Русский
Русский
English
Статистика
Реклама

Афчх

3. ЧАСТОТНЕ ХАРАКТЕРИСТИКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (АФЧХ, ЛАХ, ФЧХ) ч. 3.1

07.12.2020 02:05:58 | Автор: admin

Лекции по курсу Управление Техническими Системами, читает Козлов Олег Степанович на кафедре Ядерные реакторы и энергетические установки, факультета Энергомашиностроения МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.


Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.


В предыдущих сериях:
1. Введение в теорию автоматического управления.
2. Математическое описание систем автоматического управления 2.1 2.3, 2.3 2.8, 2.9 2.13


В этом разделе мы будем изучать частотные характеристики, тема сегодняшней статьи:
3.1. Амплитудно-фазовая частотная характеристика: годограф АФЧХ, ЛАХ, ФЧХ


Будет интересно познавательно и жестко.




3.1. Амплитудно-фазовая частотная характеристика: годограф АФЧХ, ЛАХ, ФЧХ


Определение: Частотными характеристиками называются формулы и графики, характеризующие реакцию звена (системы) на единичное синусоидальное воздействие в установившемся режиме, т.е. в режиме вынужденных гармонических колебаний звена (системы).



Рис. 3.1.1 Схематическое представление синусаидального воздействия

Формула синусаидального воздействия может быть записана как:

$sin(\omega \cdot t+\phi) = sin \left[ \omega(t + \frac{\phi}{\omega}) \right] = sin \left[ \omega(t + \Delta t) \right];$



Рисунок 3.1.2 График представления синусаидального воздействия

$\phi $ сдвиг фазы (не редконазывают фаза);
$A$ амплитуда;
$A \equiv A(\omega); \phi \equiv \phi( \omega) $ т.е. амплитуда на выходе звена(системы) и сдвиг фазы зависят от частоты входного воздействия x(t).


Используем показательную форму записи функции единичного гармонического воздействия и отклика на это воздействие (рис. 3.1.1):

$sin(\omega \cdot t) = e^{i \cdot \omega \cdot t}$


$$display$$\left \{ \begin{align} x(t)&= e^{i \cdot \omega \cdot t} = cos (\omega \cdot t) + i \cdot sin(\omega \cdot t)\\ y(t)&= A\cdot sin(\omega \cdot t+ \phi) \Rightarrow A \cdot e^{i(\omega \cdot t+\phi)}=A \cdot e^{i\cdot \omega \cdot t} \cdot e^{i \cdot\phi} = A(\omega) \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi(\omega)} \end{align} \right.\ \ \ \ \ \mathbf{(3.1.1)} $$display$$


Определим связь между передаточной функцией и гармоничным воздействием, пользуясь показательной формой.
Рассмотрим звено уравнение динамики которого имеет следующий вид:

$T^2_2y''(t)+T_1y'(t) = K[\tau \cdot x'(t)+x(t)].\ \ \ \ \ \mathbf{(3.1.2)} $


В показательной форме:

$(T^2_2\cdot s^2+T_1 \cdot s+1)\cdot Y(s) = K[\tau \cdot s+1] \cdot X(s)$


Передаточная функция:

$W(s)= \frac{K(\tau \cdot s +1)}{T^2_2 \cdot s^2+T_1 \cdot s+1}\ \ \ \ \ \mathbf{(3.1.3)} $


Запишем в показательной $x, x', y, y', y''$ форме используя соотношения 3.1.1:

$x(t)=e^{i \cdot \omega \cdot t};\\ x'(t)=i \cdot \omega \cdot e^{i \cdot \omega \cdot t};\\ y(t) = A \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi};\\ y'(t)=A \cdot i \cdot \omega \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi};\\ y''(t)=A \cdot (i \cdot \omega)^2 \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi};$


Подставим эти соотношения в (3.1.1) получим:

$T^2_2\cdot A \cdot (i \cdot \omega)^2 \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi} +T_1\cdot A \cdot i \cdot \omega \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi} + A \cdot e^{i \cdot \omega \cdot t} \cdot e^{i \cdot \phi}= \\ =K[\tau \cdot i \cdot \omega \cdot e^{i \cdot \omega \cdot t}+e^{i \cdot \omega \cdot t}] \Rightarrow \\ A \cdot e^{i \cdot \phi} \cdot [T^2_2\cdot (i \cdot \omega)^2+ T_1 \cdot (i \cdot \omega)+1] = K[\tau \cdot (i \cdot \omega)+1] \\ $


Поскольку $A \equiv A(\omega); \phi \equiv \phi( \omega) $ (амплитуда на выходе звена(системы) и сдвиг фазы зависят от частоты входного воздействия), то можно записать:

$A(\omega) \cdot e^{i \cdot \phi(\omega)}=\frac{K[\tau \cdot i \cdot \omega+1]} {T^2_2(i \cdot \omega)^2+ T_1(i \cdot \omega)+1}\ \ \ \ \ \mathbf{(3.1.4)}$


если вспомнить, что в преобразования Лапаласа $s = i \cdot \omega$, то:

$\frac{K[\tau \cdot i \cdot \omega+1]} {T^2_2(i \cdot \omega)^2+ T_1(i \cdot \omega)+1} = \frac{K[\tau \cdot s+1]} {T^2_2 \cdot s^2+ T_1\cdot s+1} =W(s);$


Получаем выражение для передаточной функции

$A(\omega) \cdot e^{i \cdot \phi(\omega)} = W(i \cdot \omega) =W(s)\ \ \ \ \ \mathbf{(3.1.5)}$


$W(i \cdot \omega) $ Амплитудно-фазовая частотная характеистика (АФЧХ)
Иногда $W(i \cdot \omega) $ называют частотной передаточной функцией.
Модуль АФЧХ=$mod W(i \cdot \omega) $ тождественно равен амплитуде выходного сигнала:

$A(\omega) = |W(i \cdot \omega)|\ \ \ \ \ \mathbf{(3.1.6)}$


Сдвиг фазы выходного сигнала:

$\phi(\omega) = arg( W(i \cdot \omega))\ \ \ \ \ \mathbf{(3.1.7)} $


Обычно АФЧХ $W(i \cdot w)$ изображается на комплексной плоскости. Формулы (3.1.6) и (3.1.7) позволяют изобразить $W(i \cdot w)$ в полярных координатах $(r, \phi).()$
Так же можно изображать в традиционных декартовых координатах:

$W(i \cdot \omega) = \underbrace { U(\omega)}_{Re} + i \cdot \underbrace { V(\omega)}_{Im} \ \ \ \ \ \mathbf{(3.1.8)} $


Если использовать для представления W(s) форму W(s)=KN(s)/L(s), где L(s)- полиномы по степеням s, (причем свободные члены равны 1), а К общий коэффициент усиления звена (системы), то

$W(i \cdot\omega) = \frac{K \cdot N(i \cdot\omega)}{L(i \cdot \omega)} \Rightarrow | W (i \cdot \omega)| = \frac{K|N(i \cdot \omega)|}{|L(i \cdot \omega)|} = A(\omega)\ \ \ \ \ \mathbf{(3.1.9)} $


Сдвиг фазы $\phi(\omega)$ можно определить по виду многочленов $N(i \cdot \omega)$ и $L(i \cdot \omega)$ (см. формулу (3.1.9)) т.е. как разность фаз (аргументов) числителя и знаменателя:

$\phi(\omega) = arg(N(i \cdot\omega))-arg(L(i \cdot \omega))\ \ \ \ \ \mathbf{(3.1.10)}$


Постоим АФЧХ для абстрактного звена (системы) с передаточной функцией:

$W(s) = W(i \cdot \omega) = W(s) |_{s =i \cdot \omega} = \frac{K \cdot N(i \cdot \omega)}{L(i \cdot \omega))}$


Подставляя в формулу различные значения $\omega$ получаем набор векторов, на комплексной плоскости

Рисунок 3.1.3 Годограф абстрактного звена.

Рассмотрим действительную и мнимую части полученных векторов Из рисунка 3.1.3 видно, что:

$$display$$\left \{ \begin{align} u( \omega)&= A( \omega) \cdot cos( \phi(\omega)) \\ v(\omega)&= A( \omega) \cdot sin( \phi(\omega)) \end{align} \right.$$display$$


Амплитуда и сдвиг фазы рассчитываются, для векторов соответсвующих положительным частотам и лежащих в 4 квадранте $\omega_1,\omega_2, \omega_3$ по формулам:

$$display$$\left \{ \begin{align} A( \omega)&= \sqrt {u^2( \omega)+v^2( \omega)} ,\\ \phi(\omega)&= arctg \frac{v(\omega)}{u(\omega)} .\end{align} \right.$$display$$


В общем случае для любых углов сдвига, необходимо учитывать переход между квадрантами на плоскости, формула принимает вид:

$\phi(\omega) = -\pi \cdot j + arctg \frac{v(\omega)}{u(\omega)}\ \ \ \ \ \mathbf{(3.1.11)}$


где:
j = 0, 2, 3, 4..., если вектор в I и IV квадрант;
j = 1, 3, 4, 4..., если вектор в II и III квадранте.

Во всех технических системах отклик системы как правило отстает от входного воздействия, то есть сдвиг фазы всегда отрицательный. Исходя из формулы 3.1.10 степень полинома L(s) выше, чем полинома N(s). Поскольку обычно степень полинома L(s) выше, чем полинома N(s), то с увеличением частоты на входе в звено (в систему) сдвиг фазы обычно отрицателен, т.е. сигнал на выходе звена еще больше отстает по фазе от входного сигнала при увеличении частоты.
В предельном случае, если частота растет до бесконечности, мы можем вообще не получить выходного воздействий. Обычно при величина амплитуды на выходе звена стремится к 0, то есть lim A() = 0.


$W(i \cdot \omega)$ при замене $\omega$ на $-\omega$ имеет зеркальное изображение.


Анализируя годографы АФЧХ при $\omega$ > 0 (сплошная линия на рисунке 3.1.3) и при $\omega$ < 0 (пунктирная линия) видим, что:
$u(\omega) = u(-\omega)$ четная функция, следовательно график симметричен относительно оси ординат, а
$v(\omega) = -v(-\omega)$ нечетная функция и ее график центрально-симметричен относительно начала координат.



Рисунок 3.1.4 Зеркальная симметрия относительно оси ординат.

Рисунок 3.1.5 Центральная симметрия относительно начала координат.

Кроме анализа свойств звена (системы) по годографу АФЧХ широкое распространение получили анализ логарифмической амплитудной характеристики (ЛАХ) и фазочастотной характеристики (ФЧХ).


ЛАХ определяется как Lm()=20lgA().


Поскольку зачастую удобнее использовать десятичные логарифмы (lg), чем натуральные(ln), в теории управления (также и в акустике) значительно чаще используется специальная единица децибел (1/10 часть Бела):
+1Бел единица, характеризующая увеличение в 10 раз.
+1дБ (децибел) соответствует увеличению в $\sqrt[10]{10}$ раз.


В формуле Lm()=20lgA() величина Lm() измеряется также в децибелах. Происхождение множителя 20 таково: A() амплитуда, линейная величина, а мощность квадратичная величина (например, напряжение в сети измеряется в Вольтах, а мощность ($N = \frac{U^2}{R}$) пропорциональна квадрату напряжения, поэтому в формуле для Lm() стоит множитель 20 (чтобы привести ЛАХ (Lm()) к традиционной мощностной характеристике).


Если $Lm(_1)$ больше $Lm(_2)$ на 20 дБ, то это означает, амплитуда $А(_1)$ больше амплитуды $А(_2)$ в 10 раз, $\frac{А(_1)}{ А(_2)} =10$

Окончательно: Lm()=20lgW(i)= 20lgA()


Из этого следует, что +1 децибел (+1 дБ) соответствует увеличению амплитуды в $\sqrt[20]{10}$ раз (очень малая величина); -1 дБ уменьшение амплитуды в $\sqrt[20]{10}$ раз.


Графики A() и () имеют вид:



Рисунок 3.1.6 пример графика АЧХ

Рисунок 3.1.7 пример графика ФЧХ

Учитывая, что обычно изменяется на порядки и значение A() также на порядки, график Lm() строится, фактически, в логарифмических координатах, т.е. Lm() =Lm(lg()), например:



Рисунок 3.1.8 пример графика ЛАХ

Наклон ( 40 дБ/дек) соответствует уменьшению амплитуды в 100 раз при увеличении частоты в 10 раз.



Рисунок 3.1.9 пример графика ЛФЧХ

Рассмотренные характеристики Lm(), то есть ЛАХ и ФЧХ имеют широкое распространение при анализе динамических свойств звена (системы), например, при анализе устойчивости САР (см. раздел Устойчивость систем автоматического управления).



Рисунок 3.1.10 пример ЛАХ и ФЧХ для сложной системы

Пример 1


В качестве примера построим АФЧХ для демпфера, модель которого, разобрана в этой статье.... Добавим на схему блок Построение частотных характеристик качестве входа возьмем возмущающее воздействие, в качестве выхода положение положение груза. Для наглядности иллюстрации примем в качестве выхода положение в миллиметрах (х1000), поскольку модель у нас размерная и результат получается в метрах уже достаточно маленьким примерно 0.004 метра. см. рис. 3.11



Рисунок 3.1.11 Схема для построения частотных характеристик.

Параметры блока Построение частотных характеристик приведены на рисунке 3.1.12, для илюстации зависимости АЧХ и ЛАХ. Результат работы блока график с выбранными параметрам изображен на рисунке 3.1.13:



Рисунок 3.1.12 Парамеметры блока Частотные характеристики.

Рисунок 3.1.13 Частотные харатктеристики в АЧХ, ЛАХ, ФЧХ в линейном масштабе по .

Анализ графика в линейном масштабе по чаще всего не очень удобен, поскольку весь график собиается в узкой области, а дальше график абсолютной амплитуды практически сливается с 0. Если мы хотим исследовать частоты хотя бы до 1000 Гц, мы увидем практически вертикальные и горизонтальные прямые. Изменения масштаба шакалы АЧХ и на логарифмический позволяет более удобно исследовать частотные характеристики (см. рис. 3.1.14).


На рисунке 3.1.14 представлены частотные характеристики демпфера в логарифмическом масштабе и иллюстарция соотношения между абсолютной величиной амплитуды АФЧХ и ЛАХ в децибелах.



Рисунок 3.1.14 Частотные харатктеристики в АЧХ, ЛАХ, ФЧХ в логарифмитическом масштабе по .

Пример 2


Постоим частотные характеристики для чуть более сложной модели. А именно гидравлического демпфера рассмотренного в предыдущей лекции....

Для начала посмотрим модель в виде блоков.


Модель подготовленная для анализа представлена на рисунке 3.1.15. В отличие от исходной модели, описанной ранее, входное воздействие задается блоком ступенька с скачком с 0 до 1 на 10 секунде расчтеа. В блоке линейная функции происходит пересчет сигнала ступенька:
0 соответствует 200 бар в камере, (конечное состояние в предыдущем примере),
1 соответствует 400 бар в камере.
Это сделано для того, что бы можно было подавать синусоидальный сигнал и не получать отрицательное давление в камере плунжера. Так же для наглядности графика, мы усиливаем выходное перемещение переводя его из метров в миллиметры.



Рисунок 3.1.15 Модель гидравлического демпфера.

Частотные характеристики рассчитанные в конце рассчета приведены на рисунке 3.1.16. Видно что характеристики отличаются от простого пружинного демпфера сравните с 3.1.14



Рисунок 3.1.16 Частотные хараткеристики гидравлического депфера

Блок "Построение частотных характеристик" осуществляет расчет характеристик для линеаризованной модели, в окрестности заданной точки, это означает что частотные характеристики системы в разные моменты времени могут отличатся для нелинейных моделей. Например в нашем случае характеристики в начале рассчета будут отличатся от характеристик полученных в конце рассчета.


Для подробных и нелинейных моделей, блок Построение частотных характеристик, может не работать из за наличия разрывов и нелинейностей в модели. Например для точной модели демпфера, которую мы проверяли в предыдущей статье. В этом случае возможно построить частотные характеристики непосредственно моделированием, путем подачи синусоидального сигнала с разной частотой и измерения отклика. В SimInTech для этого используется блок Гармонический анализатор, который подключается к входу модели и генерирует синусоидальной воздействие, в этот же блок направляется отклик системы и производится вычисление необходимых параметров для построения различных характеристик системы, которые можно вывести на графики с помощью блока фазовый портрет.


Модель гидравлического демпфера собранного из библиотечных блоков SimInTech представлена на рисунке 3.1.7


Рисунок 3.1.17 Модель гидравлическогго демпфера для рассчета частотных характеристик.

Расчеты с моделью показывают, что при сохранении общего вида графиков, значения полученные при для подробной модели отличаются от линеаризованной модели, (см. рис. 3.18 3.19)



Рисунок 3.1.18 АЧХ подробной модели привода, полученная прямым моделированием.

Рисунок 3.1.19 ЛАХ подробной модели привода, полученная прямым моделированием.

Использование прямого моделирования, для получения характеристик, является более надежным способом и работает не только с линейными моделями, но может быть использован для построения характеристик некоторых реальных объектов, если их можно подключить к среде моделирования и воздействовать в реальном режиме времени. Однако затраты на вычисления значительно больше. Например для получения характеристик демпфера пришлось выполнить процесса 40 000 секунд модельного времени, на обычном компьютере это заняло порядка 35 минут. График процесса перемещения плунжера в процессе вычисления характеристик приведен на рисунке 3.1.20.


Рисунок 3.1.20 Перемещения плунжера в процессем моделирования.

Блок Гармонический анализаторимеет выходы:
Re(w*t) текущее значение действительной части амплитудно-фазовой частотной характеристики исследуемой системы;
Im(w*t) текущее значение мнимой части амплитудно-фазовой частотной характеристики.
Это позволяет построить годограф исследуемой системы с помощью фазового портрета. (см. рис. 3.1.21)



Рисунок 3.1.21 Годограф системы гидравличесого демпфера.

Модели, использованные для илюстарции в лекции можно взять здесь...

Продолжение следует.

Подробнее..

3. Частотные характеристики звеньев и систем автоматического упрвления (регулирования). ч. 3.2 Простейшие типовые звенья

11.01.2021 02:05:19 | Автор: admin

Лекции по курсу Управление Техническими Системами читает Козлов Олег Степанович на кафедре Ядерные реакторы и энергетические установки факультета Энергомашиностроения МГТУ им. Н.Э. Баумана. За что ему огромная благодарность!


Данные лекции готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.


В предыдущих сериях:
1. Введение в теорию автоматического управления.
2. Математическое описание систем автоматического управления 2.1 2.3, 2.3 2.8, 2.9 2.13
3. ЧАСТОТНЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (РЕГУЛИРОВАНИЯ)
3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ


Тема сегодняшней статьи:
3.2. Типовые звенья систем автоматического управления (регулирования). Классификация типовых звеньев. Простейшие типовые звенья.


Понятие типовые звенья в теории управления техническими системами, в основном, связано с описанием САУ (САР) в переменных вход выход, т.е. описание систем в передаточных функциях. Любую линейную САУ (САР) или линеаризованную САР можно структурно расчленить на простейшие элементы (звенья), соединенные между собой соответствующими последовательными, параллельными связями, местными и локальными обратными связями, сумматорами, сравнивающими устройствами и т.д.

Достигнуто общепринятое соглашение, что наиболее удобно расчленять структурную схему САР на звенья 1-го и 2-го порядков. Принято называть такие простейшие звенья типовыми.


С другой стороны реальная линеаризованная (линейная) система состоит из набора отдельных узлов и агрегатов, соединенных соответствующими связями, причем порядок уравнений динамики вышеуказанных узлов и агрегатов может быть и выше второго. В этом случае звенья (узлы и агрегаты) САР можно классифицировать по их свойствам.


Различают 3 типа звеньев:


  • позиционные;
  • интегрирующие;
  • дифференцирующие.

Существуют также особые звенья, которые будут рассмотрены позднее.


Учитывая, что передаточная функция линейного (линеаризованного) звена может быть записана как:

$W(s) = \frac{K \cdot N(s)}{L(s)}, $


где: $ N(s)$ и $L(s)$ полиномы по степеням s, причем коэффициенты при низшей степени s в полиномах $N(s)$, $L(s) $ равны 1), классификацию на типы звеньев можно объяснить видом полиномов $N(s); L(s)$ или (что эквивалентно) видом коэффициентов в соответствующих уравнениях динамики звена.
Подробнее о передаточной функции смотри здесь....

Позиционным звеном считают звено, полиномы N(s) и L(s) содержат свободные члены (равные 1). Например:

$W(s) = \frac{s^2+3s+1}{2s^3+5s^2+s+1}$

или в уравнении динамики (x(t) входной сигнал, y(t) выходной):

$2\cdot y'''(t)+5 \cdot y''(t)+y'(t)+y(t) = x''(t)+3 \cdot x'(t)+x(t) $


Из типовых звеньев (1-ого и 2-ого порядка) к позиционным звеньям относятся: идеальное усилительное звено, апериодические звенья 1-го и 2-го порядка, колебательное звено и форсирующее звено.


Дифференцирующим звеном считается звено, в котором полином L(s) содержит свободный член (равный 1), а полином N(s) не содержит свободного члена ($b_0=0$).
Например:

$W(s) = \frac{s^2+3s}{2s^3+5s^2+s+1}$

или в уравнении динамики:

$2\cdot y'''(t)+5 \cdot y''(t)+y'(t)+y(t)= x''(t)+3 \cdot x'(t)$

Из типовых звеньев к дифференцирующим звеньям относятся идеальное дифференцирующее звено, инерционно-дифференцирующее звено.

Интегрирующим звеном считается звено, в котором полином N(s) содержит свободный член ($b_0=1$), а полином L(s), не содержит свободного члена ($a_0=0$). Например:

$W(s) = \frac{s^2+3s+1}{2s^3+5s^2+s}$

или в уравнении динамики:

$2\cdot y'''(t)+5 \cdot y''(t)+y'(t)= x''(t)+3 \cdot x'(t)+x(t)$

Из типовых звеньев к интегрирующим звеньям относятся идеальное интегрирующее звено, инерционно интегрирующее звено.

Из типовых звеньев к интегрирующим звеньям относятся идеальное интегрирующее звено, инерционно интегрирующее звено.


Пример переходного процесса при единичном ступенчатом воздействи на три разных звена приведенных выше:


3.2.1. Идеальное усилительное звено


Уравнение динамики каждого звена имеет вид: $y(t)=k\cdot x(t)$, т.е. уравнение не является дифференциальным, следовательно, данное звено является безинерционным.


Переходя к изображениям $x(t) \rightarrow X(s); \ \ \ y(t) \rightarrow Y(s)$, получаем:
$Y(s)=k\cdot X(s)$ уравнение динамики звена в изображениях.
Передаточная функция идеального усилительного звена:

$W(s) = \frac{Y(s)}{X(s)}=k$


АФЧХ не зависит от , поскольку:

$W(iw) =W(s)\mid_{s = iw} =K$



Рисунок 3.2.1 АФЧХ идеального усилительного звена

Годограф АФЧХ вырождается в точку: U() =K; V() =0;
A() modW(i) =W(i)=K =>
Lm()=20lgA() =20lgK; =>
() = const = 0 т.е. фазового сдвига нет. Следовательно, данное звено является безынерционным чисто усилительным звеном.


Рисунок 3.2.2 ФЧХ идеального усилительного звена

Рисунок 3.2.3 АЧХ идеального усилительного звена

Рисунок 3.2.4 ЛАХ идеального усилительного звена

Найдем весовую w(t) и переходную h(t) функции звена (подробнее смотри здесь...)
весовая функция:

$w(t) = L^{-1} \cdot[W(s)] = L^{-1}\cdot[K] = K \cdot L^{-1}[1] =K\cdot \delta(t).$



Рисунок 3.2.5 Весовая функция идеального усилительного звена

Переходная функция:

$h(t) = L^{-1}[H(s)]=L^{-1}[\frac{W(s)}{s}]=L^{-1}[\frac{K}{s}] =K \cdot L^{-1}{\frac{1}{s}} = K\cdot 1(t)$



Рисунок 3.2.6 Переходная функция идеального усилительного звена

3.2.2. Идеальное дифференцирующее звено


Уравнение динамики звена имеет вид:

$y(x) = K \cdot\tau\cdot x'(t)$


где: $\tau $ постоянная времени.

Переходя к изображениям:

$x(t) \rightarrow X(s); \\ x'(t) \rightarrow s \cdot X(s) \\ y(t) \rightarrow Y(s) \Rightarrow \\$


Уравнение динамики звена в изображениях:

$\mathbf{Y(s) = K \cdot \tau \cdot X(s)}$


Передаточная функция идеального дифференцирующего звена:

$W(s) = \frac{Y(s)}{X(s)}= K \cdot \tau\cdot s$


АФЧХ:

$W(iw) = W(s) |_{s =i \cdot \omega} = i \cdot K \cdot \tau \cdot s \Rightarrow \\ U(\omega) =0; \\ V(\omega) =K \cdot \tau \cdot \omega; \Rightarrow \\ A(\omega) = \sqrt{U(\omega)^2+ V(\omega)^2} = K \cdot \tau \cdot \omega; \\ \phi(\omega) = arctg \left(\frac{V(\omega)}{U(\omega)}\right) = \frac{\pi}{2}$


Графики годографа АФЧХ, A() и () имеют вид:



Рисунок 3.2.7 АФЧХ идеального дифференцирующего звена

Рисунок 3.2.8 АЧХ идеального дифференцирующего звена

Рисунок 3.2.9 ФЧХ идеального дифференцирующего звена

Логарифмическая амплитудная характеристики ЛАХ:$Lm()=20 \cdot lg(A()) =20 \cdot lg (K \cdot \tau)+20 \cdot lg ( \omega)$:



Рисунок 3.2.10 ЛАХ идеального дифференцирующего звена

Из рисунка 3.2.9 видно, что данное звено обеспечивает опережение по фазе на $\pi$/2 (при любой частоте входного сигнала).


Чем выше частота единичного гармонического сигнала на входе в звено, тем выше амплитуда выходного сигнала в установившемся режиме.


Найдем весовую функцию звена:

$w(t) =L^{-1}[W(s)] =L^{-1}[K\cdot \tau \cdot s \cdot [1]] \Rightarrow \\ \mathbf{w(t) = K\cdot \tau \cdot \delta'(t)}$


Учитывая, что (t) имеет вид как на рис.3.2.11 (зависимость показана утрированно), а весовая функция пропорциональна производной от (t):



Рисунок 3.2.11 Качественный вид производной дельта-функции.

Рисунок 3.2.12 Весовая функция идеального дифференцирующего звена.

Найдем переходную функцию звена:

$h(t) =L^{-1}[H(s)] =L^{-1}\left[\frac{W(s)}{s}\right] = L^{-1}\left[\frac{K\cdot \tau \cdot s}{s} \cdot [1]\right] \Rightarrow \\ \mathbf{h(t) = K\cdot \tau \cdot \delta(t)}$



Рисунок 3.2.13 Переходная функция идеального дифференцирующего звена

Иногда идеальное дифференцирующее звено представляется в виде $W(s) =\tau \cdot s$ или $W(s) =K\cdot s$. В последнем варианте коэффициент К имеет смысл постоянной времени.


3.2.3. Идеальное интегрирующее звено


Уравнение динамики такого звена имеет вид:

$T \cdot \frac{dy(t)}{dt} = K \cdot x(t),$

или в изображениях:

$T \cdot s \cdot Y(s) = K \cdot X(s)$


передаточная функция идеального интегрирующего звена:

$W(s) = \frac{K}{T \cdot s}$


АФЧХ:

$W(i \cdot \omega) = W(s) |_{s=i\cdot \omega} = \frac{K}{i \cdot T \cdot \omega}$

Умножая числитель и знаменатель на i, получаем:

$W(i \cdot \omega) = - i \cdot \frac{K}{T \cdot \omega}; \\ U(\omega) =0 \\ V(\omega) = - \frac{K}{T \cdot \omega}$


Годограф АФЧХ имеет вид:



Рисунок 3.2.14 АФЧХ идеального интегрирующего звена

Рисунок 3.2.15 ФЧХ идеального интегрирующего звена

$\phi (\omega) = const = -\frac{\pi}{2}$

данное звено всегда дает отставание по фазе на угол $-\frac{\pi}{2}$.

$A(\omega) = \frac{K}{T \cdot \omega}$



Рисунок 3.2.16 АЧХ идеального интегрирующего звена

Рисунок 3.2.17 ЛАХ идеального интегрирующего звена

Найдем весовую функцию звена:

$w(t) =L^{-1}[W(s) \cdot [1]] =L^{-1}\left[\frac{K}{T \cdot s} \cdot [1] \right] \Rightarrow \\ \mathbf{w(t) = \frac {K}{T} \cdot 1(t)}$



Рисунок 3.2.18 Весовая функция идеального интегрирующего звена

Найдем переходную функцию звена:

$h(t) =L^{-1}\left[\frac{W(s)}{s} \cdot [1]\right] =L^{-1}\left[\frac{K}{T \cdot s^2} \cdot [1] \right] \Rightarrow \\ \mathbf{h(t) = \frac {K}{T} \cdot t}$



Рисунок 3.2.19 Переходная функция идеального интегрирующего звена

Примерами устройств, близкими к идеальному усилительному звену можно считать: широкополосный электронный усилитель (приближенно); механический редуктор без учета инерционности и нелинейных эффектов; жесткую механическую муфту и т.д.


Примером идеального дифференцирующего звена можно считать тахогенератор:

$u(t) = \tau \cdot \frac{d \phi(t)}{dt}$


где u(t) напряжение на клеммах тахогенератора; (t) угол поворота якоря (ротора) тахогенератора.

Примером идеального интегрирующего звена можно считать большинство электродвигателей (без учета инерционности якоря), где входным воздействием считать напряжение в обмотке возбудителя (двигателем постоянного тока), а выходным воздействием угол поворота выходного вала.


Пример интегрирующего и дифференцирующего звена на основе конденсатора


Один и тот же технический элемент, с точки зрения теории автоматического управления, может выступать как в качестве интегрирующего звена, так и дифференцирующего звена.


В качестве примера интегрирующего звена можно рассмотреть конденсатор, где входным воздействием является ток, а выходным результатом является напряжение на клеймах конденсатора. Действительно, при малом токе и большой емкости конденсатора, в случае ступенчатого изменения тока с 0, мы получаем график напряжения, совпадающий по форме с переходной функцией интегрирующего звена. На рисунке 3.2.20 представлена такая модель, где ток ступенькой меняется на 5 секунде расчета.



Рисунок 3.2.20 Интегрирующие звено на базе конденсатора.

Если построить с помощью гармонического анализатора ЛАХ и ФЧХ, мы увидим, что угол наклона ЛАХ составляет -20dB/dec, а угол сдвига фазы равен $-\frac{\pi}{2}$ или 90 градусов на графике. см. рис. 3.2.21



Рисунок 3.2.21 ЛАХ и ФЧХ интегрирующего звена на базе конденсатора.

Тот же самый конденсатор, при определенных параметрах сети, может выступать в качестве идеального дифференцирующего звена, если в качестве входного воздействия подавать напряжение, а в качестве результирующий величины использовать ток в цепи. Электрическая схема использования конденсатора в качестве дифференцирующего звена с гармоническим анализатором приведена на рисунке 3.2.22. На графиках гармонического анализатора видно, что угол наклона ЛАХ составляет 20dB/dec, а угол сдвига фазы равен $\frac{\pi}{2}$ или 90 градусов на графике.



Рисунок 3.2.22 ЛАХ и ФЧХ дифферцируещего звена на базе конденсатора.

В следующий лекции будет уже атомный реактор.


Примеры моделей, использованные в данной лекции можно взять в этом архиве...

Подробнее..

3. Частотные характеристики звеньев и систем автоматического регулирования. 3.5 Колебательное звено

07.04.2021 08:12:05 | Автор: admin

Колебательное звено является наиболее интересным случаем из всех типовых звеньев, во-первых,за счет сильной похожести по своим динамическим свойствам на более сложные реальные САУ (САР), во-вторых, близкой идентичности переходных процессов в звене к аналогичным в реальных САР, и, в-третьих, существенной зависимости динамических свойств от величины параметра звена.

Выведем формулу колебательного звена на примере электрического колебательного контура, который изучают в курсе школьной физики. Пример такого контура приведен на рисунке 3.5.1

Рисунок 3.5.1 Модель электического колебательного контураРисунок 3.5.1 Модель электического колебательного контура

Электрическая цепь содержит источник напряжения и последовательно соединённые индуктивность, сопротивление, конденсатор.

Входное ступенчатое воздействиеx(t), формирующее внешнюю Э.Д.С в цепи, подключено к блоку источнику напряжения х(t) =Uвх(t).

Результирующий отклик звена - напряжение на конденсатореy(t) =Uс(t) =Uвых(t).

Согласно второму закону Кирхгофа для замкнутого контура, сумма Э.Д.С равна сумме напряжения на резистивных элементах контура.

U_R+U_C =U_{вх} +\xi_L \Rightarrow \\ \Rightarrow -\xi_L+U_R+U_C= U_{вх}

где:

\xi_L = -L \cdot \frac{dI}{dt}- ЭДС индукции на катушке, (направлено против изменения тока);

U_R=R \cdot I- падение напряжении на сопротивлении.

Поскольку в замкнутом контуре сила тока одинакова на всех элементах, перепишем уравнения, выразив силу тока через напряжение на конденсаторе. Сила тока в цепи равна изменению заряда конденсатора:

I =\frac{dq}{dt} где:

q=C\cdot U_C- заряд кондесатора.

Тогда сила тока в цепи связана с напряжение на конденсаторе соотношением:

I = C \cdot \frac{ dU_c}{dt}

После замены силы тока, ее выражением через U_C получим следующие выражение:

L \cdot C \cdot \frac{d^2U_c}{dt^2} +R\cdot C \cdot \frac{d U_c}{dt}+U_c = U_{вх}

Заменив U_C=y(t) и U_{ВХ} = x(t) получим уравнение колебательного звена:

\underbrace{L \cdot C}_{T_2^2} \cdot y''(t)+\underbrace{R \cdot C}_{T_1} \cdot y'(t) +y(t) =\underbrace{1 \cdot }_Kx(t)

Уравнение динамики звена описывается уравнением, аналогичным рассмотренном в предыдущем разделе (апериодическое звено второго порядка):

T^2_2 \cdot y''(t)+T_1 \cdot y'(t)+ y(t) =K\cdot x(t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.1)}

причем T_1<T_2 , т.е. D= T_1^2-4 \cdot T_2^2 \leq 0

Учитывая, что D \leq0 , удобнее представить уравнение динамики в другой форме, а именно:

Введем новые параметры: T\equiv T_2 и \beta = \frac{T_1}{2 \cdot T_2} , где \beta - параметр (коэффициент) затухания (демпфирования).

Подставляя новые параметры в (3.5.1):

T^2 \cdot y''(t)+2 \cdot \beta \cdot T\cdot y'(t)+y(t) = K \cdot x(t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.2)}

Уравнение 3.5.2 - наиболее удобная форма представления уравнения динамики.

Перейдем к изображениям: x(t) \rightarrow X(s) и y(t) \rightarrow Y(s) уравнение динамики в изображениях Лапласа:

(T^2_2 \cdot s^2+2 \cdot \beta \cdot T \cdot s+1) \cdot Y(s)=K \cdot X(s)

Передаточная функции колебательного звена:

W(s) =\frac{Y(s)}{X(s)}= \frac{ K}{ T^2 \cdot s^2+2 \cdot \beta \cdot T \cdot s + 1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.3)}

Еще раз подчеркнем, что параметр (коэффициент) затухания (демпфирования) 0 \le \beta \le 1 , причем при \beta > 1 свойства колебательного звена совпадают с аналогичными свойствами соответствующего апериодического звена 2-го порядка, а при \beta = 0 звено выражается вконсервативное, в котором могут существовать незатухающие гармонические колебания.

Выражение для АФЧХ получается после подстановки в (3.5.3) значения s=i\cdot \omega :

W(i \cdot \omega)=\frac{K}{T^2 \cdot (i \cdot \omega)^2+2 \cdot \beta \cdot T \cdot i \cdot \omega+1}=\\= \frac{K}{(1-T^2\cdot \omega^2)+2 \cdot \beta \cdot T \cdot i \cdot \omega} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.4)}

Домножим числитель и знаменатель формулы 3.5.4 на компексно сопряженное выражения для знаменателя (1-T^2\cdot \omega^2) - 2 \cdot \beta \cdot T \cdot i \cdot \omega :

W(i \cdot \omega) = \frac{K(1-T^2\cdot \omega^2) - K \cdot 2 \cdot \beta \cdot T \cdot \omega \cdot i}{(1-T^2\cdot\omega^2)^2+4 \cdot \beta^2 \cdot T^2 \cdot \omega^2}

Выражения для вещественной и мнимой частей принимают вид:

u( \omega) = \frac{K(1-T^2\cdot \omega^2) }{(1-T^2\cdot\omega^2)^2+4 \cdot \beta^2 \cdot T^2 \cdot \omega^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.5)}v(\omega) = \frac{ - 2 \cdot K \cdot \beta \cdot T \cdot \omega }{(1-T^2\cdot\omega^2)^2+4 \cdot \beta^2 \cdot T^2 \ \cdot \omega^2} \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.6)}

Амплитуда АФЧХ

A(\omega) = \sqrt{u(\omega)^2+v(\omega)^2} =\sqrt{\frac{K^2 \left( (1-T^2\cdot \omega^2)+4\cdot K^2 \cdot \beta^2 \cdot T^2 \cdot \omega^2 \right)}{((1-T^2\cdot \omega^2)^2+4 \cdot \beta^2 \cdot T^2 \cdot \omega^2)^2}}A(\omega) = \frac{K }{\sqrt{(1-T^2\cdot \omega^2)^2+4 \cdot \beta^2 \cdot T^2 \cdot \omega^2}} \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.7)}

Сдвиг фазы

\varphi (\omega) = \left \{ \begin{gathered} -arctg \frac{2 \cdot \beta \cdot T \cdot \omega}{1- T^2 \cdot \omega^2}, \ если \ \omega \le \frac{1}{T}; \\ -\pi- arctg \frac{2 \cdot \beta \cdot T \cdot \omega}{1- T^2 \cdot \omega^2}, \ \ если \ \ \omega > \frac{1}{T}. \ \end{gathered} \right. \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.8)}

Анализ формул (3.5.5 3.5.8) показывает, что:

\omega \rightarrow 0 \Rightarrow \left \{ \begin{gathered} u(\omega) \rightarrow K; \\ v(\omega) \rightarrow 0; \\ A(\omega) \rightarrow K; \\ \varphi(\omega) \rightarrow 0; \end{gathered} \right. \ \ \ \ \ \ \ \omega \rightarrow \infty \Rightarrow \left \{ \begin{gathered} u(\omega) \rightarrow 0; \\ v(\omega) \rightarrow 0; \\ A(\omega) \rightarrow 0; \\ \varphi(\omega) \rightarrow - \pi; \end{gathered} \right. \ \ \ \ \ \ \ \mathbf{(3.5.9)}

Одной из главных особенностей АФЧХ является возможность существования экстремума в зависимостиA(). Выполним исследование на экстремум:

\frac{dA(\omega)}{d\omega}=\frac{d}{d\omega} \left( \frac{K}{\sqrt{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot T^2\cdot \omega^2}}\right)=0\frac{\frac{d}{d\omega}K\cdot\sqrt{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2}-K \cdot \frac{d}{d\omega}\sqrt{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2}}{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2} = \\ =\frac{-0.5\cdot K\cdot((1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2)^{-1.5}\cdot[2\cdot(1-T^2\cdot\omega^2)\cdot(-2)\cdot T^2\cdot \omega+8 \cdot \beta^2\cdot\omega]}{(1-T^2\cdot\omega^2)^2+4\cdot\beta^2\cdot\omega^2}

Очевидно что, для того, что бы выражение равнялось нулю необходиом равенство нлую следующего выражения:

-4\cdot(1-T^2\cdot \omega^2)\cdot T^2 \cdot \omega+8 \cdot \beta^2\cdot T^2 \cdot \omega = 0

Отсюда вырражение для экстермума:

\omega_m=\frac{1}{T}\sqrt{1-2\cdot \beta^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.10)}

Очевидно, что \omega_m существует если (1- 2 \cdot \beta^2)\ge 0 \Rightarrow \beta \le\frac{\sqrt2}{2}

Если \beta < \frac{\sqrt{2}}{2} , то заивисмость A(\omega) имеет экстремум.

Если \beta >\frac{\sqrt{2}}{2} , экстремума в заивсимости A(\omega) нет.

Вычислим максимальное значение A(\omega) , под ставим выражение для \omega_m 3.5.10 в формулу 3.5.7, получим:

A(\omega_m) =\frac{K}{\sqrt{\left [1 -T^2 \frac{1}{T^2}(1-2\beta^2) \right ]^2+4\beta^2T^2\frac{1}{T^2}(1- 2\beta^2)}} \RightarrowA(\omega_m) = \frac{K}{2 \cdot\beta \sqrt(1- \beta^2)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.11)}

Анализ вышеприведенных соотношений показывает, что при \beta < \frac{\sqrt{2}}{2} графикA(\omega)имеет горб, который при уменьшении \beta растет и при \beta \rightarrow 0 \ \ \ \ \ \ A(\omega) \rightarrow \infty , что означает разрыв в зависимостиA(\omega).

Частоту мбудем отождествлять с тем значением частоты входного гармонического воздействия, при которой имеет местомаксимальноезначение амплитуды выходного сигнала.

Поскольку \beta = \frac{T_1}{T_2} , то очевидна роль постоянных времени :

T_2 раскачивает колебания, а T_1 демпфирует их. Рассмотрим соответствующие графики:

Рисунок 3.5.2 АЧХ колебательного звенаРисунок 3.5.2 АЧХ колебательного звенаРисунок 3.5.3 ФЧХ колебательного звенаРисунок 3.5.3 ФЧХ колебательного звена

Данные графики аналогичны для случаев резонансов в теоретической механике, физике, электротехнике и т.д.

Величину \omega = \frac{1}{T} принято называть частотой свободных колебаний и обозначать 0.

Рассмотрим колебательное звено в котором = 0. Очевидно, что в данном звене при ступечатом воздействии устанавливаются незатухающие колебания, а само звено вырождается в консервативное. При этом согласно формуле 3.5.10 выражение экстремума для такого звена:

\omega_m=\frac{1}{T}\sqrt{1-2\cdot 0^2} = \frac{1}{T}

Величину \omega = \frac{1}{T} принято называть частотой свободных колебаний и обозначать 0.

Подставляя различные значения в формулу (3.5.5) или (3.5.6) построим годограф АФЧХ на комплексной плоскости:

Рисунок 3.5.4 АФЧХ колебательного звенаРисунок 3.5.4 АФЧХ колебательного звенаРисунок 3.5.5 Годограф АФЧХ консервативного звенаРисунок 3.5.5 Годограф АФЧХ консервативного звена

Построение ЛАХ Lm() не может быть сделано так же просто, как для предыдущих позиционных звеньев, т.е. она не сводится к комбинации отрезков прямых.

Будем использовать для построения графика ЛАХнормированную(безразмерную) частоту\tilde{\omega} = \frac{\omega}{\omega_0}, где \omega_0 - частота свободных колебаний, имеющим место в консервативном звене со следующим уравнением динамики:

T^2 \cdot y''(t)+y(t) = K \cdot x(t)

Решим данное уравнение динамики, используя корни характеристического уравнения L(\lambda )=0 :

T^2\cdot \lambda^2+1=0 \Rightarrow \lambda_{1,2} = \pm i\cdot\frac{1}{T} = \pm i \cdot \omega_0y_{собств} = С_1\cdot e^{i \cdot \omega_0\cdot t}+C_2\cdot e^{-i\cdot \omega_0 \cdot t} \approx sin(\omega_0\cdot t)

На этом месте у меня всегда выносится мозг, как могут прыгающие на пружинке шарике, и электроны в электрическом контуре, описаны с помощью одиникового выражения, формулы синуса - соотношения стороно в прямоугольном треуголнике. Как это работает?!

Введя новую переменную\tilde{\omega}в выражение дляLm() = 20 lg (А()):

Lm(\omega) =20\cdot lg(K) - 20 \cdot lg(\sqrt{(1-T^2\cdot \omega^2)^2+4 \cdot \beta^2\cdot T^2\cdot \omega^2}) = =20\cdot lg(K) - 20 \cdot lg(\sqrt{\left (1-\frac{\omega^2}{\omega_0^2} \right)^2+4 \cdot \beta^2\cdot \frac{\omega_2}{\omega_0^2}} \RightarrowLm(\omega) =20\cdot lg(K) - 20 \cdot lg(\sqrt{\left (1-\tilde{\omega}^2 \right)^2+4 \cdot \beta^2\cdot \tilde {\omega}^2} \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.12)}

Таким образом мы получаем выражение, которое не зависит от Т. Такая форма представления позволяет свести различные ЛАХ при различныхТк автомодельному (универсальному) виду графиков.

На рисунке ниже представлен графикLm() в форме (3.5.12), построенный фактически в логарифмических координатах, причем коэффициент усиленияK=1.

Рисунок 3.5.6 ЛАХ колебательного звенаРисунок 3.5.6 ЛАХ колебательного звена

Подчеркнем, что при такой форме представления все ЛАХ при различныхT1иT2можно собирать вместе.

ВеличинаHm(см. рис. 3.5.6) называетсяпревышением:

H_m=20\cdot lg \frac{1}{2\cdot\beta\cdot \sqrt{1-\beta^2}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.13)}

Если, \beta <<1, \ \ \beta \approx 0 то в упрощенных расчетах величину превышенияHmможно оценить, как:

H_m = 20 \cdot lg \frac{1}{2\cdot \beta}=-20lg(2\cdot \beta) \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.14)}

при =m(эта формула работает для ярко выраженных горбов).

Вычислим переходную функцию звенаh(t):

h(t)= L^{-1}[H(s)] =L^{-1}\left[\frac{W(s)}{s}\right] = L^{-1}\left[ \frac{K}{s(T^2\cdot s^2+2 \cdot \beta \cdot s+1)} \right] \Rightarrowh(t) =\frac{K}{T^2}L^{-1} \left[ \frac{1}{s(s^2+\frac{2\cdot \beta}{T}\cdot s)+\frac{1}{T^2}} \right]

Для вычисления переходной функции воспользуемся формулой Хэвисайда сначала найдем полюса s_1,s_2,s_3:

s \cdot \left(s^2+\frac{2 \cdot \beta}{T}+ \frac{1}{T^2} \right) =0 \Rightarrow \\ s_1 =0;\\s_2 = -\frac{\beta}{T}+i \cdot \frac{1}{T}\sqrt{1- \beta^2} \\s_3 = -\frac{\beta}{T}-i \cdot \frac{1}{T}\sqrt{1- \beta^2}

По формуле Хэвисайда

h(t)= \frac{K}{T^2} \sum_1^3 \lim_{s \to s_j } \left[ \frac{(s-s_j)}{s \cdot(s^2+\frac{2 \cdot \beta}{T}\cdot s+\frac{1}{T^2})} \cdot e^{st} \right]\ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.15)}

Разберем отдельно каждый предел:

\lim_{s \to 0} \left [ \frac{(s-0)}{s \cdot(s^2+\frac{2 \cdot \beta}{T}\cdot s+ \frac{1}{T^2})} \cdot e^{st}\right]=\frac{1}{0+0+\frac{1}{T^2}}\cdot1=T^2

Для вычисления 2-го и 3-го предела в формуле Хэвисайда более удобно использовать новые переменные m и n:

m=-\frac{\beta}{T}; \ \ \ \ \ \ \ n = \frac{1}{T}\sqrt{1-\beta^2}

Тогда корни s_1, s_2 выраженные через переменные m и n будут записаны как:

s_2 =m+i\cdot n; \ \ \ \ \ \ \ \ s_3=m-i\cdot n

Разложим квадратный трех член в скобках в занаментели на множетели и использованием корней s_2, s_3 :

s^2+\frac{2\cdot\beta}{T} \cdot s+\frac{1}{T^2} =(s-s_2)\cdot(s-s_3)

тогда 2-й предел в фомуле Хевисайда можно записать как:

\lim_{s \to (m+i \cdot n)} \left [ \frac{s -m-i\cdot n}{s (s - m-i\cdot n)(s-m+i \cdot n)} \cdot e^{s\cdot t}\right] =\\ = \frac{1}{(m+i\cdot n)(m+i\cdot n-m+i \cdot n)} \cdot e^{(m+i \cdot n)\cdot t} = \\ = \frac{1}{(m +i\cdot n)\cdot 2 \cdot i\cdot n} \cdot e^{m\cdot t}\cdot e^{i\cdot n\cdot t}

домножая на комплексно сопряженное число (m-i \cdot n)\cdot i числитель и знаменатель получим значение второго предела:

-\frac{n+m \cdot i}{(m^2+n^2)\cdot 2 \cdot n}\cdot e^{m\cdot t}\cdot e^{i\cdot n \cdot t }

Анологично 3-й предел в формуле Хевисайда можно записать как:

\lim_{s \to (m-i \cdot n)} \left [ \frac{s -m+i\cdot n}{s (s - m-i\cdot n)(s-m+i \cdot n)} \cdot e^{s\cdot t}\right] =\\ = \frac{1}{(m-i\cdot n)(m-i\cdot n-m-i \cdot n)} \cdot e^{(m-i \cdot n)\cdot t} = \\ = -\frac{1}{(m -i\cdot n)\cdot (-2) \cdot i\cdot n} \cdot e^{m\cdot t}\cdot e^{i\cdot n\cdot t}

домножая на комплексно сопряженное число (m+i \cdot n)\cdot i , числитель и знаменатель получим значение третьего предела:

\frac{-n+m\cdot i}{(m^2+n^2)\cdot 2\cdot n}e^{m\cdot t}\cdot e^{-i\cdot n\cdot t}

Отдельно сложим второе и третье слогаемое в формуле Хевисайда:

\sum_2^3 =-\frac{e^{m\cdot t}}{2 \cdot n \cdot (m^2+n^2)} \left [ (n+i \cdot m)\cdot e^{i \cdot n \cdot t}+(n-i \cdot m)\cdot e^{-i \cdot n \cdot t} \right ]==-\frac{e^{m\cdot t}}{2 \cdot n \cdot(m^2+n^2)}\left[ n \cdot e^{i \cdot n \cdot t} +i \cdot m \cdot e^{i \cdot n \cdot t}+n \cdot e^{-i \cdot n \cdot t}-i \cdot m \cdot e^{-i \cdot n \cdot t} \right] == -\frac{e^{m \cdot t}}{2 \cdot n \cdot (m^2+n^2)} \left [ n\cdot(\underbrace{e^{i \cdot n \cdot t}+ e^{-i\cdot n \cdot t}}_{2 \cdot cos(n \cdot t)})+ i \cdot m \cdot(\underbrace{e^{i \cdot n \cdot t}-e^{-i \cdot n \cdot t}}_{2\cdot i \cdot sin(n \cdot t)})\right ]== -\frac{e^{m \cdot t}}{2 \cdot n \cdot(m^2+n^2)}\left [n \cdot cos (n \cdot t)- m \cdot sin(n \cdot t)\right ] == -\frac{e^{m \cdot t}}{2 \cdot n \cdot(m^2+n^2)}\left [cos (n \cdot t)- \frac{m}{n} \cdot sin(n \cdot t)\right ]

подставляя значения n и m:

(m^2+n^2)=\frac{\beta^2}{T^2}+\frac{1-\beta^2}{T^2}=\frac{1}{T^2}\\ \frac{m}{n}=-\frac{\beta}{T}\cdot \frac{T}{\sqrt{1-\beta^2}}

и собирая все слагаемые формулы 3.5.15 получаем:

h(t)=\frac{K}{T^2}\left [T^2 - T^2 \cdot e^{m \cdot t} (cos(n \cdot t)+\frac{\beta}{\sqrt{1-\beta^2}}\cdot sin(n \cdot t)) \right] \Rightarrow h(t) = K \left [ 1 -e^{-\frac{\beta}{T}\cdot t} \left(cos \frac{\sqrt{1-\beta^2}}{T}\cdot t+\frac{\beta}{\sqrt{1-\beta^2}}sin\frac{\sqrt{1-\beta^2}}{T} \cdot t \right) \right ] \ \ \ \ \ \mathbf{(3.5.16)}

Введем новую переменную \omega_c = \frac{1}{T}\sqrt{1-\beta^2} и перепишем формулу для переходной функции:

h(t) = K \left [1 -e^{-\frac{\beta}{T} \cdot t} \left( cos(\omega_c \cdot t)+\frac{\beta}{\sqrt{1 -\beta^2}}sin(\omega_c \cdot t)\right) \right ] \ \ \ \ \ \ \ \mathbf{(3.5.16.a)}

Величина \omega_c = \frac{1}{T}\sqrt{1-\beta^2} называется частотой собственной колебаний при 0<\beta< 1 .

Таким образом в описании колебательного звена появилосьтриновых частоты \omega_m < \omega_m <\omega_c

  • \omega_0 - частота свободных колебаний;

  • \omega_m- частота, соответствующая максимальной амплитуде;

  • \omega_c- частота собственных колебаний.

Причем \omega_m < \omega_m <\omega_c

Рассмотрим предельные случаи для (т.е. = 1 и = 0):

Если \beta \to 0 , то \omega_c \to \omega_0=\frac{1}{T} :

h(t) = K \left [1 -e^{0\cdot t} \left ( cos \frac{t}{T} +0 \cdot sin \frac{t}{T} \right ) \right]h(t) = K \left [ 1 - cos \frac{t}{T}\right ] \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.17)}

3.5.17 - переходная функция консервативного звена.

Рисунок 3.5.6 Переходная функция консервативного звенаРисунок 3.5.6 Переходная функция консервативного звена

Если \beta \to 1 , то \omega_c \to 0 , т.е. собственных колебаний в звененет, процесс без колебательный.В этом случае возникают трудности со вторым слагаемым в круглых скобках формулы (3.5.16).

Раскрываем неопределенность типа\frac{0}{0}:

\lim_{\beta \to 1 } \left[ \frac{\beta}{\sqrt{1-\beta^2}} \cdot sin \left (\frac{\sqrt{1-\beta^2}}{T} \cdot t \right ) \right ] = \lim_{\beta \to 1} \left [ \frac{\beta \cdot t}{T} \cdot \frac{sin(\frac{\sqrt{1-\beta^2}}{T}\cdot t)}{\underbrace{\frac{\sqrt{1-\beta^2}}{T}}_{\approx \frac{sin x}{x}}} \right ]=\frac{t}{T}h(t)_{\beta=1} = K \left [ 1 - e^{-\frac{t}{T}}\cdot \left (1 +\frac{t}{T} \right)\right] \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.18)}

эта формула соответствует также аналогичной формуле для апериодического звена 2-го порядка приD= 0 (совпадающиеполюса).

Рисунок 3.5.8 Переходная функция колебательного звена (при = 1)Рисунок 3.5.8 Переходная функция колебательного звена (при = 1)Рисунок 3.5.9 Переходная функция колебательного звена (при 0 < < 1)Рисунок 3.5.9 Переходная функция колебательного звена (при 0 < < 1)

Если 0<\beta<1 , то \beta =T\cdot \frac{\omega_c}{\pi} \cdot \ln \frac{A_1}{A_2}

Дифференцируя во времени формулы (3.5.16 3.5.18), найдем соответствующие весовые функции для крайних значений \beta (w(t)):

Если \beta =0 \Rightarrow

 w(h)_{\beta =0} = h'(t)= \frac{K}{T} sin \left ( \frac{t}{T} \right ) \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.19)}Рисунок 3.5.10 Весовая функция колебательного звена при = 0.Рисунок 3.5.10 Весовая функция колебательного звена при = 0.

Если \beta =1 \Rightarrow

 w(h)_{\beta =1} = h'(t)= K \left [ \frac{1}{T} \cdot e^{-\frac{t}{T}}\cdot \left( 1+ \frac{t}{T} \right) - e^{-\frac{t}{T}} \cdot \frac{t}{T} \right ]w(h)_{\beta =1} = \frac{K}{T^2} \cdot t \cdot e ^{-\frac{t}{T}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.20)}Рисунок 3.5.11 Весовая функция колебательного звена при = 1.Рисунок 3.5.11 Весовая функция колебательного звена при = 1.

Если 0<\beta <1 \Rightarrow

w(t) = h'(t) = \frac{K}{T\cdot \sqrt{1 -\beta^2}}\cdot e^{-\frac{\beta \cdot t}{T}} \sin \left ( \frac{\sqrt{1-\beta^2}}{T} \cdot t \right) \ \ \ \ \ \ \ \ \ \ \mathbf{(3.5.21)}\beta = T\cdot \frac{\omega_c}{\pi}\cdot \ln\frac{B_1}{B_2}Рисунок 3.5.12 Весовая функция колебательного звена при 0 < < 1.Рисунок 3.5.12 Весовая функция колебательного звена при 0 < < 1.

Примерами колебательного звена можно считать:

  1. RCL цепь см. начало статьи;

  2. Упругиемеханические передачи;

  3. Гироскопический маятник;

  4. Управляемый двигатель постоянного тока (при некоторых условиях).

Пример

В качестве примера для исследования колебательного звена возьмем электрический колебательный контур, который был рассмотрен в начале статьи и сравним его с моделью колебательного звена.Модель контура представлена на рисунке 3.5.13:

Рисунок 3.5.13 Модель колебательного контураРисунок 3.5.13 Модель колебательного контура

Схема модели содержит в себе:

  1. модель электрического контура в виде электрической схемы;

  2. модель контура в виде колебательного звена.

Параметры электрической схемы задаются в виде общих сигналов проекта. См. рис. 3.5.14:

Рисунок 3.5.14 Общие сигналы проекта.Рисунок 3.5.14 Общие сигналы проекта.Рисунок 3.5.15. Вычисление параметров для колебательного звена.Рисунок 3.5.15. Вычисление параметров для колебательного звена.

В общем скрипте проекта выполняется вычисление постоянной времениTи коэффициента демпфирования \beta

Для сравнения модели в виде электрической схемы и модели в виде колебательного звена, выполним моделирование ступенчатого возрастания напряжения, с 0 до 1 В.

Рисунок 3.5.16. Графики напряжений источника и на конденсаторе.Рисунок 3.5.16. Графики напряжений источника и на конденсаторе.

Выполним гармонический анализ данной модели, аналогично тому, как мы это делали для модели демпфера и камеры смешения реактора демпфера.

Рисунок 3.5.17 Сравнение модели контура и колебательного звенаРисунок 3.5.17 Сравнение модели контура и колебательного звена

На графике рис. 3.5.16 видно возникновение колебательного процесса и его затухание с течением времени. График на рис. 3.5.17 показывает практически полное совпадение модели в виде электрической схемы и модели в виде колебательного звена:

Выполним гармонический анализ данной модели, аналогично тому, как мы это делали для модели демпфера и камеры смешения реактора демпфера (см. разделы 3.3 Апериодическое звено 1-го порядка. и 3.1 Амплитудно-фазовая частотная характеристика). Расчетная схема для такого анализа приведена на рисунке 3.5.18.

Рисунок 3.5.18. Частотный анализ электрического контураРисунок 3.5.18. Частотный анализ электрического контура

Амплитуда входного тестового сигнала - 1 В, аналогична амплитуде ступенчатого воздействия из предыдущего численного эксперимента.

Результаты анализа представлены на рисунке 3.5.19

Рисунок 3.5.19 Результаты гармонического анализа.Рисунок 3.5.19 Результаты гармонического анализа.

Результаты моделирования показывают практическое совпадение теоретических значений частоты, при которой достигается максимальная амплитуда сигнала, и значений, полученных в результате моделирования электрической схемы: Теоретическое значение = 111,75 Гц Полученное моделированием = 112,2 Гц

Для исследования влияния параметров модели добавим на схему управляющие элементы, которые буду менять сопротивление резистора и емкость конденсатора во время расчёта.

 Рисунок 3.5.20 Модель с изменяемыми параметрами контура. Рисунок 3.5.20 Модель с изменяемыми параметрами контура.

Также выведем на схему значения коэффициента демпфирования с помощью текста и стрелочного прибора. Чтобы можно было отслеживать влияние параметров цепи на процесс, заменим ступенчатое воздействие на меандр. Схема модели примет вид, как это представлено на рисунке 3.5.20

Чтобы данная конфигурация заработала, необходимо добавить в скрипт программы код, который заберёт значения с ползунков и передаст их в параметры модели (см. рис 3.5.21)

Рисунок 3.5.21. Скрипт изменения параметров моделиРисунок 3.5.21. Скрипт изменения параметров модели

Данная модель позволяет изменить сопротивление резистора и емкость конденсатора, и оценить влияние этого изменения на переходной процесс. Подобное изменение мы делали в предыдущем примере, где изменение силы терпения в механическом демпфере выполнялось автоматически, и апериодическое звено второго порядка превращалось в колебательное. В текущем примере мы можем вручную, с помощью ползунков, изменить параметры цепи и получить из колебательного звена апериодическое звено второго порядка.

Например, при положении ползунков, изображенном на рисунке 3.5.22, колебательный контур превращается в апериодическое звено второго порядка (см. рис. 3.5.23.)

Рисунок 3.5.22. Настройки контура для устранения колебанийРисунок 3.5.22. Настройки контура для устранения колебанийРисунок 3.5.23. Графики изменения переходных процессов в контуре при изменении R и С.Рисунок 3.5.23. Графики изменения переходных процессов в контуре при изменении R и С.

При увеличении сопротивления резистора и емкости кондесатора происходит увеличение коэффициента демпфирования, и когда Если \beta >1 \Rightarrow колебательное звено превращается в апериодическое 2-го порядка. (см. график на рис 3.5.23.

Поскольку мы рассматриваем общую тему частотных характеристик, доработаем наш виртуальный стенд с контуром так, чтобы можно было вручную исследовать частотные воздействия на контур.

Заменим в качестве источника блок меандр, на блок синусоида и добавим ползунок, изменяющий частоту этого источника, а также добавим на схему текстовые надписи, отображающие частоты максимальной амплитуды, частоты собственных колебаний и частоты свободных колебаний. Расчетная схема будет выглядеть как на рисунке 3.5.25

Рисунок 3.5.24 Схема колебательного контура с настройками частоты источника.Рисунок 3.5.24 Схема колебательного контура с настройками частоты источника.

Добавляем в скрипт необходимый код, обеспечивающий расчет частот максимальной амплитуды, собственных колебаний и свободных колебаний, а также код для изменения частоты источника напряжения. Данный код скрипта приведен на рисунке 3.5.25

Рисунок 3.5.24 Скрипт для управления и отображения частоты.Рисунок 3.5.24 Скрипт для управления и отображения частоты.

Данная модель позволяет независимо настраивать параметры цепи и частоту источника напряжения.

В частности, можно убедится, что при различных настройках колебательного контура максимальная амплитуда колебаний напряжения достигается тогда, когда частота источника совпадает с частотой максимальной амплитуды, рассчитанной по формуле 3.5.10 см.скрипт на рис. 3.5.24.

Видео с управлением данным контуром можно посмотреть по ссылке.

А, например, на следующем графике изображено изменение напряжения на конденсаторе при повышении частоты источника от 0 до 300 Гц с шагом 1 Гц 1 сек.

График построен путем давления в скрипте строки, передвигающей ползунок каждую секунду на 1 единицу (Гц) BarW.Value=Round(time) .

Как видим результат ручного управления совпал с результатом гармонического анализа максиму амплитуды теоретической частоте максимума - 112 Гц.

Примеры проектов для самостоятельного изучения можно взять по ссылке здесь.

Предыдущая лекция. 3.4 Апериодическое звено 2го порядка.

Подробнее..

3. Частотные характеристики звеньев и систем автоматического регулирования. 3.7 Форсирующее звено

01.06.2021 02:22:59 | Автор: admin

Лекции по курсу Управление Техническими Системами читает Козлов Олег Степанович на кафедре Ядерные реакторы и энергетические установки факультета Энергомашиностроения МГТУ им. Н.Э. Баумана. За что ему огромная благодарность!

Данные лекции готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется. В предыдущих сериях:

1. Введение в теорию автоматического управления.
2. Математическое описание систем автоматического управления 2.1 2.3,2.3 2.8,2.9 2.13.
3. ЧАСТОТНЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (РЕГУЛИРОВАНИЯ).
3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ.
3.2. Типовые звенья систем автоматического управления (регулирования). Классификация типовых звеньев. Простейшие типовые звенья.
3.3. Апериодическое звено 1го порядка (инерционное звено). На примере входной камеры ядерного реактора.
3.4. Апериодическое звено 2-го порядка.
3.5. Колебательное звено.3.3. Апериодическое звено 1го порядка (инерционное звено). На примере входной камеры ядерного реактора.
3.6. Инерционно-дифференцирующее звено.

Тем сегодняшней статьи: 3.7 Форсирующее звено (идеальное звено с введением производной)

Уравнение динамики форсирующего звена:

y(t) = k \cdot[x(t)+\tau \cdot x'(t)] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.7.1)}

Уравнение динамики в изображениях Лапласа:

Y(s) = k \cdot [\tau\cdot s+1]\cdot X(s)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.7.2)}

В общем, данное звено формально можно отнести к позиционным, т.к.a_0=1; b_0 = 0или статическая характеристика имеет вид: y(0)= k \cdot x(0) .

Передаточная функция форсирующего звена:

W(s) =\frac{Y(s)}{X(s)}= k \cdot [\tau \cdot s+1] =k\cdot \tau\cdot s+k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.7.3)}Рисунок 3.7.1 Эквивалентная структурная схема форсирующего звенаРисунок 3.7.1 Эквивалентная структурная схема форсирующего звена

АФЧХ форсирующего звена, получается путем замены s= i \cdot \omega:

W(i\cdot \omega) = k \cdot[1+i\cdot \tau\cdot \omega ] = \underbrace{k}_{Re}+i\cdot\underbrace{k\cdot \tau\cdot\omega}_{Im} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.7.4)}

Модуль АФЧХ:

u(\omega) = k\\ v(\omega)= k \cdot \tau \cdot \omega \left \{ \begin{gathered} U(\omega) = k \\ V(\omega) = k \cdot \tau\cdot \omega\ \end{gathered} \right. \Rightarrow A(\omega) = |W(i\cdot \omega) | = k \cdot \sqrt{1+\tau^2\cdot \omega^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.7.5)}

Подставляя в формулы (3.7.4) и (3.7.5) различные значениястроим соответствующие графики:

Рисунок 3.7.2 АФЧХ форсирующего звенаРисунок 3.7.2 АФЧХ форсирующего звенаРисунок 3.7.3 АЧХ и ФЧХ форсирующего звенаРисунок 3.7.3 АЧХ и ФЧХ форсирующего звена

Логарифмическая амплитудная характеристика (ЛАХ):

Lm(\omega) = 20 \cdot lg (A(\omega))=20 \cdot lg (k)+ 20 \cdot lg \sqrt{1+\tau^2\cdot \omega^2} \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.7.6)}Рисунок 3.7.4 ЛАХ и ЛФЧХ форсирующего звенаРисунок 3.7.4 ЛАХ и ЛФЧХ форсирующего звена

Если \omega_{сопр} <<\frac{1}{\tau} звено приблизительно совпадает с идеальным усилительным звеном - \omega(s)\approx k .

Если \omega_{сопр} >> \frac{1}{\tau} - звено приблизительно совпадает с идеальным дифференцирующим звеном -\omega(s) \approx k \cdot \tau \cdot s

Переходная функция:

h(s) = L^{-1} \left[ H(s) \right] = L^{-1} \left[ \frac{W(s)}{s}\right] = L^{-1}\left[ \frac{k}{s}+\frac{k \cdot \tau \cdot s}{s}\right] = k \cdot Z^{-1}\left[\frac{1}{s}+\tau \right] \Rightarrowh(t) = k \cdot 1(t)+k \cdot \tau \cdot \delta(t)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.7.7)}

Весовая функция получается диффернцированием h(t) поt:

w(t) = k \cdot \left[\delta(t)+ \tau\cdot \delta'(t) \right]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(3.7.8)}

Построим соответствующие графики:

Рисунок 3.7.5 Переходная функция форсирующего звенаРисунок 3.7.5 Переходная функция форсирующего звенаРисунок 3.7.6 Весовая функция форсирующего звенаРисунок 3.7.6 Весовая функция форсирующего звена

Примечание: Данное звено реализуется в ПД-регуляторах, обеспечивающих введение производных в закон управления. ПД-регулятор увеличивает быстродействие замкнутых САР, т.к. управление ведется по рассогласованию и по производной от рассогласования.

Пример

Мы уже запилили 10 лекций по УТС Управление в технических устройствах, но пока не рассмотрели ни одного примера, где было представлено собственно управление. Поскольку рассматриваемое в этой лекции звено используется в виде регулятора, разберем, наконец, в примере непосредственно модель управления техническим устройством, чтобы еще немного переместиться от теории к практической реализации.

Создадим комплексный в проект, в котором будут модель технического объекта (файл проектаnode_НS_2.prt) и модель системы управления (файлpd.prt), объединенные в пакет (файлnode_НS_2.pak)

В качестве технического объекта возьмём модель камеры смешения, используемую как иллюстрацию лекции Апериодическое звено первого порядка, и добавим к модели Узел регулирования температуры (см. рис. 3.7.7)

Рисунок 3.7.7 Модель камеры смешения с узлом регулирования температурыРисунок 3.7.7 Модель камеры смешения с узлом регулирования температуры

Узел регулирования температуры представляет собой дополнительный трубопровод с регулирующим клапаном (Valve_1 см. рис. 3.7.7). С одной стороны трубопровод подключён к узлу камеры смешения, с другой стороны задается граничное условие (ГУ) по давлению и температуре.Давление в ГУ больше давления в камере смешения, и температура то же больше чем на входе в камеру смешения.

Таким образом, при открытии клапана добавляется больше горячей воды, и температура в камере смешения растет. При закрытии клапана горячей воды подается меньше, и температура уменьшается. Так мы получаем возможность регулировать температуру.

В системе также установлен датчик температуры в узле камеры смешения. База сигналов проекта содержит два сигнала:

  • Температура в камере смешения (берется из датчика);

  • Положение клапанаValve_1.

    Модель системы управления представлена на рисунке 3.7.8

Рисунок 3.7.8 Модель системы управленияРисунок 3.7.8 Модель системы управления

В системе управления показания датчика, полученные из базы данных, сравниваются с уставкой по температуре (с требуемой температурой). Отклонения передаются на два регулятора: один из нихпропорциональный, другой пропорционально дифференцирующий.

Настройки регуляторов взяты по умолчанию, все коэффициенты равны 1.

Модель позволяет переключаться между регуляторами с помощьюблокаключа.

Регулирующее воздействие передается c выбранного регулятора на модель привода. Это простой интегратор с ограничением диапазона0 - 100, который с заданной скоростью изменяет положения клапана, а результат предаётся в базу данных.

Рисунок 3.7.9 Выбор типа регулятора в настройкахРисунок 3.7.9 Выбор типа регулятора в настройках

Для демонстрации работы П и ПД регуляторов используется один и тот же готовый блок ПИД регулятор. Тип регулятора задается в свойствах блока (см. рис. 3.7.9)

Рисунок 3.7.10. Скрипт изменения заданной температурыРисунок 3.7.10. Скрипт изменения заданной температуры

Для демонстрации режима управления в общем скрипте программы управления задается последовательное изменение требуемой температуры. (см. рис. 3.7.10)

В начальный момент времени заданная температура соответствует установившейся в системе температуре при 50% открытии клапана. На 10 секунде заданная температура меняется на 22 градуса С, на 50 секунде заданная температура меняется на 23.5 градусов С.

Чтобы можно было сравнить два варианта управления на одном графике, добавим еще один проект в пакет (файлdata.prt).

В данном файле расчетная схема содержит график, на котором выводятся текущее значение температуры (из базы данных сигналов) и значения из файла с предыдущим расчётом (temp_old.dat).

3.7.11 Проект и скрипт для сравнения двух рассчетов3.7.11 Проект и скрипт для сравнения двух рассчетов

Во время расчёта мы сохраняем текущее значение в файл (temp_cur.dat). По завершению расчёта (секцияfinalizationскрипта) мы копируем данные из текущего файла в сохраненный ранее с помощью глобального скрипта программы. (см. рис. 3.7.11).

Результаты моделирования представлены на рисунке 3.7.12

Зеленый график показывает изменение температуры при использовании пропорционального регулятора, красный использование пропорционально-дифференцирующего регулятора. Видно, что использование производной в ПД снижает время переходного процесса (увеличивает быстродействие), а также снижается величина перерегулирования.

Рисунок 3.7.12 Сравнение П и ПД регуляторовРисунок 3.7.12 Сравнение П и ПД регуляторов

Пример для самостоятельного изучения можно взять здесь.

Предыдущая лекция из главы 3, Частотные характеристики звеньев и систем автоматического регулирования: 3.6 Инерционно-дифференцирующее звено.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru