Русский
Русский
English
Статистика
Реклама

Приемник

Как влияют помехи на ИК приемник

18.12.2020 08:10:10 | Автор: admin

Приветствую всех, эта короткая статья о влиянии помех на работу ИК приемника. В данном исследовании в качестве такого устройства используется TSOP4856. В этой статье вы узнаете: какие помехи бывают для данного типа устройств, и какое влияние они оказывают.

Следует сразу отметить, что дання статья не претендует на истину в последней инстанции, а только предоставляет читателю оценку возможного влияния помех на ИК приемник. Приятного чтения. Начинаем!

Оглавление:

Описание ИК диода TSAL6200 и ИК приемника TSOP4856

Работа ИК диода и ИК приемника

Помехи для ИК приемника

Исследование влияния солнечного света и люминесцентного излучения на работу ИК приемника

Заключение

Описание ИК диода TSAL6200 и ИК приемника TSOP4856

ИК диод TSAL6200 полупроводниковый диод, излучающий волны инфракрасного спектра.

Внешний вид ИК диода представлен ниже на картинке.

TSAL6200TSAL6200

Некоторые его характеристики: длина волны, излучаемой ИК диодом, равна 940 нм. Максимальный прямой постоянный ток не более 100 мА. Импульсный ток не более 1.5 А. Мощность излучения до 40 мВ. Ширина ДН равна 34 градусам.

ИК приемник TSOP4865 миниатюрный ИК приемный модуль, у которого PIN диод и усилитель собраны в свинцовом каркасе, эпоксидный корпус содержит ИК фильтр. Внешний вид ИК приемника представлен ниже на картинке.

TSOP4856TSOP4856

Некоторые его характеристики: длина волны принимаемого ИК сигнала 940 нм. Необходимая частота модуляции 56 кГц. Минимальная освещенность 0.12 мВт/м2. Максимальная 50 Вт/м2. Ширина ДН 90 градусов. Эти устройства работают в паре.

Работа ИК диода и ИК приемника

При протекании тока через диод TSAL6200 излучается ИК сигнал с длиной волны 940 нм. Это излучение модулируется меандром с частотой 56 кГц. Передаются пачки таких импульсов со скважностью равное не менее 4.

Эти пачки принимается устройством TSOP4856. Его функциональная схема представлена на слайде.

Функциональная схема ИК приемника TSOP4856Функциональная схема ИК приемника TSOP4856

где 1 - OUT; 2 - GND; 3 - +Vпит; ВФ входной фильтр; АРУ автоматическая регулировка усиления; ПФ полосовой фильтр.

Через PIN диод начинает протекать ток, соответствующий интенсивности принимаемого ИК сигнала. Схема автоматической регулировки усиления (АРУ) усиливает этот ток. Далее принимаемый сигнал фильтруется полосовым фильтром (ПФ) и демодулируется. Пока принимается одна пачка, на выходном выводе OUT приемника низкое значение напряжения, как только на входе нет импульсов, приемник поднимает выходной вывод к напряжению питания.

Далее представлены временные диаграммы данного процесса.

Временные диаграммы примо-передачи ИК сигналаВременные диаграммы примо-передачи ИК сигнала

Сверху показан процесс происходящий на ИК диоде, снизу - на ИК приемнике. Слева рассматривается процесс приемо-передачи в масштабе одной пачки, а справа - в масштабе нескольких пачек.

Стоит заметить, что просто передавать ИК сигнал без модуляции 56 кГц не получится, т.к. полосовой фильтр ИК приемника настроен как раз на эту частоту. Также не получится передавать непрерывный меандр с этой частотой в 56 кГц, так как система АРУ будет занижать в таком случае коэффициент усиления (это сделано для устранения постоянных помех). Т.е. обязательно нужно передавать пачки импульсов, а с какой частотой будут передаваться эти пачки не важно, главное, чтоб скважность между ними была не менее 4.

Помехи для ИК приемника

Помехами для TSOP4856 являются:

- солнечный свет;

- свет от вольфрамовых ламп;

- излучение от люминесцентных ламп с электронными балластами;

- Wi-Fi 2,4 ГГц и 5 ГГц.

В данной работе рассматривается влияние солнечного света и излучение люминесцентных ламп.

Рассмотрим график чувствительности в зависимости от окружающей освещенности, взятый из документации на TSOP4856.

График зависимости чувствительности ИК приемника TSOP4856График зависимости чувствительности ИК приемника TSOP4856

На графике видно, что при увеличении окружающей помеховой освещенности увеличивается порог чувствительности, следовательно, будет уменьшаться дальность приемо-передачи. Таким образом, когда присутствуют помехи, чувствительность приемника снижается схемой АРУ для обеспечения отсутствия ложных импульсов на выходе.

Следует добавить, что чувствительность ИК приемника также зависит от амплитуды пульсаций источника питания, от величины напряжения питания, от температуры и от длины волны ИК сигнала. Более подробно с этими параметрами можно ознакомиться в технической документации.

В нашем случае все эти параметры имеют рабочие значения: пульсация источника питания минимальна, напряжение питания 3.3 В, температура 25 градусов по Цельсию, длина волны 940 нм.

Исследование влияния солнечного света и люминесцентного излучения на работу ИК приемника

Экспериментальная установка состоит из следующих элементов:

- передатчик ИК сигнала;

- приемник ИК сигнала;

- измерительная рулетка;

- фотодиод ФД-24К;

- квадрантный фотодиод QPD150;

- мультиметр;

- переходник USB-UART;

- ноутбук.

У квадрантного фотодиода QPD150 все фазовые выводы соединены. Измеряется суммарное напряжение, вырабатываемое фотодиодом при его освещении.

Передатчик ИК сигнала и приемник ИК сигнала неподвижно закреплены друг напротив друга на одном уровне так, чтобы ИК диод и ИК приемник были на одной линии. С помощью измерительной рулетки фиксируется расстояние от ИК диода до ИК приемника. К приемнику ИК сигнала через переходник USB-UART подключен ноутбук для получения сообщения о регистрации принятого импульса и вывода его на экран.

Передатчик ИК сигнала формирует пачку из 20 импульсов, частота импульсов 56 кГц. Амплитуда импульсов тока, проходящих через ИК диод TSAL6200, составляет 20 мА, что соответствует, примерно, 8 мВт мощности излучения.

Излучение пачки происходит раз в секунду. Если пачка принята, то приемник ИК сигнала выдает сообщение на ноутбук о регистрации этой пачки импульсов.

Порядок проведения эксперимента: измеряется дальность приемо-передачи ИК сигнала для двух случаев: принятие 10 из 10 импульсов подряд и 0 из 10 импульсов, а также измеряются напряжения на ФД-24К и QPD150.

Варианты экспериментов:

- в полной темноте;

- при освещении люминесцентной лампой сверху на потолке в помещении;

- при освещении люминесцентной лампой прямо перед приемником в помещении;

- при освещении солнечным светом ИК приемник сзади сверху;

- при освещении солнечным светом ИК приемник спереди сверху.

В таблице ниже приведены результаты исследования влияния помех на работу ИК приемника TSOP4856.

Ниже представлен график зависимости дальности приемо-передачи от мощности помехи для различных типов помех. По вертикали средняя мощность помех в относительных единицах, так как измерить или вычислить реальную принимаемую мощность ИК приемником TSOP4856 проблематично. По горизонтали дальность приемо-передачи в метрах. Левая крайняя точка отрезков значение дальности при приеме 10 из 10 импульсов, а правая крайняя точка значение дальности при приеме 0 из 19 импульсов, т.е. данные отрезки дистанции ухудшения качества приема сигнала от 100 до 0 %. В таблице представлены относительные ухудшения характеристик относительно эксперимента "в полной темноте" в процентах,

Из графика видно, то с увеличением мощности помехи не только уменьшается дальность приемо-передачи, но и дистанция ухудшения качества приема сигнала от 100% до 0% становится короче.

Из таблицы видно, что в присутствии такой помехи, как солнце, дальность приемо-передачи ИК сигнала может уменьшиться почти на 70%, что может оказаться критическим, если не учесть влияние такой помехи при разработки системы с ИК. Влияние люминесцентного излучения тоже немаленькое и может уменьшить дальность, примерно, на 40%.

Заключение

Из полученных данных можно сделать следующий выводы:

1) чем сильнее помеха по мощности, тем меньше дальность приемо-передачи ИК сигнала;

2) влияние помехи на качество приема пропорционально мощности помехи (чем меньше помеха по мощности, тем длиннее отрезки, т.е. качество приема ИК сигнала медленнее ухудшается с увеличением расстояния);

3) разные типы помехи имеют разное влияние на работу TSOP4856.

В итоге, следует учитывать возможное влияние помех на ИК приемник при разработке систем с ИК, чтобы избежать проблем с внезапным отказом работы в присутствии таких помех.

Надеюсь статья оказалась полезной. Спасибо за внимание!

Подробнее..

Приемник с АФАР для БЛА

06.06.2021 14:21:06 | Автор: admin

Цель

Для управления беспилотными объектами, типа коптер или самолётика, обычно используются узкополосные низкоскоростные модемы. Для передачи телеметрии и неспешных команд управления, вроде задания полётных точек по быстродействию этого вполне достаточно. В этих целях важнее, скорее, обеспечить бесперебойность канала управления, нежели гнаться за быстродействием, которое может измеряться секундами.

Типовым решением в данной области является использование всенаправленной антенны с интегрированного приёмопередатчика, типа sx1233, AX5043, на борту, и антенны с высоким коэффициентом усиления (КУ), типа волновой канал или клевер, на земле.

Пока есть прямая видимость все должно быть хорошо.

Но, как известно, не только земля не плоская, но и прямая видимость с достаточным бюджетом мощности ещё не гарантирует успешной связи. А виной тому, зачастую, бывают помехи.

Когда борт пролетает мимо мощного источника радиоизлучения с совпадающей частотой канала то на бортовую антенну оказывается воздействие, существенно превышающее сигнал от удалённого передатчика, и отфильтроваться полосовым фильтром оказывается невозможно.

Обзор электромагнитной обстановкиОбзор электромагнитной обстановки

В данной ситуации красивым решением выглядит изменение диаграммы направленности бортовой антенны таким образом, чтоб источник помехи оказался в её минимуме. Именно во столько раз и будет ослаблен паразитный сигнал, хотя и связь в канале управления тоже может ослабнуть.

возможная ДН с четырьмя четвертьволновыми штырямивозможная ДН с четырьмя четвертьволновыми штырями

ДН можно вращать механически типа поворотного основания, но это неудобно для борта конструктивно и много весит. Гораздо интереснее попробовать электронное вращение ДН: подключить несколько антенных элементов через управляемый фазовращатель и максимально ослабить помеху противофазным их включением.

Вот это и попробуем.

Средства

В качестве антенны возьмём четыре (потому что больше трех) четвертьволновых (т.к. самое простое) штыря и разместим их на металлической пластине, по углам квадрата со стороной четверть длины волны.

Антена АФАР. В центре - антенна передатчикаАнтена АФАР. В центре - антенна передатчика

Фазовращение осуществим в лоб, на AD8340. Полученные из каналов сигналы суммируем в один и отправляем на вход уже имеющегося приёмника, развёртку ДН осуществим микроконтроллером по максимуму отношения сигнал/шум (с/ш, SNR).

Структурна схема фазовращателя с предусилителемСтруктурна схема фазовращателя с предусилителем

Алгоритм простейший: поворачиваем максимум ДН до тех пор, пока лучше становиться, если перебор крутим в обратную сторону. Поскольку передача данных идут в пакетном режиме, то поворот делаем после каждого пакета, чтоб переходными процессами чего не испортить.

Расчёт фаз для суммирования каналов проведём на основании простейшей тригонометрии: по каждому из заданных направлений радиоволны должны распространяться синфазно. Т.е. фаза это проекция точки установки штыря на вектор направления луча.

Хинт: если из всех фаз вычесть одну их них то этот канал можно не управлять:)

График значений фаз для развёртки ДНГрафик значений фаз для развёртки ДН

Проверка

То, что четыре канала приёма заведомо лучше одного фактом является очевидным. Это даёт, как минимум, разнесение антенн в пространстве (antenna diversity) и дополнительное усиление сигнала. Гораздо интереснее, получится ли режектировать точечный источник помехи.

Для начала задаём в ДН одно направление и снимаем по всем углам КУ полученной фиксированной антенны тихой комнате.

ДН АФАР при угле направления 0ДН АФАР при угле направления 0

Как видно, что-то кривенькое получилось.

Попробуем теперь полетать с помехопоставителем. В этом качестве возьмём какой-нибудь передатчик, чтоб можно было в нем задать частоту, полосу и мощность. Подадим все это на сильно направленную антенну и будем пересекать полученный луч на разных расстояниях.

Пример формирования тестовой помехиПример формирования тестовой помехи

Результаты

Если кратко то режекция одиночно источника помехи удалась.

Если более детально то немного не так, как ожидалось.

Предполагалось, что ДН будет иметь классический внешний вид с диаметральными минимум и максимумом. На само деле получилась достаточно кривая ДН, с паразитными минимумами. Благодаря простейшему алгоритму наведения они, рано или поздно, совпадали с помехой и существенно ослабляли её. В этот момент начиналось успешное прокидывание пакетов с данными, пока сама антенна на БЛА сравнительно медленно механически не отворачивалась (ветер, смена курса..). Если процессы наведения происходят достаточно быстро (несколько раз в секунду), то для оператора создаётся ощущение устойчивой связи с объектом.

Так же оказалось, что просто антенна это только часть большой системы из кабелей, разъёмов, элементов конструкции и погоды на марсе. Реальные ДН каждый раз получались разные, но обязательно с острыми минимумами. Но благодаря простоте алгоритма даже в таком виде это успешно работало.

Выводы

Для попробовать полученного дорогого, энергозатратного, тяжёлого и плохо воспроизводимого решения вполне достаточно. Но надо прикинуть, что в этом направлении можно сделать дальше.

Самым очевидным решением является реализация модема и фазовращателя с антеннами в виде отдельного изделия. Если в самом деле есть проблемы с помехами то идём на все эти жертвы. А если в глухой тайге полетать надо, то можно и со штырём управиться. К тому же весь этот агрегат, собранный на одной плате вместе с подложкой штырей, имеет шанс получить воспроизводимую ДН.

Так же на будущее можно подумать о замене прямого решения с микросхемами фазовращения, на изменение структуры приёмника, чтобы суммировать сигналы на промежуточной частоте. Формирование множества сдвинутых по фазе опор является стандартной задачей для современного high speed design, сами структуры гетеродинных и инфрадинных приёмников давно уже обкатаны, и более сложное по числу элементов решение может оказаться дешевле по элементной базе и энергопотреблению.

Ну и в качестве высшего пилотажа уже можно начать бороться с несколькими вредителями сразу. Для этого надо увеличивать число управляемых элементов и формировать ДН с несколькими контролируемыми вырезами, что даёт подавление нескольких источников шума по разным направлениям.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru