канала с 128 мксек на 512 мксек. Увеличение времени позволило за один цикл выявлять бОльше источников помех и сигналов. Это равнозначно замене результата измерений в канале на сумму результатов в этом канале за четыре цикла сканирования эфира до изменения времени задержки. При этом, время прохода всего прослушиваемого диапазона сканером увеличилось несущественно: примерно с 8-ми до 10-ти сек.



В разных скетчах адрес канала в командах приводится в разных форматах: в одних ...(0x6f), в других ...(112). Перевод с одного формата в другой станет понятным с примера перевода. Например, для (0x1а) это: (1+1)*16 + а = (1+1)*16 + 10 = 42. Отсчет каналов начинается с частоты 2,4 ГГц, далее идет увеличение частоты на 1 МГц с увеличением номера канала на 1.



скетч сканера эфира
/*Победа над nRF24L01: на три шага ближе, сканер эфираhttp://personeltest.ru/aways/habr.com/ru/post/476716/*//*  Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>  This program is free software; you can redistribute it and/or  modify it under the terms of the GNU General Public License  version 2 as published by the Free Software Foundation.*//**   Channel scanner   Example to detect interference on the various channels available.   This is a good diagnostic tool to check whether you're picking a   good channel for your application.   Inspired by cpixip.   See http://arduino.cc/forum/index.php/topic,54795.0.html*/#include <SPI.h>#include "nRF24L01.h"#include "RF24.h"#include "printf.h"//// Hardware configuration//// Set up nRF24L01 radio on SPI bus plus pins 9 & 10RF24 radio(9, 10); //Arduino UNO//// Channel info//const uint8_t num_channels = 128;uint8_t values[num_channels];//// Setup//void setup(void){  //  // Print preamble  //  Serial.begin(57600);  Serial.println("Scanner Air On");  printf_begin();  //  // Setup and configure rf radio  //  radio.begin();  radio.setAutoAck(false);  // Get into standby mode  radio.startListening();  radio.stopListening();  // Print out header, high then low digit  int i = 0;  while ( i < num_channels )  {    printf("%x", i >> 4);    ++i;  }  printf("\n\r");  i = 0;  while ( i < num_channels )  {    printf("%x", i & 0xf);    ++i;  }  printf("\n\r");}//// Loop//const int num_reps = 100;void loop(void){  // Clear measurement values  memset(values, 0, sizeof(values));  // Scan all channels num_reps times  int rep_counter = num_reps;  while (rep_counter--)  {    int i = num_channels;    while (i--)    {      // Select this channel      radio.setChannel(i);      // Listen for a little      radio.startListening();      delayMicroseconds(512);      radio.stopListening();      // Did we get a carrier?      if ( radio.testCarrier() )        ++values[i];    }  }  // Print out channel measurements, clamped to a single hex digit  int i = 0;  while ( i < num_channels )  {    printf("%x", min(0xf, values[i] & 0xf));    ++i;  }  printf("\n\r");}// vim:ai:cin:sts=2 sw=2 ft=cpp



Далее подключаем модуль nRF24L01 к плате Ардуино или любому прототипу, собранному, допустим, на контроллере ATMEGA328P. Я собрал два образца на платах для прототипирования на контроллере ATMEGA328P по схеме контроллер + резонатор. Один образец подключаю к компу через плату Arduino UNO, а второй через конвертор USB/TTL.

Мощность стабилизатора платы Arduino UNO вполне приемлема для подключения дополнительной импульсной нагрузки такой, как nRF24L01+ c адаптером 5В/3,3В для этого модуля или без адаптера.





На мониторе последовательного порта Arduino IDE увидите нечто похожее:





Если вы увидели похожую картинку тест на работоспособность (исправность) радиомодуля и правильность его подключения пройден успешно. Замените радиомодуль другим, с которым планируете работать дальше.



Обратите внимание на чистый диапазон, начиная с канала 4а. У меня он остается чистым даже, если на расстоянии нескольких метров работает старая СВЧ-печь мощный источник помех в этом диапазоне. А в общем-то, в Интернете рекомендуют выбирать каналы для своих проектов выше 60.



Если на каналах шум, но радиомодуль определяется (смотрим преамбулу на мониторе Arduino IDE, подробно тут) это однозначно копия (подделка). Не отчаивайтесь ее тоже можно запустить.



Шаг 2



По схеме, аналогичной первой собираем второй радиоузел. Это будет передатчик. В его контроллер загружаем скетч передатчика (под спойлером).



скетч приемника
/*Победа над nRF24L01: на три шага ближе, приемникhttp://personeltest.ru/aways/habr.com/ru/post/476716/*/#include <SPI.h>#include <RF24.h>RF24 radio(9, 10); // порты D9, D10: CSN CEconst uint32_t pipe = 111156789; // адрес рабочей трубы;byte data;void setup() {  Serial.begin(115200);  Serial.println("TransmitterTester ON");  radio.begin();                // инициализация  delay(2000);  radio.setDataRate(RF24_1MBPS); // скорость обмена данными RF24_1MBPS или RF24_2MBPS  radio.setCRCLength(RF24_CRC_8); // размер контрольной суммы 8 bit или 16 bit  radio.setPALevel(RF24_PA_MAX); // уровень питания усилителя RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH and RF24_PA_MAX  radio.setChannel(0x6f);         // установка канала  radio.setAutoAck(false);       // автоответ  radio.setRetries(0, 15);  //время между попыткой достучаться, число попыток  radio.powerUp();               // включение или пониженное потребление powerDown - powerUp  radio.stopListening();  //радиоэфир не слушаем, только передача  radio.openWritingPipe(pipe);   // открыть трубу на отправку}void loop() {  data = 109;  radio.write(&data, 1);  Serial.println("data= " + String(data));}



Передатчик без пауз в работе передает сигнал на канале 6f (112).



Подаем питание на сканер эфира и передатчик. Присмотритесь что творится на канале 6f и соседних с ним каналах. Сканер эфира при включенном передатчике рано или поздно прорисует единички или другие одноразрядные числа в шестнадцатиричном исчислении в области 6f, на который запрограммирован передатчик. Наберитесь терпения, особенно при работе со сканером из примеров.





Увидев сигнал от передатчика делаем следующий шаг.



Шаг 3



Загружаем вместо сканера скетч приемника (под спойлером).



скетч приемника
/*Победа над nRF24L01: на три шага ближе, передатчикhttp://personeltest.ru/aways/habr.com/ru/post/476716/*/#include <SPI.h>#include "nRF24L01.h"#include "RF24.h"RF24 radio(9, 10); // порты D9, D10: CSN CEconst uint32_t pipe = 111156789; // адрес рабочей трубы;byte data[1];int scn;  //счетчик циклов прослушивания эфираint sg;  //счетчик числа принятых пакетов с передатчикаvoid setup() {  Serial.begin(9600);  Serial.println("ReceiverTester ON");  radio.begin();  // инициализация  delay(2000);  radio.setDataRate(RF24_1MBPS); // скорость обмена данными RF24_1MBPS или RF24_2MBPS  radio.setCRCLength(RF24_CRC_8); // размер контрольной суммы 8 bit или 16 bit  radio.setChannel(0x6f);         // установка канала  radio.setAutoAck(false);       // автоответ  radio.openReadingPipe(1, pipe); // открыть трубу на приём  radio.startListening();        // приём}void loop() {  if (scn < 1000)  { // прослушивание эфира    if (radio.available())    {      radio.read(data, 1);      if (data[0] == 109) {        sg++;      }    }  } else {//всего принято    {      Serial.println("Принято: " + String(sg) + " пакетов");      sg = 0;    }    scn = 0;  }  scn++;  delay(20);  if (scn >= 1000) scn = 1000; //защита от переполнения счетчика}



Логика работы приемника такая же, как и у сканера эфира, но он в отличие от сканера принимает сигналы только на частоте передатчика 6f и, как и сканер, не посылает автоответ. Скорость обмена информацией и размер контрольной суммы у приемника такие же, как у передатчика. После каждых 1000-и циклов прослушивания в скетче обнуляется счетчик числа циклов и выводится инфа о количестве принятых пакетов с передатчика в монитор порта Arduino IDE.



Включаем передатчик и приемник. Если приемник принимает хотя бы каждый третий пакет это уже успех. У меня не получилось. Приемник по непонятным причинам принимал максимум 40 пакетов.



Подумал о увеличении мощности передаваемого сигнала с помощью дополнительной антенны. Для начала, подключил зажимом монтажный провод папа-мама к корню штатной антенны. И счастье привалило сразу 999 принятых пакетов!



Юзерам, которые захотят сделать все грамотно, придется поработать. Дополнительная антенна в данном случае это отрезок коаксиального кабеля с волновым сопротивлением 50 Ом и длиной 115 мм. Антенна подключается к выводу 13 (АNT2) микросхемы nRF24L01+. Схему подключения и номиналы нескольких недостающих smd компонентов, которые надо поставить на плату радиомодуля, можно найти на принципиальной электрической схеме nRF24L01+ тут. Впрочем, есть альтернатива в магазин за NRF24L01+PA+LNA





Теперь обязательно припаиваем между пинами GND и VCC обеих радиомодулей по два конденсатора. Керамический конденсатор, выполняющий роль ВЧ-фильтра, емкостью не менее 0,15 мкФ (чем больше, тем лучше) и электролит емкостью около 10 мкФ (можно и больше, но бесполезно) это НЧ-фильтр. ВЧ-фильтр шунтирует высокочастотные помехи по цепи питания радиомодуля, а НЧ-фильтр сглаживает пульсации питания. Для надежности, цепи питания радиомодулей лучше непосредственно подпаять к пинам контроллеров.



Все. Надеюсь, у вас в дальнейшем поубавится проблем с nRF24L01 в своих проектах. Успехов!



Безусловно эти простые шаги не могут гарантировать решение всех проблем с nRF24L01 мне их и не перечесть, но теперь вы, как и я, будете уверены:


  • радиомодули не бракованные;
  • подключены верно;
  • уровень сигнала передатчика, чуствительность приемника удовлетворительны и, в случае необходимости, обеспечиваются дополнительной антенной;
  • пара nRF24L01+ однозначно работает в режиме передатчик-приемник без откликов и их ожидания. Иногда этого достаточно.


Ссылки по теме



  1. Обзор радио модуля NRF24L01+
  2. nRF24L01+: побеждаем модуль.
  3. nRF24L01 и Ардуино: побеждаем модуль (видео)
  4. SE8R01. Подделка под NRF24L01 (видео)
  5. Обзор радио модуля NRF24L01+PA+LNA
Подробнее..

Снова о автономной Arduino-метеостанции на батарейках

03.03.2021 00:13:52 | Автор: admin

Еще донедавна мне не удавалось найти в Интернете любительскую метеостанцию с питанием от батареек. Я имею ввиду бытовую автономную метеостанцию с измерениями параметров в помещении, на улице и отображением информации на дисплее метеостанции. Любители не заморачиваются на этой проблеме, а питают свои автономные девайсы от солнечных батарей, аккумуляторов и т.п. Уточню проблема касается только одного из узлов метеостанции базы, а первые проекты малогабаритных беспроводных автономных выносных датчиков на Ардуино появились 10 лет назад. Вместе с тем, промышленные устройства такого плана бытовые метеостанции, комнатные термостаты годами работают от пары батареек АА и этот факт является той целью, которой хотелось бы достичь.


Это было донедавна. Несколько дней назад меня поразил очередной проект @Berkseo, как поражают все его проекты: "Беспроводная мини погодная станция с e-paper экраном на батарейках". Тут все на уровне промышленного продукта. Удивляет единственное в устройстве нет внешнего датчика.


Год назад разместил статью Автономная метеостанция на контроллере ATMEGA328P и питанием от батареек с беспроводным выносным датчиком. Хотя прототип и выполнял свои функции, но имел серьезные недостатки слишком малая частота обновления данных и большое энергопотребление. Ниже другой вариант метеостанции с новым алгоритмом, элементной базой и кодом с низкоуровневыми вставками. Все это позволило выйти на время работы метеостанции от одного комплекта батареек даже несколько больше, чем гарантируют производители некоторых товаров такого плана.



Что сделано:


Датчики DHT22 и DS18B20, которые использовались в предыдущем проекте, заменены энергосберегающим модулем это датчик температуры и влажности HTU21D. Период измерений, отправки/приема данных уменьшен с 15-ти мин до 53,5 сек. Сделан переход на устойчивую частоту работы контроллера (8 МГц) при напряжении питания ниже 3В. Для уменьшения объемов занимаемой памяти в скетчах использованы некоторые функции С/С++. И главное, принципиально изменен алгоритм передачи пакетов с выносного датчика и алгоритм приема этих пакетов базой метеостанции. Теперь для обеспечения надежного приема пакетов с выносного датчика в нем формируется и отправляется с интервалом около 0,3 сек не один, а три пакета с данными о параметрах воздуха на улице и состоянии батареек. Только после отправки третьего пакета контроллер в. датчика вместе с периферией уходит в сон. База метеостанции уходит спать после приема одного из 6-ти пакетов с выносного датчика и просыпается за полсекунды до поступления очередной серии пакетов с выносного датчика.


Метеостанция состоит из двух автономных узлов с питанием от двух батареек AA: базы и выносного датчика. Назовем их для простоты анализатором (по-другому база) и беспроводным в.датчиком (выносным датчиком).


Анализатор, построен на контроллере ATMEGA328P, измеряет температуру и влажность (датчик температуры и влажности HTU21D) в помещении, а также измеряет и анализирует величину напряжения питания узла, которое обеспечивают две батарейки АА 1,5 В. На контроллер также поступает сигнал с приемника LoRa, который по эфиру принимает информацию с выносного датчика. Вся инфа с контроллера выводится на ЖК-дисплей NOKIA 5110.


В в.датчике, тоже собранном на контроллере ATMEGA328P, измеряется температура и влажность воздуха на улице (модуль HTU21D), а также напряжение питания выносного узла, организованного на двух батарейках АА 1,5 В. Передатчик LoRa этого узла передает инфу о температуре, влажности и состоянии батарейки на анализатор. С в.датчика выполняется отправка 3-х пакетов с интервалом около 0,3 сек, затем контроллер ATMEGA328P, передатчик LoRa и модуль HTU21D для экономного расходования заряда батареек переводятся в режим сна. Измерения и отправка данных с в.датчика выполняется с циклом несколько меньше 1-ой минуты.


Работа анализатора построена по следующему алгоритму:


Вначале, при включении обеих узлов метеостанции, контроллер анализатора подает команды на измерение температуры и влажности внутри помещения и выводит эти параметры на дисплей, затем устанавливает приемник LoRa в режим прослушивания эфира. После приема сигнала с в.датчика и успешной дешифрации принятых данных контролер подает команду на повторное измерение температуры, влажности и выводит инфу в полном объеме на экран. Затем анализатор уходит в сон, просыпаясь примерно за полсекунды до планируемого поступления сигнала с в.датчика. Приняв и дешифровав один из трех пакетов с в.датчика, повторно выполняет свои измерения, выводит информацию на экран и снова уходит спать. Если по каким-то причинам сигнал с в.датчика отсутствует около одной минуты (например, сели батарейки), что по времени соответствует отправке 6-ти пакетов с в.датчика, анализатор проводит измерения только в помещении, изредка сканируя эфир: а вдруг в.датчик появился в эфире?! Это сделано для того, чтобы постоянно работающий на прием модуль LoRa не посадил за короткое время батарейки анализатора.


Для сборки устройства понадобятся радиодетали:


  1. Контроллер ATMEGA328P-PU 2 шт.
  2. Датчик влажности и температуры HTU21D/SHT21/Si7021 2 шт.
  3. ЖК-дисплей NOKIA 5110 1 шт.
  4. Приемник-передатчик LoRa Rа-01 2 шт.
  5. Макетная плата (стеклотекстолит), монтажные провода, батарейки АА, кварцевые резонаторы 8 МГц, резисторы, конденсаторы, другие мелочи.

Ориентировочная стоимость компонентов по ценам AliExpress примерно $25.


Для работы с контроллерами ATMEGA328P в качестве программатора я использую плату Arduino UNO. На Youtube есть хорошее видео по установке загрузчика и загрузки скетчей в контроллер ATMEGA328P с помощью платы Arduino UNO.


На этот раз мы не будем устанавливать новые фьюзы программой SinaProg, а воспользуемся, на мой взгляд, более универсальным способом созданием новых конфигураций плат в платформе Arduino IDE.


В новые контроллеры надо установить загрузчик Arduino as ISP и надо учитывать то, что контроллеры ATMEGA328P поступают в продажу с заводской настройкой фьюз для мониторинга (контроля) напряжения питания не ниже 2,7 В. Мы же будем работать от батареек, напряжение на которых при разряде может быть ниже установленного заводского порога 2,7 В, и с кварцем 8 МГц. Установим загрузчик и изменим фьюзы под наши условия, используя в качестве программатора плату Arduino UNO, в такой последовательности:


  1. Найти по адресу c:\Program Files\Arduino\hardware\arduino\avr\ файл boards.txt и открыть его текстовом редакторе с форматированием, например, AkelPad.
  2. Дополнить файл блоком, который приведен под спойлером, и сохранить файл.

    блок установок 1
    ##############################################################

    amega.name=Mega Low (8 MHz, >1.8V)

    amega.upload.tool=avrdude
    amega.upload.protocol=arduino
    amega.upload.maximum_size=32256
    amega.upload.maximum_data_size=2048
    amega.upload.speed=57600

    amega.bootloader.tool=avrdude
    amega.bootloader.low_fuses=0xFF
    amega.bootloader.high_fuses=0xDA
    amega.bootloader.extended_fuses=0xFE
    amega.bootloader.unlock_bits=0x3F
    amega.bootloader.lock_bits=0x0F
    amega.bootloader.file=optiboot/optiboot_atmega328.hex

    amega.build.mcu=atmega328p
    amega.build.f_cpu=8000000L
    amega.build.board=AVR_UNO
    amega.build.core=arduino
    amega.build.variant=standard

  3. В плату Arduino UNO загрузить скетч ArduinoISP.ino из примеров платформы Arduino IDE (Файл > Примеры > ArduinoISP).
  4. Собрать схему (плата Arduino UNO, контроллер ATMEGA328P, кварц 16 МГц) для установки в контроллер загрузчика ArduinoISP (инструкции тут), подключить ее компьютеру и записать в контроллер бутлоадер Arduino as ISP.
  5. Заменить кварц в схеме 16 МГц на 8 Мгц. В меню ИНСТРУМЕНТ выбрать из списка плату Mega Low (8 MHz, >1.8V), которая появилась в меню после дополнения файла boards.txt новым блоком, выбрать тут же Программатор: Arduino as ISP и, нажав Записать загрузчик изменить фьюзы и другие установки в контроллере.
  6. Далее загружаем в контроллер необходимый скетч, используя ту же схему, что и для установки загрузчика (п.4), через Скетч > Загрузить через программатор.

Выносной датчик


В.датчик построен на контроллере ATMEGA328P. В нем осуществляется прием данных с HTU21D по протоколу I2C, измерение и анализ величины напряжения питания узла и управление передатчиком LoRa.


скетч в.датчика
/*   Снова о автономной Arduino-метеостанции на батарейках, выносной датчик   http://personeltest.ru/aways/habr.com/ru/post/544936/*/#include <avr/io.h>#include <util/delay.h>#include <SPI.h>#include <LoRa.h>#include <LowPower.h>#include <Wire.h>#include <avr/power.h>#include "HTU21D.h"#define VccHTU 8  //питание и подтяжка HTU21D (pin 14 AtMega328P, D8)HTU21D myHTU21D;float Tout; // температураint Hout;  // влажностьunsigned int sleepCounter, sleepCounter0; // счетчик, задающий время снаint pct;  //счетчик числа пакетов перед уходом в сонString messageOut; // LoRa-сообщениеfloat BatOut; // напряжение батареекconst int batteryPin = A0; // pin 23 (Atmega328P), к которому подключена батарея для измерения напряженияconst float typVbg = 1.132; //калибровачная константа, 1.0 - 1.2int counter = 0;// измерение опорного напряженияfloat readVcc() {  byte i;  float result = 0.0;  float tmp = 0.0;  for (i = 0; i < 1; i++) {    // Read 1.1V reference against AVcc    // set the reference to Vcc and the measurement to the internal 1.1V reference#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)    ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)    ADMUX = _BV(MUX5) | _BV(MUX0);#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)    ADMUX = _BV(MUX3) | _BV(MUX2);#else    // works on an Arduino 168 or 328    ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);#endif    _delay_ms(3); // Wait for Vref to settle    ADCSRA |= _BV(ADSC); // Start conversion    while (bit_is_set(ADCSRA, ADSC)); // measuring    uint8_t low  = ADCL; // must read ADCL first - it then locks ADCH    uint8_t high = ADCH; // unlocks both    tmp = (high << 8) | low;    tmp = (typVbg * 1023.0) / tmp;    result = result + tmp;    _delay_ms(5);  }  return result;}void Measurement () {  // измерение температуры и влажности  Hout = myHTU21D.readHumidity();  Hout = 62;  //delete!  float Tout_p = myHTU21D.readTemperature();  Tout = 0.1 * int(Tout_p * 10 + 0.5);  //округление до десятых  // измерение напряжения батареек  BatOut = 0.1 * int(readVcc() * 10 + 0.5);  if (BatOut < 2.2) {    BatOut = 0.0;  } else {    BatOut = 2.2;  }}void SendMessage () {  // отправка данных (температура, влажность, состояние батареек)  if (BatOut > 2.1) {    messageOut = String(Tout) + "#" + String(Hout) + "$" + String("BGood");  }  else {    messageOut = String(Tout) + "#" + String(Hout) + "$" + String("BLow");  }  LoRa.beginPacket();  LoRa.print(messageOut);  LoRa.endPacket();}void setup() {  Serial.begin(9600);  Serial.println("Power ON");  analogReference(DEFAULT);  pinMode(VccHTU, OUTPUT);  digitalWrite(VccHTU, 1);  _delay_ms(200);  myHTU21D.begin();  int counter = 0;  while (!LoRa.begin(433E6) && counter < 10) {    Serial.println("Не удалось найти LoRa-передатчик!");    counter++;    _delay_ms(500);  }  LoRa.setTxPower(4); //мощность передатчика, 2...20 дБ  LoRa.setSyncWord(0xF3);}void loop() {  digitalWrite(VccHTU, 1);  if (pct < 3)  { // измерения, отправка пакетов    Serial.println(messageOut);    Measurement ();    SendMessage ();  } else {// измерения, отправка пакета и длительный сон    Serial.println(messageOut);    Serial.println("sleep ...");    Measurement ();    SendMessage ();    for (sleepCounter = 6; sleepCounter > 0; sleepCounter--)    {      digitalWrite(VccHTU, 0);      digitalWrite(VccHTU, 1);      LoRa.sleep ();      LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF);    }    pct = 0;  }  pct++;  if (pct >= 3) pct = 3; //защита от переполнения счетчика}int main() {  init();  setup();  for (;;) {    loop();  }}

Электрическая схема в.датчика:



Питание и подтяжка выводов модуля HTU21D осуществляется с пина 14 контроллера ATMEGA328P. Это сделано для того, чтобы программно обнулить питание HTU21D и перевести этот датчик в режим низкого энергопотребления во время сна.


Изначально в схеме в.датчика планировалось использовать барометр-термометр BMP280, но мне не удалось программно перевести BMP280 в режим низкого потребления во сне. Хотя по даташиту BMP280 для перехода в режим низкого потребление требуется, как и для HTU21D, кратковременное обнуление питания. Разрыв питания BMP280 во время сна снижает потребляемый ток в схеме ATMEGA328P + BMP280 с 130 мкА до 5 мкА, но, повторюсь, смоделировать этот разрыв питания программно у меня пока не получилось.


В в.датчике формируется и отправляется с интервалом около 0,3 сек три пакета с данными о температуре и влажности на улице и состоянии батареек. Если напряжение на батарейках выше установленного порога (2,2 В), то в коде пакета присутствует BGood, а ниже BLow. После отправки третьего пакета контроллер в.датчика вместе с периферией уходят в сон. Цикл отправки серий пакетов 53,5 сек.


Анализатор


Мозг анализатора контроллер ATMEGA328P. Он принимает сигналы с датчика HTU21D по протоколу I2С и по SPI взаимодействует с приемником LoRa и дисплеем NOKIA 5110.


скетч в.датчика
/*   Снова о автономной Arduino-метеостанции на батарейках, анализатор   http://personeltest.ru/aways/habr.com/ru/post/544936/*/#include <avr/io.h>#include <util/delay.h>#include <SPI.h>#include <LoRa.h>#include <LowPower.h>#include "HTU21D.h"#include <LCD5110_Graph.h>#define VccHTU 8  //питание и подтяжка HTU21D(pin 14 AtMega328P, D8)HTU21D myHTU21D;float Tin; // температура в помещенииint Hin;  // влажность в помещенииLCD5110 myNokia(3, 4, 5, 6, 7);extern uint8_t SmallFont[];extern uint8_t MediumNumbers[];float BatIn = 0; // напряжение батареиconst int batteryPin = A0; // pin 23(Atmega328P), к которому подключена батарея для измерения напряженияconst float typVbg = 1.132; //калибровачная константа, 1.0 - 1.2unsigned int sleepCounter;  //счетчик, задающий время снаint r; //счетчик циклов прослушивания эфираint mlc;  //счетчик циклов работы без в.датчикаString LoRaData, Tout_str, Hout_str, BatIn_str, BatOut_str;// измерение напряжения батареекfloat readVcc() {  byte i;  float result = 0.0;  float tmp = 0.0;  for (i = 0; i < 1; i++) {    // Read 1.1V reference against AVcc    // set the reference to Vcc and the measurement to the internal 1.1V reference#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)    ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)    ADMUX = _BV(MUX5) | _BV(MUX0);#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)    ADMUX = _BV(MUX3) | _BV(MUX2);#else    // works on an Arduino 168 or 328    ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);#endif    _delay_ms(3); // Wait for Vref to settle    ADCSRA |= _BV(ADSC); // Start conversion    while (bit_is_set(ADCSRA, ADSC)); // measuring    uint8_t low  = ADCL; // must read ADCL first - it then locks ADCH    uint8_t high = ADCH; // unlocks both    tmp = (high << 8) | low;    tmp = (typVbg * 1023.0) / tmp;    result = result + tmp;    _delay_ms(5);  }  return result;}void Measurement() {  float Tin0;  // измерение напряжения батареи:  BatIn = readVcc();  // измерение температуры  и влажности в помещении  Hin = myHTU21D.readHumidity();  // Hin = 58; // delete!  float Tin_p = myHTU21D.readTemperature();  Tin = 0.1 * int(Tin_p * 10 + 0.5);  //округление до десятых  //  Tin = 21.4; // delete!}void draw() {  myNokia.enableSleep();  myNokia.clrScr();  //Tin  char chr_Tin [5];  String Tin_str = String(Tin);  myNokia.setFont(SmallFont);  myNokia.print("            C", LEFT, 0);  myNokia.print("In", LEFT, 8);  myNokia.setFont(MediumNumbers);  Tin_str.toCharArray(chr_Tin, 5); //количество знаков+1  myNokia.print(String(chr_Tin), CENTER, 0);  //Tout  char chr_Tout [5];  myNokia.setFont(SmallFont);  myNokia.print("            C", LEFT, 16);  myNokia.print("Out", LEFT, 24);  myNokia.setFont(MediumNumbers);  Tout_str.toCharArray(chr_Tout, 5);  myNokia.print(String(chr_Tout), CENTER, 16);  // Hin, Hout  char chr_Hout [5];  Hout_str.toCharArray(chr_Hout, 4);  myNokia.setFont(MediumNumbers);  myNokia.print(String(Hout_str), RIGHT, 32);  myNokia.setFont(SmallFont);  myNokia.print("    In Out", LEFT, 40);  myNokia.print("      %", LEFT, 32);  myNokia.setFont(MediumNumbers);  myNokia.print(String(Hin), LEFT, 32);  myNokia.setFont(SmallFont);  // Battery Level  if (BatIn < 2.2) {    myNokia.setFont(SmallFont);    myNokia.print("Bat", LEFT, 0);  }  if (BatOut_str == "BLow") {    myNokia.setFont(SmallFont);    myNokia.print("Bat", LEFT, 16);  }  myNokia.disableSleep();  _delay_ms(5);}void drawStart() {  myNokia.enableSleep();  myNokia.clrScr();  //Tin  char chr_Tin [5];  String Tin_str = String(Tin);  myNokia.setFont(SmallFont);  myNokia.print("            C", LEFT, 0);  myNokia.print("In", LEFT, 8);  myNokia.setFont(MediumNumbers);  Tin_str.toCharArray(chr_Tin, 5); //количество знаков+1  myNokia.print(String(chr_Tin), CENTER, 0);  // Battery Level  if (BatIn < 2.2)  {    myNokia.setFont(SmallFont);    myNokia.print("Bat!", RIGHT, 28);  }  //Hin  myNokia.setFont(SmallFont);  myNokia.print("         %", LEFT, 18);  myNokia.print("In", LEFT, 28);  myNokia.setFont(MediumNumbers);  myNokia.print(String(Hin), CENTER, 18);  //No signal!  myNokia.setFont(SmallFont);  myNokia.print("Out - - -", CENTER, 40);  myNokia.update();  myNokia.disableSleep();  _delay_ms(5);}void setup() {  Serial.begin(9600);  pinMode(VccHTU, OUTPUT);  digitalWrite(VccHTU, 1);  Serial.println("Power ON!");  analogReference(DEFAULT);  // инициализация дисплея  myNokia.InitLCD();  myNokia.setFont(SmallFont);  myNokia.clrScr();  myNokia.print(">>>>>", CENTER, 20);  myNokia.update();  _delay_ms(1000);  myNokia.setFont(SmallFont);  myNokia.clrScr();  myNokia.print("))-->", CENTER, 20);  myNokia.update();  if (!LoRa.begin(433E6)) {    Serial.println("Ошибка загрузки LoRa-приемника!");    while (1);    myNokia.setFont(SmallFont);    myNokia.clrScr();    myNokia.print(" ->  ->", CENTER, 20);    myNokia.update();  }  // Диапазон для синхрослова  между "0-0xFF".  LoRa.setSyncWord(0xF3);  Serial.println("Прослушивание эфира. Ожидание пакета с в.датчика ...");  myHTU21D.begin();  Measurement();  drawStart();  digitalWrite(VccHTU, 0);  _delay_ms(1000);  myNokia.clrScr();  myNokia.print("Waiting", CENTER, 10);  myNokia.print("Message from", CENTER, 22);  myNokia.print("OUTSIDE", CENTER, 34);  myNokia.update();}void loop() {  r++;  digitalWrite(VccHTU, 1);  if (r < 600)  // 8 MHz;  {    mlc = 0;    // Прослушивание эфира, прием, дешифрация, если сигнал с в.датчика принят,    // то измерения в помещении, вывод инфы на экран и - в спячку.    {      int packetSize = LoRa.parsePacket();      if (packetSize) {        while (LoRa.available()) {          LoRaData = LoRa.readString();        }        int pos1 = LoRaData.indexOf('#');        int pos2 = LoRaData.indexOf('$');        Tout_str = LoRaData.substring(0, pos1);        Hout_str = LoRaData.substring(pos1 + 1, pos2);        BatOut_str = LoRaData.substring(pos2 + 1, LoRaData.length());        if ((LoRaData).substring(pos1, pos1 + 1) == "#") {          Serial.println("Принято, декодировано! r = " +  String(r));          r = 0;          Measurement();          draw();          digitalWrite(VccHTU, 0);          // sleepCounter = 49; 16 MHz          // sleepCounter = 48; 8 MHz          for (sleepCounter = 48; sleepCounter > 0; sleepCounter--)          {            digitalWrite(VccHTU, 1);            LoRa.sleep ();            LowPower.powerDown(SLEEP_1S, ADC_OFF, BOD_OFF);          }        }      }    }  } else {    r = 600;    if (mlc < 250) //4 часа, время работы без датчика    {      Serial.println("Работа без в.датчика.");      LoRa.sleep ();      Measurement();      drawStart();      digitalWrite(VccHTU, 0);      for (sleepCounter = 6; sleepCounter > 0; sleepCounter--)      {        digitalWrite(VccHTU, 1);        LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF);      }      mlc++;    } else {      r = 0;      mlc = 0;    }  }  _delay_ms(110); }int main() {  init();  setup();  for (;;) {    loop();  }}

Работа анализатора начинается в setup'e с инициализации модулей, измерения параметров воздуха, анализа напряжения на батарейках и вывода этой инфы на дисплей. Далее уже в loop'e прослушивается эфир приемником LoRa. После приема и дешифрации сигнала с в.датчика повторно проводятся измерения, анализа напряжения на батарейках и вывод измеренной и принятой инфы на дисплей. Выполнив эту работу все элементы схемы уходят поспать примерно на полсекунды меньше, чем период отправки пакетов с в.датчика. В следующем цикле контроллер просыпается и включает приемник приблизительно за 0,5 сек до ожидаемого прихода сигнала с в.датчика. Таким образом, контроллер и периферия анализатора работают около полсекунды с периодом (циклом) меньше минуты (53,5 сек). Если радиосигнал с в.датчика не поступает на приемник анализатора на протяжении приблизительно одной минуты (время, достаточное для приема одного из 6-ти пакетов), то анализатор переходит в режим работы без в.датчика на 4 часа, измеряя параметры воздуха и оценивая состояние батареек только в помещении с индикацией на дисплее этих данных. Период обновления данных в режиме работы без в. датчика 56,7 сек. В конце четырехчасового цикла работы анализатора без в.датчика он прослушивает эфир: а вдруг в.датчик снова в эфире?




Для перевода модуля HTU21D в режим низкого энергопотребления во время сна его питание также, как и в в.датчике, организовано с контроллера ATMEGA328P (пин 14).


В целом, на дисплее анализатора видна такая картинка:



Дисплей из-за низкого разрешения и малого размера экрана плотно забит символами. Эта картинка смотрелась бы намного лучше на современном дисплее с электронными чернилами. В будущем в своих проектах буду использовать e-paper дисплей.


Ресурс батареек и другое


Для расчета срока работы батареек понадобится время и потребляемый ток во время выполнения работы (операционное время) и сна. Операционное время и рабочий ток измерялись с использованием тестовых скетчей, идея которых взята отсюда.


Рабочий ток измерялся с использованием тех же тестовых скетчей. Для исключения разрывов цепи питания или значительного увеличения величины выходного сопротивления батареек можно использовать шунт 3,9...5,6 Ом и параллельно подключенный к нему цифровой мультиметр с механическим переключением в режиме вольтметра на диапазоне 2000 мкВ. Это критично при измерении потребления тока сна анализатора, поскольку разрыв питания или значительное ограничение тока приводят к цикличесому ресету анализатора. Да и выносной датчик может переходить в постоянный рестарт. По мере возможности необходимо проверять ток потребления разными способами на разных диапазонах шкал прибора и с батарейками, которые планируется использовать, притом, обязательно без вывода результатов на монитор порта Ардуино. Невыполнение этих правил сказались на результатах измерений тока в предыдущем моем посте на тему метеостанции в одних случаях они занижены, в других завышены.


Результаты измерений сведены в таблицу:


в.датчик анализатор
Операционное время функции измерений параметров воздуха, состояния батареек 0,25 сек 0,39 сек
Операционный ток функции измерений параметров воздуха, состояния батареек 3,4 мА 3,5 мА
Операционное время функции передачи/приема сигнала 42 мсек 83 мсек
Операционный ток функции передачи/приема сигнала 30,0 мА

(4 дБ)


11,5 мА
Ток сна 10 мкА 190 мкА

Что бросается в глаза, глядя на эту таблицу. Операционный ток передачи сигнала 30,0 мА при мощности передатчика LoRa 4 дБ. Для сравнения, ток передачи для модуля nRF24L01 13,5 мА. Вывод очевиден: надо переходить на nRF24L01, но не все так просто.


В режиме приемника в nRF24L01 используется так называемыйLNA (малошумящий усилитель). Разработчик библиотеки предполагает, что нет никакого программного обеспечения, которое могло бы повлиять на режим LNA.В режиме приема модуль постоянно демодулирует сигнал для поиска входящего пакета. Именно по этой причине Berkseo не поставил внешний датчик. У меня задача, вроде, попроще организовать режим сна с библиотекой LowPower.h. Сомневаюсь, что задача имеет решение. Буду благодарен за ваши мнения на этот счет.


Средний ток потребления по данным таблицы в. датчика 0,13 мА. Емкости батареек типа АА GP Litium для выносного датчика должно хватить на 2,5 года.


Средний ток потребления анализатора 0,27 мА. Ресурс батареек АА GP Litium в анализаторе 1,2 года. Для беспроводного комнатного термостата Computherm Q7RF, например, срок действия батареек: около 1 года.


Еще на тему энергопотребления долго копался в этой теме и хочется выговориться.


Составил код на С в Atmel Studio и эмулировал его в Proteus'е для для барометра-термометра.



На картинке ниже показаны результаты сравнения кода для одного и того же устройства на языке С и в среде разработки Arduino IDE.



Объем флеш-памяти, занимаемой в коде в Ардуино 12968 байт, на С 5954 байта и оценочно на Ассемблере не больше 200 байт.


Из этих чисел сделал несколько выводов, в которых убедился на собственном опыте:
Код на Ассемблере уменьшает размер памяти на порядки. Соответственно пиковое потребление падает в сотни раз. С десятков миллиампер при прошивках контроллеров устройств на Ардуино или С, С++ до десятых миллиампера на Ассембере.
Поиск компромисса. Так благодаря использованию компилируемых в Arduino IDE библиотек и функций на С/С++ в некоторых скетчах этого поста удалось уйти от предупреждения: Недостаточно памяти, программа может работать нестабильно. Притом, чем проще код, тем выше соотношение: размер памяти в Arduino IDE к памяти на С/С++. Для простейшего кода мигания светодиодом в несколько строк это соотношение составит 6 раз, а проигрыш в производительности 28 раз.


Не буду скромничать, полученный результат энергопотребление прототипа на уровне промышленных образцов, меня радует, а совершенству нет предела


И, наконец, искренне благодарю AlexanderS, который донес до меня идею виртуальной шкалы времени или синхронизации, а также других участников обсуждения статьи Автономная метеостанция на контроллере ATMEGA328P и питанием от батареек с беспроводным выносным датчиком (ittakir, Javian, smart_alex, Polaris99, gerasimenkoao, igrushkin, enjoyneering) за предложения, конструктивную критику и замечания.


Спасибо, кто дочитал. Всем отличного иммунитета во времена коронавируса и не только.


Ссылки по теме


Узел беспроводного датчика с низким энергопотреблением


Беспроводная мини погодная станция с e-paper экраном на батарейках


Превращаем Arduino в полноценный AVRISP программатор


LoRa и сон


Узнайте о битах конфигурации ATmega328P и о том, как использовать их с внешним кварцевым резонатором


Калькулятор фьюзов AVR


Почему многие не любят Arduino

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru