Русский
Русский
English
Статистика
Реклама

Солнце

Как измерили расстояние до Солнца

12.01.2021 14:15:46 | Автор: admin

Сегодня, когда астрономию вернули в школьную программу, любой старшеклассник (ну, в теории, любой) должен знать: расстояние от нашей планеты до Солнца составляет примерно 149,5 млн километров. Это расстояние еще принято называть астрономической единицей.
Но, понятно, что этот ответ как-то надо было получить и астрономам потребовалось на это несколько шагов, растянувшихся не одно тысячелетие. Ниже о каждом шаге подробнее.


Шаг первый безбожник Аристарх и Луна
Аристарх Самосский жил в III веке до нашей эры и был по-настоящему выдающимся астрономом. Задолго до Коперника он построил гелиоцентрическую модель устройства мира. Довольно точно определил продолжительность года в 365 + (1/4) + (1/1623) дней. Усовершенствовал солнечные часы. А еще он предпринял попытку измерить расстояние от Земли до Солнца и Луны. Этому Аристарх посвятил целый трактат (кстати, единственная письменная работа этого автора, дошедшая до нас).
С Луной у него получилось довольно близко к правильному ответу: 486400 км (по расчетам Аристарха), 380000 км (среднее расстояние по современным данным). Спустя сто лет другой античный астроном Гиппарх, кстати, уточнил эти цифры. А вот с Солнцем у Аристарха получилась нехилая промашка.
Но сначала о том, как вообще древнегреческий астроном измерял это расстояние. Известно, что иногда Солнце и Луну можно наблюдать одновременно. Причем, бывают моменты, когда Солнце освещает ровно половину Луны. Тогда угол Земля-Луна-Солнце прямой, и измеряя угол Луна-Земля-Солнце можно с помощью тригонометрических соотношений, зная расстояние Земля-Луна, найти расстояние Земля-Солнце.
Но гладко было на бумаге. Во-первых, Аристарху надо было поймать момент, когда освещена ровно половина Луны, а сделать это без телескопа было практически невозможно. А во-вторых, опять же без серьезной измерительной аппаратуры, точно измерить все параметры. Не удивительно, что грек ошибся, причем, очень сильно: угол у него получился целых три градуса (в реальности он равен 10 минутам), а расстояние до Солнца всего 7,5 млн километров. Опираясь на это расстояние, Аристарх пришел к выводу, что Солнце намного больше Земли. Это и стало главным аргументом его гелиоцентризма (в центре мироздания должен быть самый большой объект).
Впрочем, ошибка в определении расстояния большой роли в науке не сыграла, вычисления Аристарха вообще не получили широкой известности (даже среди образованной части населения античных городов). Причина была скорее политической, все дело в его гелиоцентрической модели мироздания. Она противоречила геоцентрической модели, которой придерживался тогдашний научный консенсус. И есть упоминания, что его даже пытались привлечь к суду как безбожника. Спустя некоторое время сначала Гиппарх подверг критике его взгляды, а позже Птолемей (чья геоцентрическая модель успешно дожила до Коперника) и вовсе проигнорировал результаты Аристарха, способствуя их забвению на долгое время.
Шаг второй смотрим на Венеру (Кеплер и Хоррокс)
Человечеству потребовалось почти две тысячи лет, чтобы сделать этот следующий шаг к ответу, но будем справедливы, это было нелегкое время и хватало других проблем.
И для начала, надо было выбрать другой объект, на который опираться в своих вычислениях. В 1626 году известный немецкий астроном и математик Иоганн Кеплер предложил в качестве кандидата Венеру. К тому времени астрономы уже знали про одно довольно редкое астрономическое явление прохождение Венеры по диску Солнца, причем, оно случается дважды с разницей в несколько лет, а потом следует значительный перерыв. Предложенный Кеплером метод заключался в следующем: надо измерить время прохождения Венеры по диску Солнца из разных точек Земли. И сравнивая эти времена можно найти расстояние от Земли до Венеры и до Солнца.
Впрочем, это только звучит просто. Как минимум, надо было дождаться этого явления. Это удалось британскому астроному Джереми Хороксу, который переписывался с Кеплером и знал про его метод. Сначала британец уточнил частоту этого явления: дубль случается с разницей в восемь лет каждые полтора столетия. И ближайшее должно было состояться в 1639 году. Хоррокс подготовился к этому событию, он наблюдал за небом из своего дома в Мач Хул, близ Престона, а его друг делал то же самое из Солфорда, близ Манчестера. Сначала, казалось, что удача от них отвернулась, поскольку в этот день была сильная облачность, но за полчаса до захода Солнца облака разошлись и пара астрономов сумела-таки осуществить свой план. На основании наблюдений, Хоррокс рассчитал, что нашу планету от Солнца отделяет 95,6 млн км. Это было уже гораздо ближе к истине, но все равно неверно.
Шаг третий смотрим на Марс (Кассини)
До следующего венерианского дубля надо было ждать полтора века и пока шло время астрономы тратили его на поиск других способов вычислить искомое расстояние. И это удалось французскому астроному итальянского происхождения Джованни Доменико Кассини. Он вообще отметился в астрономии как талантливый наблюдатель (например, это он первым увидел Большое Красное пятно на Юпитере). К тому времени астрономы уже оценили возможности, которые дает одновременное наблюдение за одним и тем же объектом из отдаленных друг от друга мест. В 1672 году Кассини на пару с другим французским астрономом Жаном Рише осуществили такой проект: первый остался в Париже, а второй отправился в Южную Африку, где у Франции были свои колонии. Они одновременно наблюдали Марс и, вычислив параллакс, определили его расстояние от Земли. Параллакс, если кто не знает, это смещение или разница в видимом положении объекта, рассматриваемого на двух разных линиях зрения. Ну а вычислять расстояние до объекта по параллаксу умели уже давно.
И поскольку относительные отношения различных расстояний между Солнцем и планетами уже были известны из геометрии, рассчитав по параллаксу расстояние до Марса, Кассини смог сделать то же самое и для Солнца. Его результат 146 млн км был уже очень близок к современным оценкам. Что интересно, в то время, когда Кассини проводил эти расчеты, он был приверженцем геоцентрической системы, то есть, расстояния он получал близкие к верным, но карту Солнечной системы строил по старинке, с Землей в центре. Позже он признал правоту Коперника, но в ограниченной степени.
Шаг четвертый снова Венера и астрономы всего мира
Тем временем близился очередной венерианский дубль (в 1761 и 1769 годах) и астрономы были намерены выжать из этого события максимум. Чтобы не зависеть от погодных условий и собрать данные с разных точек на Земле, был организован большой международный проект (его считают чуть ли не первым в истории) под эгидой Французской академии наук. Заблаговременно были подготовлены и отправлены научные экспедиции к местам наблюдений. Не все закончилось гладко экспедиция, отправленная в Новую Гвинею, без вести пропала в джунглях. Но в целом проект удался.
Кстати, активно в нем участвовала и Россия. В нашей стране им руководил человек необычайных талантов и энергии Михайло Ломоносов (это он, кстати, обнаружил атмосферу на Венере).
Ломоносову удалось получить аудиенцию у императрицы Екатерины II и убедить ее в важности этой работы как для науки, так и для государственного престижа. Получив поддержку казны, Ломоносов смог развернуть на территории Российской империи 40 наблюдательных пунктов. На один из них, вблизи Петербурга, приезжала сама Екатерина и с интересом смотрела в телескоп.
Вот в итоге этой большой работы астрономов по всему миру и было получено то число, которое сегодня включено в учебники. Но нет предела совершенству, и еще через сто пятьдесят лет, 8 декабря 1874 года и б декабря 1882 года, очередные прохождения Венеры по диску Солнца вновь наблюдали научные экспедиции по всему миру, уточняя полученные данные. А потом еще раз в 2004 и 2012 году. Впрочем, в ходе этих наблюдений получали и другие полезные данные, но это уже другая тема.

Подробнее..

Безопасно наблюдаем и фотографируем кольцеобразное солнечное затмение 10 июня

07.06.2021 14:15:24 | Автор: admin

В ближайшие дни на территории Евразии и Северной Америки будет наблюдаемо очередное солнечное затмение, более того на территории РФ впервые за 50 лет оно будет кольцеобразным (макс. фаза 0,9435)! Огненное кольцо будет видимо на протяжении 100 минут, двигаясь от Онтарио до севера России. Жители почти всего СНГ будут свидетелями частной фазы, при которой Луна покрывает Солнце не полностью. Чтобы стать свидетелем такого нечастого события, следует знать несколько правил по наблюдению Солнца и солнечного затмения, о которых я расскажу в этом материале. Также я покажу, каким образом можно безопасно фотографировать Солнце и как наблюдать затмение даже в плохую погоду.

Любой вопрос или замечания Вы можете написать в комментариях. Также я открыт для личного диалога втелеграмеили беседы внашем чате. А еще у меня естьтелеграм-канало космологии.

Соблюдайте базовые меры безопасности

Не смотрите на Солнце невооруженным глазом

Поскольку затмение не будет полным, то сильного потемнения, заметного глазу, не произойдет. Даже в максимальной фазе без светозащитных средств затмение будет не видно из-за ослепительной яркости Солнца. А вот даже быстрый взор на Солнце способен вызвать световой ожог и на долгое время образовать черное пятно, мешающее человеку видеть. Что уж говорить о продолжительном наблюдении: в таком случае при использовании двух глаз появляется сильное желание зажмуриться, отвести взгляд и сберечь глаза, но если схитрить и закрыть один глаз, то продержаться можно дольше. В таком случае практически неминуем длительный световой ожог и ожог роговицы или сетчатки глаза роговица может зажить через несколько дней, а вот в последнем случае ожог может привести к безвозвратному ухудшению или даже потере зрения. В качестве примера привожу видео, где парень, смотря на светило одним глазом, заработал себе перманентный световой отпечаток в виде черного пятна.

Не используйте подручные средства

Конечно, на свой страх и риск можно использовать в качестве помощников для наблюдения затмения что угодно даже дуршлаг, но безопасность в таком случае вам никто не гарантирует, ведь вещь изначально имеет иное предназначение. По этой причине я настоятельно не рекомендую наблюдать Солнце через фотопленку, магнитную пленку, закопченные стекла и CD-диски. Солнцезащитные очки хоть и способны оградить наблюдателя от опасного солнечного излучения, но не помогут увидеть само затмение, ведь степень понижения яркости у них небольшая.

Снарядитесь базовыми средствами светозащиты

Сэкономьте на бизнес-ланче

Я не говорю про специализированное астрономическое оборудование. В свое время я услышал про эффективность сварочных масок и решил это проверить. Цена вопроса 150 рублей. Я купил самую простую сварочную маску, вышел из магазина, надел ее и посмотрел на Солнце на небе я увидел круглый яркий круг лаймового цвета, наблюдать который мне было комфортно даже на протяжении длительного временного промежутка. Метод, как я считаю, самый демократичный и дешевый, и действенный. Конечно, звезда через дешевые маски может ярчить, но вызывать болезненных ощущений и дискомфорта не будет. К тому же маска надевается на голову, освобождая руки.

Вот как выглядит Солнце через сварочную маску за 150 рублейВот как выглядит Солнце через сварочную маску за 150 рублей

Вариант для голодных

У всех есть лист А4, с помощью которого можно сделать базовый проектор. На первом листе с помощью ножа или булавки нужно проделать небольшое отверстие важно, чтобы оно было круглое и гладкое. Затем, требуется взять этот лист близко к телу так, чтобы свет Солнца попадал в щель, а затем взять второй лист и параллельно первому листу разместить его на таком расстоянии, чтобы получилось четкое изображение затмения.

Credit: timeanddate.comCredit: timeanddate.com

Для продвинутых

Предлагаю к рассмотрению специальные светофильтры, блокирующие солнечное излучение. Это могут быть как специальные астрономические фильтры для телескопов и биноклей, изготовленные из полиэфира, так и светофильтры для фотоаппаратов они имеют степень понижения пропускаемого света, т.н. ND. Для наблюдения Солнца фильтр должен иметь оптическую плотность более пяти, т.е. пропускать не более 0,01% света, соответственно следует выбирать либо астрономические фильтры, либо фотофильтры ND 500, ND 1000 и далее.

ND-фильтр или астрофильтр в первую очередь предназначены для фотоустройств и оптических приборов, следовательно, перейдем к следующей части статьи.

Степень понижения яркости изображения в зависимости от предустановленного ND-фильтраСтепень понижения яркости изображения в зависимости от предустановленного ND-фильтра

Уберег глаза побереги и матрицу

Камера это те же глаза, что и те, которыми вы читаете эту статью. Матрица фотоаппарата может повредиться при воздействии прямых солнечных лучей, поэтому производитель не рекомендует фотографировать восходы и закаты на больших значениях апертуры. В данном случае требуется выставлять минимальные значения диафрагмы и выдержки, включать режим LiveView и смотреть на Солнце через ЖК-экран. Ни в коем случае не смотрите в видоискатель, иначе повредите глаза. Желательно использовать DSLR-камеру, а не беззеркалку, чтобы при открытом объективе свет не попадал на матрицу в момент простоя.

Снимать Солнце можно и на коротких выдержках (см. пример ниже), но таймлапсы могут выжечь матрицу и нагреть аппарат, потому желательно попробовать применить перечисленные подручные средства для фотоаппаратов. Камеры не настолько требовательны к требованиям безопасности и выжженная камера явно лучше поврежденного глаза. Например, можно нацепить стекло от сварочной маски или ее целиком на фотоаппарат.

300mm, f/45, 1/4000 sec, Солнце в 9:25 утра без сварочного стекла300mm, f/45, 1/4000 sec, Солнце в 9:25 утра без сварочного стеклаТе же настройки, но через сварочное стекло. На экране частичное солнечное затмение от 21 июня 2020 годаТе же настройки, но через сварочное стекло. На экране частичное солнечное затмение от 21 июня 2020 года

И напоследок...

Несмотря на предвещаемую синоптиками плохую погоду, солнечное затмение можно будет наблюдать даже через облако. Для этого достаточно сварочной маски солнечные лучей очень много и большая их часть проходит через атмосферу с минимальными искажениями, потому на месте густого облака через стекло Солнце будет отчетливо заметно.

Берегите глаза и не смотрите ими в телескоп без астрофильтра! Напоминаю, что затмение пройдет 10 июня и точное время для вашего региона, а также остальную информацию по поводу этого события можно узнать в моемтелеграм-канале, где я также рассказываю о последних новостях космологии и астрофизики, а также пишу об астрофотографии. По всем вопросам пишите мне вличкуилинаш чат. Также не стесняйтесь попросить помочь узнать подробную информацию по затмению в вашем населенном пункте. Всем добра!

Подробнее..

Как влияют помехи на ИК приемник

18.12.2020 08:10:10 | Автор: admin

Приветствую всех, эта короткая статья о влиянии помех на работу ИК приемника. В данном исследовании в качестве такого устройства используется TSOP4856. В этой статье вы узнаете: какие помехи бывают для данного типа устройств, и какое влияние они оказывают.

Следует сразу отметить, что дання статья не претендует на истину в последней инстанции, а только предоставляет читателю оценку возможного влияния помех на ИК приемник. Приятного чтения. Начинаем!

Оглавление:

Описание ИК диода TSAL6200 и ИК приемника TSOP4856

Работа ИК диода и ИК приемника

Помехи для ИК приемника

Исследование влияния солнечного света и люминесцентного излучения на работу ИК приемника

Заключение

Описание ИК диода TSAL6200 и ИК приемника TSOP4856

ИК диод TSAL6200 полупроводниковый диод, излучающий волны инфракрасного спектра.

Внешний вид ИК диода представлен ниже на картинке.

TSAL6200TSAL6200

Некоторые его характеристики: длина волны, излучаемой ИК диодом, равна 940 нм. Максимальный прямой постоянный ток не более 100 мА. Импульсный ток не более 1.5 А. Мощность излучения до 40 мВ. Ширина ДН равна 34 градусам.

ИК приемник TSOP4865 миниатюрный ИК приемный модуль, у которого PIN диод и усилитель собраны в свинцовом каркасе, эпоксидный корпус содержит ИК фильтр. Внешний вид ИК приемника представлен ниже на картинке.

TSOP4856TSOP4856

Некоторые его характеристики: длина волны принимаемого ИК сигнала 940 нм. Необходимая частота модуляции 56 кГц. Минимальная освещенность 0.12 мВт/м2. Максимальная 50 Вт/м2. Ширина ДН 90 градусов. Эти устройства работают в паре.

Работа ИК диода и ИК приемника

При протекании тока через диод TSAL6200 излучается ИК сигнал с длиной волны 940 нм. Это излучение модулируется меандром с частотой 56 кГц. Передаются пачки таких импульсов со скважностью равное не менее 4.

Эти пачки принимается устройством TSOP4856. Его функциональная схема представлена на слайде.

Функциональная схема ИК приемника TSOP4856Функциональная схема ИК приемника TSOP4856

где 1 - OUT; 2 - GND; 3 - +Vпит; ВФ входной фильтр; АРУ автоматическая регулировка усиления; ПФ полосовой фильтр.

Через PIN диод начинает протекать ток, соответствующий интенсивности принимаемого ИК сигнала. Схема автоматической регулировки усиления (АРУ) усиливает этот ток. Далее принимаемый сигнал фильтруется полосовым фильтром (ПФ) и демодулируется. Пока принимается одна пачка, на выходном выводе OUT приемника низкое значение напряжения, как только на входе нет импульсов, приемник поднимает выходной вывод к напряжению питания.

Далее представлены временные диаграммы данного процесса.

Временные диаграммы примо-передачи ИК сигналаВременные диаграммы примо-передачи ИК сигнала

Сверху показан процесс происходящий на ИК диоде, снизу - на ИК приемнике. Слева рассматривается процесс приемо-передачи в масштабе одной пачки, а справа - в масштабе нескольких пачек.

Стоит заметить, что просто передавать ИК сигнал без модуляции 56 кГц не получится, т.к. полосовой фильтр ИК приемника настроен как раз на эту частоту. Также не получится передавать непрерывный меандр с этой частотой в 56 кГц, так как система АРУ будет занижать в таком случае коэффициент усиления (это сделано для устранения постоянных помех). Т.е. обязательно нужно передавать пачки импульсов, а с какой частотой будут передаваться эти пачки не важно, главное, чтоб скважность между ними была не менее 4.

Помехи для ИК приемника

Помехами для TSOP4856 являются:

- солнечный свет;

- свет от вольфрамовых ламп;

- излучение от люминесцентных ламп с электронными балластами;

- Wi-Fi 2,4 ГГц и 5 ГГц.

В данной работе рассматривается влияние солнечного света и излучение люминесцентных ламп.

Рассмотрим график чувствительности в зависимости от окружающей освещенности, взятый из документации на TSOP4856.

График зависимости чувствительности ИК приемника TSOP4856График зависимости чувствительности ИК приемника TSOP4856

На графике видно, что при увеличении окружающей помеховой освещенности увеличивается порог чувствительности, следовательно, будет уменьшаться дальность приемо-передачи. Таким образом, когда присутствуют помехи, чувствительность приемника снижается схемой АРУ для обеспечения отсутствия ложных импульсов на выходе.

Следует добавить, что чувствительность ИК приемника также зависит от амплитуды пульсаций источника питания, от величины напряжения питания, от температуры и от длины волны ИК сигнала. Более подробно с этими параметрами можно ознакомиться в технической документации.

В нашем случае все эти параметры имеют рабочие значения: пульсация источника питания минимальна, напряжение питания 3.3 В, температура 25 градусов по Цельсию, длина волны 940 нм.

Исследование влияния солнечного света и люминесцентного излучения на работу ИК приемника

Экспериментальная установка состоит из следующих элементов:

- передатчик ИК сигнала;

- приемник ИК сигнала;

- измерительная рулетка;

- фотодиод ФД-24К;

- квадрантный фотодиод QPD150;

- мультиметр;

- переходник USB-UART;

- ноутбук.

У квадрантного фотодиода QPD150 все фазовые выводы соединены. Измеряется суммарное напряжение, вырабатываемое фотодиодом при его освещении.

Передатчик ИК сигнала и приемник ИК сигнала неподвижно закреплены друг напротив друга на одном уровне так, чтобы ИК диод и ИК приемник были на одной линии. С помощью измерительной рулетки фиксируется расстояние от ИК диода до ИК приемника. К приемнику ИК сигнала через переходник USB-UART подключен ноутбук для получения сообщения о регистрации принятого импульса и вывода его на экран.

Передатчик ИК сигнала формирует пачку из 20 импульсов, частота импульсов 56 кГц. Амплитуда импульсов тока, проходящих через ИК диод TSAL6200, составляет 20 мА, что соответствует, примерно, 8 мВт мощности излучения.

Излучение пачки происходит раз в секунду. Если пачка принята, то приемник ИК сигнала выдает сообщение на ноутбук о регистрации этой пачки импульсов.

Порядок проведения эксперимента: измеряется дальность приемо-передачи ИК сигнала для двух случаев: принятие 10 из 10 импульсов подряд и 0 из 10 импульсов, а также измеряются напряжения на ФД-24К и QPD150.

Варианты экспериментов:

- в полной темноте;

- при освещении люминесцентной лампой сверху на потолке в помещении;

- при освещении люминесцентной лампой прямо перед приемником в помещении;

- при освещении солнечным светом ИК приемник сзади сверху;

- при освещении солнечным светом ИК приемник спереди сверху.

В таблице ниже приведены результаты исследования влияния помех на работу ИК приемника TSOP4856.

Ниже представлен график зависимости дальности приемо-передачи от мощности помехи для различных типов помех. По вертикали средняя мощность помех в относительных единицах, так как измерить или вычислить реальную принимаемую мощность ИК приемником TSOP4856 проблематично. По горизонтали дальность приемо-передачи в метрах. Левая крайняя точка отрезков значение дальности при приеме 10 из 10 импульсов, а правая крайняя точка значение дальности при приеме 0 из 19 импульсов, т.е. данные отрезки дистанции ухудшения качества приема сигнала от 100 до 0 %. В таблице представлены относительные ухудшения характеристик относительно эксперимента "в полной темноте" в процентах,

Из графика видно, то с увеличением мощности помехи не только уменьшается дальность приемо-передачи, но и дистанция ухудшения качества приема сигнала от 100% до 0% становится короче.

Из таблицы видно, что в присутствии такой помехи, как солнце, дальность приемо-передачи ИК сигнала может уменьшиться почти на 70%, что может оказаться критическим, если не учесть влияние такой помехи при разработки системы с ИК. Влияние люминесцентного излучения тоже немаленькое и может уменьшить дальность, примерно, на 40%.

Заключение

Из полученных данных можно сделать следующий выводы:

1) чем сильнее помеха по мощности, тем меньше дальность приемо-передачи ИК сигнала;

2) влияние помехи на качество приема пропорционально мощности помехи (чем меньше помеха по мощности, тем длиннее отрезки, т.е. качество приема ИК сигнала медленнее ухудшается с увеличением расстояния);

3) разные типы помехи имеют разное влияние на работу TSOP4856.

В итоге, следует учитывать возможное влияние помех на ИК приемник при разработке систем с ИК, чтобы избежать проблем с внезапным отказом работы в присутствии таких помех.

Надеюсь статья оказалась полезной. Спасибо за внимание!

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru