Русский
Русский
English
Статистика
Реклама

Вода

Перевод Рендеринг каустики воды в реальном времени

30.09.2020 10:08:50 | Автор: admin
В этой статье я представлю свою попытку обобщения вычислений каустики в реальном времени с помощью WebGL и ThreeJS. Тот факт, что это попытка, важен, ведь найти решение, работающее во всех случаях и обеспечивающее 60fps сложная, если не невозможная задача. Но вы увидите, что при помощи моей методики можно достичь достаточно приличных результатов.

Что такое каустика?


Каустика это световые узоры, возникающие, когда свет преломляется и отражается от поверхности, в нашем случае на границе воды и воздуха.

Из-за того, что отражение и преломление происходят на волнах воды, вода действует здесь как динамическая линза, создающая эти световые узоры.


В этом посте мы сосредоточимся на каустике, вызванной преломлением света, то есть на том, что обычно происходит под водой.

Чтобы добиться стабильных 60fps, нам нужно вычислять её на графической карте (GPU), поэтому мы будем вычислять каустику только шейдерами, написанными на GLSL.

Для её вычисления нам потребуется:

  • вычислить преломлённые на поверхности воды лучи (в GLSL это легко, потому что для этого существует встроенная функция)
  • вычислить при помощи алгоритма нахождения пересечений точки, в которых эти лучи сталкиваются с окружением
  • вычислить яркость каустики, проверяя точки сближения лучей



Хорошо известное демо воды на WebGL


Меня всегда поражало это демо Эвана Уоллеса, демонстрирующее визуально реалистичную каустику воды на WebGL: madebyevan.com/webgl-water


Рекомендую прочитать его статью на Medium, в которой объясняется, как вычислять каустику в реальном времени при помощи меша фронта света и функций частной производной GLSL. Его реализация чрезвычайно быстра и очень красиво выглядит, но имеет некоторые недостатки: она работает только с кубическим бассейном и сферическим мячом в бассейне. Если поместить под воду акулу, то демо не будет работать: в шейдерах жёстко прописано, что под водой находится сферический мяч.

Он поместил под воду сферу потому, что вычисление пересечения между преломлённым лучом света и сферой это лёгкая задача, в которой используется очень простая математика.

Всё это подходит для демо, но я хотел создать более общее решение для вычисления каустики, чтобы в бассейне могли находиться любые неструктурированные меши, например акула.


Теперь давайте перейдём к моей методике. В этой статье я буду считать, что вы уже знаете основы 3D-рендеринга с помощью растеризации, а также знакомы с тем, как вершинный шейдер и фрагментный шейдер совместно работают над отрисовкой примитивов (треугольников) на экране.

Работа с ограничениями GLSL


В написанных на GLSL (OpenGL Shading Language) шейдерах мы можем иметь доступ только к ограниченному объёму информации о сцене, например:

  • Атрибуты текущей отрисовываемой вершины (позиция: 3D-вектор, нормаль: 3D-вектор и т.п.). Мы можем передавать свои атрибуты GPU, но они должны иметь встроенный тип GLSL.
  • Uniform, то есть константы для всего текущего отрисовываемого меша в текущем кадре. Это могут быть текстуры, матрица проецирования камеры, направление освещения и т.п. Они должны иметь встроенный тип: int, float, sampler2D для текстур, vec2, vec3, vec4, mat3, mat4.

Однако нет возможности получать доступ к мешам, присутствующим в сцене.

Именно поэтому демо webgl-water можно сделать только с простой 3D-сценой. Проще вычислять пересечение преломлённого луча и очень простой фигуры, которую можно представить с помощью uniform. В случае сферы её можно задать позицией (3D-вектор) и радиусом (float), поэтому эту информацию можно передавать шейдерам с помощью uniform, а для вычисления пересечений требуется очень простая математика, легко и быстро выполняемая в шейдере.

Некоторые выполняемые в шейдерах методики трассировки лучей передают меши в текстурах, но в 2020 году при рендеринге реального времени на WebGL такое решение неприменимо. Нужно помнить, что для получения достойного результата мы должны вычислять 60 изображений в секунду с большим количеством лучей. Если мы вычисляем каустику, используя 256x256=65536 лучей, то каждую секунду нам придётся выполнять значительное количество вычислений пересечений (которое также зависит от количества мешей в сцене).

Нам нужно найти способ представить подводное окружение в виде uniform и вычислить пересечение, сохраняя при этом достаточную скорость.

Создание карты окружений


Когда требуется вычисление динамических теней, то хорошо известной техникой является shadow mapping. Она часто используется в видеоиграх, хорошо выглядит и быстро выполняется.

Shadow mapping это техника, выполняемая в два прохода:

  • Сначала 3D-сцена рендерится с точки зрения источника освещения. Эта текстура содержит не цвета фрагментов, а глубину фрагментов (расстояние между источником освещения и фрагментом). Эта текстура называется картой теней (shadow map).
  • Затем карта теней используется при рендеринге 3D-сцены. При отрисовке фрагмента на экране мы знаем, есть ли другой фрагмент между источником освещения и текущим фрагментом. Если это так, то мы знаем, что текущей фрагмент находится в тени, и нужно отрисовывать его чуть темнее.

Подробнее о shadow mapping можно прочитать в этом превосходном туториале по OpenGL: www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping.

Также можно посмотреть интерактивный пример на ThreeJS (нажмите T, чтобы отобразить в левом нижнем углу карту теней): threejs.org/examples/?q=shadowm#webgl_shadowmap.

В большинстве случаев эта методика работает хорошо. Она может работать с любыми неструктурированными мешами в сцене.

Сначала я подумал, что могу использовать похожий подход для каустики воды, то есть сначала отрендерить подводное окружение в текстуру, а затем использовать эту текстуру для вычисления пересечения между лучами и окружением. Вместо рендеринга только глубины фрагментов я также рендерю позицию фрагментов на карте окружения.

Вот результат создания карты окружения:


Env map: в каналах RGB хранится позиция по XYZ, в альфа-канале глубина

Как вычислить пересечение луча и окружения


Теперь, когда у меня есть карта подводного окружения, нужно вычислить пересечение между преломлёнными лучами и окружением.

Алгоритм работает следующим образом:

  • Этап 1: начинаем с точки пересечения между лучом света и поверхностью воды
  • Этап 2: вычисляем преломление с помощью функции refract
  • Этап 3: переходим от текущей позиции в направлении преломлённого луча по одному пикселю в текстуре карты окружения.
  • Этап 4: сравниваем зарегистрированную глубину окружения (хранящуюся в текущем пикселе текстуры окружения) с текущей глубиной. Если глубина окружения больше, чем текущая глубина, то нам нужно двигаться дальше, поэтому мы снова применяем этап 3. Если глубина окружения меньше текущей глубины, то это значит, что луч столкнулся с окружением в позиции, считанной из текстуры окружения и мы нашли пересечение с окружением.



Текущая глубина меньше, чем глубина окружения: нужно двигаться дальше


Текущая глубина больше, чем глубина окружения: мы нашли пересечение

Текстура каустики


После нахождения пересечения мы можем вычислить яркость каустики (и текстуру яркости каустики) с помощью методики, описанной Эваном Уоллесом в его статье. Получившаяся текстура выглядит примерно так:


Текстура яркости каустики (обратите внимание, что эффект каустики менее важен на акуле, потому что она ближе к поверхности воды, что снижает сходимость лучей освещения)

Эта текстура содержит информацию о яркости освещения для каждой точки в 3D-пространстве. При рендеринге готовой сцены мы можем считывать эту яркость освещения из текстуры каустики и получить следующий результат:



Реализацию этой методики можно найти в репозитории Github: github.com/martinRenou/threejs-caustics. Поставьте ей звёздочку, если вам понравилось!

Если вы хотите посмотреть на результаты вычисления каустики, то можете запустить демо: martinrenou.github.io/threejs-caustics.

Об этом алгоритме пересечения


Это решение сильно зависит от разрешения текстуры окружения. Чем больше текстура, тем лучше точность алгоритма, но тем и дольше выполняется поиск решения (прежде чем найти его, нужно считать и сравнить большее количество пикселей).

Кроме того, считывание текстуры в шейдерах приемлемо, если вы не делаете это слишком много раз; здесь мы создаём цикл, продолжающий считывать из текстуры новые пиксели, что не рекомендуется.

Более того, в WebGL запрещены циклы while (и на то есть веская причина), поэтому нам нужно реализовать алгоритм в цикле for, который может быть развёрнут компилятором. Это означает, что нам требуется условие завершения цикла, известное во время компиляции, обычно это значение максимальной итерации, которое заставляет нас прекратить поиск решения, если мы не нашли его в течение максимального количества попыток. Такое ограничение приводит к неверным результатам каустики, если преломление оказывается слишком важным.

Наша методика не так быстра, как упрощённый способ, предолженный Эваном Уоллесом, однако она гораздо более гибкая, чем подход с полномасштабной трассировкой лучей, а также может использоваться для рендеринга в реальном времени. Однако скорость по-прежнему зависит от некоторых условий направления света, яркости преломлений и разрешения текстуры окружения.

Завершаем обзор демо


В этой статье мы рассмотрели вычисление каустики воды, но в демо использовались и другие техники.

При рендеринге поверхности воды для получения отражений мы использовали текстуру скайбокса и кубические карты. Также мы применили преломление к поверхности воды с помощью простого преломления в экранном пространстве (см. эту статью об отражениях и преломлениях в экранном пространстве), эта техника физически некорректна, однако визуально убедительна и быстра. Кроме того, для большего реализма мы добавили хроматические аберрации.

У нас есть ещё идеи по дальнейшему улучшению методики, в том числе:

  • Хроматические аберрации на каустике: сейчас мы применяем хроматические аберрации к поверхности воды, но этот эффект также должен быть видим на подводной каустике.
  • Рассеивание света в объёме воды.
  • Как посоветовали Мартин Жерар и Алан Волф в Twitter, мы можем повысить производительность с помощью иерархических карт окружения (которые будут использоваться как деревья квадрантов для поиска пересечений). Также они посоветовали рендерить карты окружения с точки зрения преломлённых лучей (предполагая, что они совершенно плоские), благодаря чему производительность станет независимой от угла падения освещения.

Благодарности


Эта работа по реалистичной визуализации воды в реальном времени была проведена в QuantStack и финансировалась ERDC.
Подробнее..

От свечей до зеленой энергии использование парафина в подземных хранилищах возобновляемой энергии

07.08.2020 10:16:09 | Автор: admin


Использование возобновляемых источников энергии обещает много аппетитных плюшек: значительная экономия ресурсов, улучшение экологической ситуации и даже социальные изменения в некоторых регионах планеты. Однако, чтобы эти преимущества были использованы на все 100% необходимо научиться эффективно хранить собранную, но неиспользованную энергию. На данный момент весьма распространенным методом являются подземные хранилища. С их помощью, например, можно в зимние месяцы использовать излишки собранной летом солнечной энергии. Ученые из Галле-Виттенбергского университета им. Мартина Лютера (Германия) решили проверить, может ли использование парафинового воска в строительстве подземных хранилищ термальной энергии сделать их более надежными, долговечными и эффективными. Какие эксперименты для проверки данной идеи были проведены, что они показали, и так ли хорош воск, как о нем думали ученые? Об этом мы узнаем из доклада исследователей. Поехали.

Основа исследования


Очевидно, что далеко не во всех регионах нашей прекрасной планеты одни и те же источники возобновляемой энергии будут выдавать одинаковую выработку круглый год. Солнечная энергия является ярким тому примером.

Методов хранения излишков накопленной энергии (в данном случае в виде тепла) существует несколько: латентный, химический, механический и т.д.

В то время как латентные аккумуляторы тепла используют эффекты фазового перехода (например, вода/лед), термохимические аккумуляторы основаны на обратимых эндо- и экзотермических реакциях, таких как гидратация солей. Эти конкретные методы вполне действенны, но редко применяются из-за высоких начальных материальных затрат.

Еще одной распространенной технологией является хранение тепловой энергии в больших искусственных наземных бассейнах. В качестве носителя тепла в таких сооружениях используется вода или водонаполненный гравий объемом несколько тысяч кубометров.

Методик хранения много, все они в той или иной степени работают, однако имеются и проблемы, некоторые из которых общие для всех методик. Самой очевидной проблемой является потеря тепла.

Чтобы избежать утечек, бассейн, где располагается носитель тепла (вода, например), должен быть герметичен и обладать низкой теплопроводностью. Решением этой проблемы на данный момент является тонкая пластиковая оболочка. Однако используемые для этой оболочки материалы нельзя назвать идеальными, а потому утечки все равно имеются. Причиной тому может быть низкое качество или недолговечность изолирующего материала, что приводит к контакту теплоносителя и окружающей среды, от чего эффективность всей системы снижается.

Учитывая вышеописанные проблемы, ученые решили проверить возможность применения воска в качестве изолирующего материала для предотвращения тепловых утечек в хранилищах.

Парафиновый воск представляет собой смесь молекул углеводородов с различным числом атомов углерода. Длина С-цепей составляет от 20 до 60 для мягких и твердых парафиновых восков, и этот показатель контролирует как точки плавления, так и точки затвердевания материала. Например, при температуре затвердевания 42 C и температуре плавления 40 C молекулы имеют длину цепочки около 21 атома углерода. Популярность парафина в области хранения объясняется еще и достаточно хорошим показателем удельной теплоты плавления (от 150 кДж/кг до 220 кДж/кг) и достаточно низкой теплопроводностью (от 0.15 Вт/мК до 0.30 Вт/мК, что на порядок ниже, чем у водонасыщенного гравия около 2.4 Вт/мК). Помимо этого парафин является гидрофобным и нетоксичным материалом.

Одно дело высказывать красивые теории, совершенно другое иметь фактические доказательства ее достоверности. Чтобы это сделать, ученые провели ряд экспериментов, в которых реализовывались различные комбинации условий (температурный режим, толщина тестируемой парафиновой мембраны и т.д.).

Подготовка к эксперименту


На первом этапе исследования ученые измерили потери энергии при использовании парафина внутри двух секций герметизирующих слоев конструкции PTES (от pit thermal energy storage подземное хранилище термальной энергии).


Изображение 1: схема экспериментальной установки (вид сверху) для тестирования тепловых характеристик, показывающая расположение датчиков температуры и используемых материалов (PVC поливинилхлоридная пленка; PS полистирольные стеклянные пластины).


Изображение 2: фото экспериментальной установки с черной PVC-пленкой (а) и (b-d) PS в качестве герметизирующего слоя. Обозначения: 1 окружающий материал; 2 изоляционный слой парафина; 3 PVC-пленка; 4 вода; 5 уплотнительные PS-пластины; 6, 7 датчики температуры в парафине / воде; 8 нагревательное устройство; 9 камера.

В качестве внешнего ограждения использовался контейнер из акрилового стекла, размеры которого составили 1000 x 300 x 600 мм (длина, ширина, высота). Внутри был расположен небольшой накопитель тепла с деионизированной водой в качестве материала-носителя. Сам накопитель (600 x 200 x 400 мм) был дополнительно заключен во внутреннюю герметизирующую оболочку.

В первой серии экспериментов герметизация проводилась с помощью жестких пластин из полистирольного стекла (PS) толщиной 5 мм. Во второй серии опытов пластины PS были заменены поливинилхлоридной (ПВХ или PVC) фольгой толщиной 0.5 мм, которая обычно используется для герметизации существующих на данный момент резервуаров.

Ученые отмечают, что сравнение PS и ПВХ пластин позволяет сосредоточить внимание на потенциальной механической деформации при включении в систему изоляции парафина, который был залит между слоями герметизирующей мембраны на одной из коротких сторон контейнера (2a и 2b).

В опытах использовался чистый парафиновый воск. Внутри герметизирующей мембраны он был распределен по всей поверхности без пустующих пространств (пор), чего не было бы в случае с парафиновыми композитными материалами.

В серии опытов с PS пластинами толщина слоя парафина составила 20 мм (2b), а объем 1600 мл. В серии опытов с ПВХ были такие же параметры (). Использованный парафин имеет относительно низкую температуру затвердевания при 42 C и температуру плавления примерно при 40 C.

Верхняя крышка контейнера была изготовлена из прозрачной пластиковой фольги, что сводит к минимуму эффекты испарения. Чтобы дополнительно защитить эксперимент от воздействия окружающей среды и имитировать зернистые свойства почвы, окружающей резервуар в реальных условиях, был использован гранулят из вспененного стекла. Учитывая, что этот материал является вторсырьем и имеет размеры гранул не более 58 мм, он также работает как внешний теплоизолятор (теплопроводность = 0.084 Вт/мК).

Для нагрева среды применялся лабораторный термостат с электрической мощностью 2 кВт (2c и 2d), при этом нагревательный элемент с циркуляционным насосом был установлен в центре водяного столба. Таким образом была создана имитация процедуры прямой загрузки без термической стратификации в бассейне и достигнуто однородное распределение температуры во всех областях среды. Для измерения температуры и регистрации данных использовались два 20-канальных мультиплексора Keysight 34901A и один Keysight 34972A. Всего было подключено 15 датчиков температуры (2d) Pt100 (характеристики: нержавеющая сталь, водонепроницаемый, 4 провода, длина 500 мм, измерительный наконечник 20 мм, точность 1/10 DIN).

Точность датчиков напрямую зависит от температуры. В диапазоне температур за все эксперименты она составила от 0.04 C (при 20 C) до 0.06 C (при 60 C). Три датчика были непосредственно внедрены в сам парафин на разной высоте.

Визуальное наблюдение за экспериментами велось посредством установленной HD-камеры.


Изображение 3: а схема процесса экспериментов по определению тепловых характеристик; b фазы эксперимента (розовый задержка нагрева/охлаждения из-за эффектов фазовой случайности; линии: синяя вода, зеленая парафин, желтая окружающий материал).

Второй этап исследования заключался в проверке тепловых потерь в случае применения парафина.

Испытания на герметичность подтвердили желаемый механизм самовосстановления при использовании парафинового воска в гидроизоляционных мембранах для хранения. Поскольку парафин используется в чистом виде, он имеет прямой тепловой переход с интерфейсами внутреннего и внешнего слоев и поэтому должен сначала расплавиться в фазе нагрева. Впоследствии он должен быть в виде гидрофобной подвижной жидкости для перекрытия путей к более холодному окружающему материалу в случае утечек.


Изображение 4: схема экспериментальной установки для проверки утечек (зеленый парафин, синий вода, красный слой ПВХ, желтый окружающий материал. Точки указывают на положение датчиков.


Изображение 5: a фото экспериментальной установки; b трещина в ПВХ-фольге с выходящим парафином; с песок с парафином; d непроницаемое соединение окружающего материала с поровыми пространствами, заполненными парафином.

Операционное и измерительное оборудование (датчики, нагрев и т.д.) были такими же, как в предыдущей экспериментальной установке. Отличия были лишь в некоторых габаритах: внешний кожух из полистирола был меньше (400 x 200 x 200 мм), а окружающий материал был установлен лишь с одной стороны контейнера (). Слой парафина толщиной 20 мм (800 см3) был нанесен в непосредственном контакте с внутренним заполнением деионизированной воды (280 мм x 200 мм x 200 мм). Во внешней PS пластине окно 50 x 50 мм было покрыто ПВХ пленкой для имитации различных типов утечек в герметизирующей фольге, таких как трещины, большие отверстия и перфорированные зоны (5b).

Площадь окружающего контейнер материала в конечном итоге составила 100 x 200 x 200 мм, что позволило отчетливо наблюдать и достаточно точно измерять выход парафинового воска и его дисперсию (5c и 5b).

В качестве окружающего материала выступило два вещества, каждое из которых применялось в отдельной серии опытов: мелкий песок (размер зерна: от 0.063 до 2 мм) использовался для имитации реальных условий; стеклянные шары диаметром 3 мм для имитации идеальной зернистой структуры и для проверки поведения расплавленного парафина в средах с сильно пористым пространством ().


Изображение 6: а схема процесса экспериментов на утечку; b вид сверху на сформированные после утечки области парафина.

Результаты экспериментов


Графики, представленные ниже (7 и 8) демонстрируют результаты опытов по тепловым характеристикам в фазах нагрева и охлаждения для шести выбранных экспериментальных настроек.


Изображение 7: а задержка нагрева лабораторного накопителя тепла из-за плавления парафинового воска; b дополнительно накопленное тепло в парафиновом воске во время фазы нагрева.


Изображение 8: а задержка охлаждения лабораторного накопителя тепла из-за затвердевания парафина; b дополнительное тепло, выделяемое парафином, измеренное в фазе охлаждения.

Ученые отмечают, что первые положительные результаты экспериментов можно было увидеть уже при оценке покадровой съемки, поскольку жидкие компоненты можно было наблюдать даже при низких температурах. Следовательно, даже эксперименты, где целевые температуры ниже точки плавления использованного парафинового воска, показывают значительные эффекты замедления и накопления / повторного использования тепловой энергии.

Это может быть связано с составом парафинового воска, так как использованный в опытах парафин не является высокоочищенным материалом. Поскольку он содержит молекулы углеводородов разной длины, фракционирование происходит при нагревании или охлаждении, и различные частичные участки плавятся и затвердевают в разных диапазонах температур.

Следует отметить, что это относится ко всем индуцированным фазовым изменениям, приводящим не к четким и резким, а к мягким и медленным переходам.

Далее были проанализированы деформации парафинового слоя во время плавления при использовании ПВХ-пленки. Смещение парафинового воска из-за давления наполнителя в направлении окружающего материала привело к появлению клиновидной выпуклости. В результате толщина изолирующего слоя парафина стала неоднородной по вертикали (сверху толще, снизу уже ввиду смещения). Однако подобные побочные эффекты можно нивелировать посредством использования дополнительной изолирующей пленки из полистирола.

После анализа визуальных данных (записей камеры) ученые приступили к анализу температурных данных, начиная с фазы нагрева (изображение 7). Анализ показал значительные задержки из-за плавления парафина во всех шести вариантах испытаний. Это примечательно тем, что эта фаза относительно короткая с линейным увеличением температуры от 0.49 до 0.71 К/мин.

Диапазон значений периода задержки (7a) различных экспериментальных настроек велик, от 360 с до 1600 с (средняя задержка плавления около 1000 с). Этот показатель на 80% выше, чем в случае использования обычной ПВХ-пленки. Следовательно, результаты всех тестов подтверждают достижение желаемого эффекта от использования парафина: быстрая зарядка хранилища может быть эффективно задержана за счет процесса плавления парафина. Кроме того эти тесты дополнительно указывают на снижение латеральных тепловых потерь.

На 3b видно, что существует тесная корреляция между временем задержки и тепловой энергией, накопленной в фазе нагрева (7b). Следовательно, значения энергии также показывают большие колебания, в диапазоне от 4.21 до 12.44 кДж/кг при среднем значении 6.55 кДж/кг. Эти значения достаточно малы, однако обнаружение более медленных процессов плавления может быть усугублено быстрым нагревом.

Что касается уплотнительного материала, то его влияние достаточно незначительно. Разница между ПВХ и PS при одинаковой температуре невелика, и значение для PS, равное 5.78 кДж/кг, ненамного превышает среднее значение 6.71 кДж/кг для всех экспериментов с ПВХ.

Исходя из самых распространенных систем хранения тепловой энергии (PTES), при объеме накопителя в 50 000 м3 толщина парафинового слоя должна быть порядка 0.1 м при объеме в 1000 м3.

Результаты в конечном итоге показывают увеличение емкости накопителя примерно с 3.16106 МДж (0.88 МВтч) до 9.33106 МДж (2.59 МВтч). Другими словами, использование парафина слегка увеличивает объемы хранимой энергии. Хоть разница и не очень велика, но это можно расценивать как приятный бонус, учитывая, что суть парафина не в увеличении объема, а в его сохранности (в борьбе с утечками).

Далее были проведены расчеты и оценка динамики и влияния парафина на систему во время фазы охлаждения (изображение 8).

Как и следовало ожидать, фаза охлаждения отражается не линейным градиентом температуры и энергии, а экспоненциальным убыванием, сходящимся к температуре окружающей среды. В результате, этот этап охватывает гораздо более длительные периоды времени, пока температура системы не будет равна температуре окружающей среды (; в среднем 95 часов, максимум 144 часа).

Первые результаты анализа фазы охлаждения уже показывают существенные различия, так как периоды замедления, вызванные затвердеванием парафинового воска, на несколько порядков выше (). Они варьируются от 8500 с (~ 2.5 ч) до примерно 17000 с (~ 4.7 ч), при среднем значении 14000 с (~ 3.9 ч). Кроме того, заметная разница между значениями для PS и ПВХ при одинаковой температуре (34 C) указывает на значительное влияние герметизирующего материала, поскольку можно использовать больше парафинового воска, чтобы предотвратить процессы деформации. Однако при более высоких рабочих температурах не наблюдается четкой тенденции увеличения времени задержки.

В целом результаты задержек на этапе охлаждения демонстрируют более эффективную применимость парафина в контексте хранилищ энергии. В результате крутизна тепловых градиентов по направлению к окружающей среде может быть уменьшена, а потери энергии сведены к минимуму.

Хотя кривая естественного охлаждения, применяемая в экспериментах, не отражает должным образом условия периодического накопления энергии и разрядки в конкретном случае применения парафина, результаты доказывают, что охлаждение задерживается за счет энергии, рекуперированной при затвердевании парафинового воска. Таким образом, кратковременные процессы разряда могут быть буферизованы и компенсированы в течение более длительного периода, что приводит к более медленному снижению температуры в корпусе накопителя и, следовательно, к меньшему влиянию на структуру уплотнительного материала (и, как следствие, на его долговечность).

Если перевести лабораторные результаты в плоскость реальных условий, то они показывают, что объем парафина в 1000 м3 обеспечит дополнительную емкость хранения от 12.01 МВтч до 40.70 МВтч (в среднем 28.77 МВтч).


Изображение 9: измерения парафиновых образований и окружающего материала при разных вариантах деформации контейнера.

Как мы уже знаем, в рассматриваемой нами сегодня концепции парафин может служить в качестве закупорки образованных деформаций внешних стенок контейнера хранилища.

Поскольку формы различных типов утечек (трещины, отверстия круглой формы и т.д.) сильно различаются, учитывать их длину или диаметр было бы нецелесообразно. Посему было решено использовать общую площадь деформации в качестве вспомогательного параметра для сравнения размеров (A на изображении 9).

Несмотря на разную динамику деформаций ввиду их габаритных и геометрических особенностей, методика самовосстановления стенок за счет парафина показала отличные результаты. Принцип действительно прост: в случае возникновения трещины (или любой другой деформации) парафин вступает в контакт с окружающим материалом, температура которого достаточно низка, чтобы вызвать его затвердевание, что и приводит к закупорке отверстия.

Чтобы понять, сколько парафина будет потеряно из общего объема в случае ремонта деформации, был проведен сравнительный анализ массы и объема образованных в случае этого процесса тел.


Изображение 10: масса (а) и объем (b) образовавшихся после индуцированной утечки тел, состоящих из парафинового воска и окружающего материала.

Анализ показал, что доля парафина в образовавшихся телах составляет от 36% до 67%. Из этого следует, что парафиновая стенка теряет от 5 см3 до 80 см3 своего объема. При учете общего объема в 800 м3 потери парафинового воска невелики и составляют от 1.5% до 17%.

Эти результаты доказывают, что свойства самовосстановления парафина могут применяться без значительных расходов используемого материала и что предложенный подход работает вполне эффективно.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Многие вещи, которые человек использует не первый век, обладают свойствами и потенциальными вариантами применения, о которых ранее никто не думал. Парафин является ярким тому примером.

Ресурсы нашей планеты не безграничны, а потребляем мы их ой как много. Следовательно, развитию технологий возобновляемой энергии стоит уделять максимум внимания. Когда одни ученые занимаются вопросами сбора зеленой энергии, другие пытаются создать идеальную методику ее хранения.

В данном исследовании был описан не столько новый метод, сколько модификация имеющегося. В применимых на данный момент подземных хранилищах энергии основной проблемой являются утечки оной. Авторы сего труда предположили, что парафин может быть дешевым и эффективным способом решения этой проблемы. И это неудивительно, ведь парафин обладает рядом полезных свойств: начиная от гидрофобности, заканчивая низкой температурой плавления.

Результаты экспериментов показали, что использование небольшого объема парафина в качестве дополнительной оболочки для хранилищ энергии способствует значительному снижению утечек и повышению способности системы аккумулировать тепло.

В дальнейшем ученые намерены выяснить, каким образом перевести столь воодушевляющие лабораторные результаты в промышленные масштабы, так как при банальном увеличении габаритов системы меняется ее динамика.

Однако, какие бы сложности не стояли на пути данного исследования, ученые не сомневаются в его важности, ибо любые новые данные, новые техники и разработки имеют огромное значения для всей индустрии возобновляемой энергии, в которой так отчаянно нуждается человечество.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Искра жизни теория зарождения первой органики

30.09.2020 10:08:50 | Автор: admin


Жизнь человека по меркам Вселенной всего лишь мгновение, а по меркам мухи-однодневки целая вечность. Для нас же оценка продолжительности нашего собственного жизненного пути осложнена событиями, которые происходят в процессе, людьми, которых мы встречаем и с которыми расстаемся, эмоциями, которые испытываем. Ведь чем сложнее мозг существа, тем сложнее его самосознание. Однако любой путь определяется не только его насыщенностью, но и фактом того, что он рано или поздно заканчивается. Люди многие века пытаются ответить на вопрос, что лежит за гранью жизни, и четкого безапелляционного ответа нет ни у кого. Тем не менее до остается не менее таинственным и загадочным, чем после. Ученые из Американского музея естественной истории (Нью-Йорк, США) провели исследование, в котором описывается возможный вариант зарождения органических молекул миллиарды лет тому назад. Что могло послужить началом жизни на планете, где это произошло, и как эти знания могут помочь в понимание нашего мира здесь и сейчас? Ответы на эти вопросы сокрыты в докладе ученых. Поехали.

Основа исследования


Как уже было сказано ранее, достоверно неизвестно, что ждет человека или любой другой живой организм после того, как его тело теряет жизнеспособность. Этим вопросом задаются физики, биологи, теологи и философы. У все у них есть ответы, каждый из которых имеет право на существование, однако это лишь теории, которые эмпирически подтвердить по понятным причинам пока никому не удавалось.

Что касается того, что было до начала всего, то этот вопрос такой же сложный и неоднозначный. Теория большого взрыва подарила нам идею зарождения Вселенной, но остаются вопросы касательного того, что было до него. Эволюционная теория Дарвина помогла понять как между собой взаимосвязаны виды на нашей планете, как они эволюционировали, как одно преобразовалось в другое. Но и тут возникают вопросы: что или кто был первым, почему жизнь зародилась, при каких обстоятельствах, случайно ли было это событие или это чей-то великий замысел. Вопросы на века, не иначе.

Тем не менее, знания, которыми обладает современный человек, могут послужить инструментом в построении цепочки событий, которые привели к зарождению жизни. Нам известно, что основополагающими элементами в зарождении и поддержании жизни являются водород, азот и кислород. В современной жизни большинство органических молекул образуются в результате восстановления углекислого газа (CO2) посредством нескольких путей фиксации углерода (например, фотосинтез в растениях). Но большинство этих путей либо требует энергии от клетки, либо они появились относительно поздно. Возникает вопрос что было до этого?

По мнению ученых одним из путей образования органики могло быть восстановление CO2 с помощью H2. Геологические исследования показывают, что СО2 находился в относительно высоких концентрациях в океане во время катархея*, тогда как H2 был продуктом множественных процессов в земной коре и выделялся наружу за счет гидротермальных источников.
Катархей* геологический эон (период времени), продлившийся первые 600 миллионов лет существования Земли.
Следовательно, на стыке двух сред (океана и Земной коры) между двумя растворенными газами возникала реакция, которая приводила к образованию углеводородов, сыгравших в последствии важную роль в переходе от геохимии к биохимии.


Изображение 1

В стандартных условиях (1 ат, 25 C, pH 7) реакция между CO2 и H2 с образованием формиата (HCOO) термодинамически неблагоприятна с G0 = + 3.5 кДж/моль. Однако в древних щелочных источниках () H2 присутствовал в богатых ОН водах гидротермального источника, что способствовало его окислению в воду. При этом CO2 был бы растворен в относительно кислом океане, что облегчило протонирование в его восстановлении до HCOO.

С помощью минералов Fe(Ni)S, осажденных на интерфейсе между океаном и корой, градиента pH более трех единиц должно было быть достаточно для увеличения жизнеспособности реакции на ~ 180 мВ, что делает ее благоприятной для образования органики.

После образования формиат обладал бы достаточным абиотическим химическим потенциалом. К примеру, известно, что формильные группы образуют промежуточные соединения восстановительного цикла трикарбоновых кислот* и восстановительного Ацетил-КоА пути*, предполагая возможный путь развития биологического метаболизма.
Восстановительный цикл трикарбоновых кислот* череда химических реакций синтеза органики из диоксида углерода и воды.
Восстановительный Ацетил-КоА путь (путь Вуда-Льюнгдаля или WL-путь)* цепочка биохимических реакций, необходимых для фиксации СО2 и для получения энергии.
Другая теория предполагает, что при нагревании в присутствии аммиака, который также является предполагаемым компонентом щелочных вод, из формиата образуется формамид [HC(O)NH2] высокореакционная молекула, являющаяся краеугольным камнем одной из теорий возникновения жизни (Formamide and the origin of life). Дальнейшая реакция этой смеси дает цианистый водород (HCN), который также является основой еще одной теории образования органики (Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism). В свою очередь, дегидратация формиата приводит к образованию монооксида углерода (CO) (Activated Acetic Acid by Carbon Fixation on (Fe,Ni)S Under Primordial Conditions). Как видно, теорий происхождения органических соединений немало, и каждая из них имеет вполне логичные объяснения.

Несмотря на то, что на ранней Земле существовало несколько источников восстановленного углерода и множество вероятных сред, в которых могли бы находиться богатые химические вещества, описанный выше щелочной гидротермальный сценарий куда более интересен для ученых ввиду его сходства с WL-путем фиксации углерода.

Дополнительным аргументом в пользу потенциальной значимости щелочного гидротермального сценария образования органики является факт того, что WL-процесс это единственный из шести известных биологических путей фиксации углерода, который высвобождает энергию в целом, а не потребляет ее, а его вариации присутствуют у существующих представителей обеих архей (метаногены*) и бактерии (ацетогены*).
Метаногены* археи, образующие метан как побочный продукт метаболизма в бескислородных условиях.
Ацетогены* бактерии, которые выделяют ацетат (CH3COO) в качестве конечного продукта анаэробного дыхания или гомоацетатного брожения.
Первым шагом на этом пути является восстановление CO2 с помощью H2 с образованием формиата (HCOO или его дегидратированный электронный эквивалент, т.е. CO).

Эта реакция носит эндергонический* характер, поэтому некоторые представители как архей, так и бактерий используют либо бифуркацию электронов*, либо хемиосмос* через клеточную мембрану, чтобы привести в действие это процесс.
Эндергонические реакции* химические реакции, требующие энергии извне для их протекания.
Бифуркация электронов* механизм разделения электронов в окислительно-восстановительной реакции.
Хемиосмос* преобразование энергии цепи переноса электронов в энергию АТФ (аденозинтрифосфат).
Однако в отсутствие механизмов клеточного объединения, таких как бифуркация электронов или хемиосмос, эта первая эндергоническая стадия является ключевым энергетическим узким местом в WL-пути и остается главным открытым вопросом в исследованиях происхождения биологической фиксации углерода.

В данном исследовании ученые демонстрируют абиотическое косвенное восстановление CO2 до HCOO с помощью H2, вызванное микрофлюидным градиентом pH в осадках Fe(Ni)S, посредством механизма, который напоминает поток разделенных электронов пути WL.

Результаты исследования


В первую очередь был подготовлен лабораторный эквивалент щелочной гидротермальной среды с имитацией интерфейса между корой Земли и водами океана. Щелочная составляющая включала в себя Na2S (100 мМ), K2HPO4 (10 мМ) и Na2Si3O7 (10 мМ) в деаэрированной воде. Аналог океана включал в себя FeCl2 (50 мМ) и NiCl2 (5 мМ). Обе жидкости были подведены к Y-образному боросиликатному микрофлюидному реактору (1B).

Окружающее давление H2 и CO2 оказалось недостаточным для сокращения выбросов CO2, поэтому вместо попытки растворения любого газа путем барботирования* перед реакцией было решено использовать микрожидкостные насосы, работающие от давления газа.
Барботирование (барботаж)* процесс пропускания газа через слой жидкости.
Щелочная жидкость вытеснялась H2 при давлении 1.5 бар, а аналог океана выталкивали CO2 при том же давлении.

Каждый цикл реактора был разделен на две последовательные стадии: первая для осаждения осадков Fe(Ni)S на стыке (на интерфейсе) двух жидкостей; вторая (постосаждение) для попытки создания реакции между CO2 и H2 (или других реагентов).

В результате взаимодействия щелочной жидкости и океанического аналога в течение 15-60 секунд на стадии выпадения осадков образовался осадок шириной от 30 до 60 мкм на интерфейсе между двух жидкостей, видимый под цифровым оптическим микроскопом (в центре на ). Удаление металлов со стороны аналога океана после выпадения осадков предотвратило увеличение осадка до критического значения перекрытия канала реактора.

После образования осадка и для предотвращения засорения микрофлюидных каналов дальнейшим осаждением на второй стадии океаническая жидкость была переключена на чистую деаэрированную воду, вытесненную CO2 (справа на 1B). При этом аналог щелочной жидкости оставался прежним с Na2S, K2HPO4 и Na2Si3O7, выталкиваемыми H2.

Далее был определен уровень pH поступающих жидкостей в точке входа: аналог океана pH 3.9, щелочные воды pH 12.3. При скорости потока 5 мкл/мин для каждого входа время пребывания жидкостей в центральном канале составляло ~ 3.3 с, поэтому системе было позволено работать не менее 2 минут перед сбором выходных данных. Далее был собран общий выход реактора (смесь жидкостей), который был проанализирован с помощью ЯМР-спектроскопии. Анализ показал, что среднее значение концентрации HCOO составило 1.5 мкМ.


Таблица 1: результаты экспериментов.


Изображение 2

Синглетные пики в спектрах 1H ЯМР (8.42 ppm (частей на миллион); 2A) и 13C ЯМР (165.8 ppm) соответствуют образцам чистой (> 98%) муравьиной кислоты. Выполнение стадий осаждения и реакции с изотопно обогащенным (99% 13C) 13CO2 (эксперимент 2) дало более сильный синглет в спектре 13C (165.8 ppm; 2B) и ожидаемое расщепление синглета формила на дублет (сигнал, расщепленный на два пика) в спектре 1H (J = 195 Гц) за счет взаимодействия 1H 13C в формильной группе ().

Как оказалось, H2 необходим для сокращения выбросов CO2. С жидкостью на стороне выпускного отверстия, управляемой N2 вместо H2 (т.е. в отсутствии H2 как во время, так и после осаждения), продуктов восстановления не было обнаружено (эксперимент 3; 2E и 2F).

Для более детального понимания происходящего процесса были выполнены дополнительные эксперименты по маркировке дейтерием (2H или D) (эксперименты 4 и 5), используя изотопные варианты на протяжении всех экспериментов.

Независимо от того, использовался ли немаркированный H2 (эксперимент 1) или D2 (эксперимент 4) для управления насосом на стороне щелочной жидкости, наблюдались исключительно неизотопно отмеченный HCOO в жидкостном выходе. Это наблюдение позволяет предположить, что сокращение выбросов CO2 может происходить исключительно на стороне океана.

И наоборот, с D2O, используемым вместо обычного H2O на стороне океана, и с немаркированным H2, приводящим в действие насос на стороне щелочной жидкости (эксперимент 5), был обнаружен исключительно дейтерированный формиат (DCOO), о чем свидетельствует триплет в 13C ЯМР (J = 33 Гц) и отсутствие каких-либо других заметных пиков (2D). Это дополнительно подтверждает, что сокращение CO2 соответствует изотопному составу на стороне океана, а не на стороне земной коры.

На следующем этапе исследования была проверена роль градиента pH моделируемой подводной щелочной гидротермальной системы. Успешные сокращения CO2, представленные в таблице 1, происходили при pH аналога океана 3.9 и pH аналога сброса 12.3.

При смешивании этот начальный pH, равный 8.4 единиц, неизбежно снизился бы, но градиенты pH, составляющие несколько единиц, успешно сохраняются с течением времени в микрожидкостных масштабах, особенно в присутствии осадка на интерфейсе.

Необходимо было понять, требуется ли такой градиент pH в системе восстановления для облегчения окисления H2 на щелочной стороне и восстановления CO2 на кислотной стороне (1A). После осаждения в тех же условиях, что и для эксперимента 1, оценивались эффекты различных уровней pH и состава каждой из двух жидкостей (таблица 2). Замена имитатора щелочного источника чистым H2O, управляемым H2, не дала результата (таблица 2, эксперимент 6).


Таблица 2: результаты экспериментов с различным значением рН.

Аналогичным образом, подкисление жидкости аналога щелочного источника с помощью HCl до pH 3.9 и pH 7.0 не привело к образованию формиата (эксперименты 7 и 8).

Добавление 100 мМ Na2CO3 в океаническую жидкость при одновременном использовании CO2 в качестве движущего газа (эксперимент 9) повысило pH океана до 9.8, и в этих условиях продукт не был обнаружен. Удаление силиката со стороны источника после осаждения все еще давало формиат (эксперимент 10), как и удаление силиката и фосфата при наличии только Na2S (эксперимент 11).

Имея только K2HPO4 после осаждения на стороне щелочного источника, были обнаружены лишь остаточные количества формиата (ниже предела количественного определения в 0.37 мкМ), возможно, из-за недостаточно щелочного pH 9.1 (эксперимент 12). А вот более щелочной K3PO4 повысил pH до 12.1 и привел к образованию значительно большего количества формиата (эксперимент 13).

Ученые заявляют, что не могут полностью исключить вероятность того, что связанный с осадком сульфид действует как восстановитель в дополнение к H2. Однако вышеописанные результаты одновременно подтверждают роль градиента pH и показывают, что непрерывная подача водного сульфида в системе не требуется.

Удаление Ni из осадочной жидкости океана (эксперимент 14) привело к образованию лишь небольшого количества формиата. И наоборот, замена Fe, чтобы оставить Ni в качестве единственного металла в осадочной жидкости океана (NiCl2, 55 мМ; эксперимент 15), дало 1.4 мкМ формиата, что указывает на решающую роль Ni в составе осадков.

Удаление FeCl2 и NiCl2 из океанической жидкости, как и ожидалось, не привело к образованию определяемого формиата и осадка (эксперимент 16).

Самым подходящим объяснением происходящего ученые считают именно электрохимический процесс (), однако существует несколько альтернативных механизмов сокращения выбросов CO2, связанных с окислением H2, которые при этом менее вероятны.

Один из таких механизмов можно назвать самым простым, но и наименее биохимически гомологичным восстановление углерода за счет прямого гидрирования (-). В таком варианте водород из H2 будет передаваться непосредственно в CO2 либо в виде атомарного водорода (классическое гидрирование) или в виде гидрида (ионное гидрирование).


Изображение 3

Другими словами, выходной продукт в таком механизме должен соответствовать изотопной сигнатуре выделяемого газа H2/D2. Вместо этого произведенный в таком случае формиат соответствует только изотопному составу воды на стороне океана, независимо от состава газа или воды на стороне гидротермального источника.

В механизмах прямого гидрирования адсорбированные частицы водорода могут обмениваться с окружающей жидкостью, так что исходная изотопная сигнатура теряется. Однако любой такой процесс подразумевает миграцию значительного количества жидкости через осадок. Существенное перемешивание жидкостей должно было вызвать смешанный сигнал H/D формила, которого в ходе практических опытов не наблюдалось, полностью исключая гидрирование.

Другой возможный вариант заключается в том, что атомы водорода в образующемся формиате могут не происходить непосредственно из H2. Вместо этого механизм может осуществляться посредством окислительно-восстановительного цикла краевого или углового атома Fe или Ni (M2+ M0), при котором металл сначала восстанавливается H2 (оставляя два протона для разбавления), а затем металл переносит приобретенные электроны на СО2 с сопутствующим отрывом протонов из локальной водной среды (3C-3E).

Однако такой вариант развития событий сложно сопоставим с реальными показателями рН, которые были во время опытов. Уровень рН в 3.9 достигался исключительно за счет растворения CO2 в воде. Таким образом, любые протоны со стороны океана должны происходить в результате диссоциации угольной кислоты посредством:

H2O + CO2 H2CO3 H+ + HCO3

Когда же реакция проводилась с использованием D2O (эксперимент 5) в качестве растворителя на стороне океана, в выходном потоке обнаруживался исключительно DCOO. Из этого следует, что сокращение CO2 не происходило на стороне источника, где присутствовали обычная вода (H2O) и H2.

Сценариев такого локализованного окислительно-восстановительного цикла (3D и 3E) может быть несколько, но поскольку все они требуют совместного размещения ни один из них не может предложить изотопную сигнатуру исключительно на стороне океана, которая наблюдалась во время экспериментов.

В совокупности с сильной зависимостью реакции от уровня рН эти результаты говорят о том, что восстановление СО2 происходит посредством электрохимического механизма, в котором электроны от окисления H2 на стороне щелочного источника перемещаются через осадки Fe(Ni)S в сторону CO2 на стороне океана (1A).

Вышеописанные процессы не могли бы протекать, если бы не было какого-то механизма, позволяющего активировать и поддерживать взаимодействие между океанической водой и щелочным гидротермальным источником. Кроме того возникает вопрос и касательно живучести сформировавшихся органических соединений, так как они могли бы попросту раствориться в океанической воде до того, как примут какую-либо биохимическую роль.

Ответом на первый вопрос может быть эффект Вентури*, вызванный повышенной пористостью структуры гидротермальных жерл. Оказавшись внутри жерла, углекислые воды океана могут вступить в реакцию с электронами, переносящимися через каталитические минералы канала гидротермального источника, а новые осадки также могут возникать и дальше по времени, когда две жидкости вступают в контакт.
Эффект Вентури* падение давления, когда поток жидкости или газа протекает через суженную часть трубы.
Моделирование данной теории показало, что в случае экспериментального реактора шириной 300 мкм действительно происходит микрожидкостное слияние двух реагентов, что и было показано в ходе практических опытов.

Ученые также отмечают, что такой эффект не ограничивается подводными щелочными жерлами и, вероятно, будет происходить в пористых гидротермальных системах в любом месте и на любой глубине, что дает возможность множеству геохимических сценариев возникновения жизни.

Стоит отметить, что микрожидкостная система восстановления СО2 с помощью H2 не является единственной. Существует также и методика, где используется одноканальная периодическая система.

За счет других минералов (Fe3Ni), более высокого давления (10 бар для H2) и более высокие температуры (100 C), чем в проводимых опытах, система периодического действия позволяет получить куда больше формиата, а также несколько продуктов дальнейшего восстановления (ацетат, метанол и пируват). При этом скорость производства формиата (5.21 х 10-9 моль/с) на четыре порядка выше скорости, достигнутой микрожидкостной системой.

Важность периодической системы заключается в том, что ее результаты подтверждают работоспособность микрожидкостной системы. Таким образом подтверждается и теория касательно существования органических веществ в условиях бескислородных щелочных гидротермальных источников.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Все, что имеет начало, имеет и конец. Эти слова, сказанные Пифией из х/ф Матрица, в той или иной интерпретации говорились реальными философами и учеными задолго до выхода этой кинокартины. Помимо этого, из курса школьной химии вспоминается один из основоположных принципов науки ничто никуда не девается и ниоткуда не берется бесследно. С тем, что будет в конце, а точнее после него, разбираться человечеству придется еще очень долго. Но вот какое-то понимание того, что было в начале, уже есть.

В данном исследовании ученые описали возможный вариант формирования первых органических соединений. По их мнению этот процесс протекал на стыке океанических вод и гидротермальных источников. В ходе экспериментов удалось преобразовать СО2 в органические молекулы посредством H2 и управляемого рН.

Такой результат не только объясняет исток жизни на нашей планете, но и может быть использован в разработке инструментов для снижения выбросов CO2, что является весьма удручающей проблемой современного мира. Помимо прочего, понимание того, как органика появилась на Земле, позволяет строить более рентабельные теории о возможном наличии оной на других планетах, подобных нашей.

Если же переключиться на более философскую волну, то можно с уверенностью сказать, что данный труд демонстрирует важность понимания прошлого для успешного формирования будущего. История полнится исследованиями, которые современники называли праздным любопытством и пустой тратой времени. Подавляющее большинство из них оказались гораздо важнее, чем кто-либо мог предположить. Вывод прост: в науке искать ответы нужно на все вопросы, какими бы глупыми на первый взгляд они ни казались.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Живой пылесос динамика хобота слона во время притягивания объектов

11.06.2021 10:21:30 | Автор: admin


В мире природы полно созданий, отличающихся своим необычным методом передвижения, внешним видом, гастрономическими предпочтениями, поведением и т.д. Конечно, для них самих ничего необычного нет, ибо все это является результатом сотен тысяч лет эволюции, нацеленной на выживание вида в постоянно меняющихся условиях окружающей среды. То, что является необходимостью для животного, для нас становится объектом исследований и вдохновением в разработках, применяемых в самых разных отраслях, от медицины до робототехники. Так ученые из Технологического института Джорджии (США) решили провести детальный анализ хобота слона, с помощью которого травоядный гигант способен и пить, и собирать еду. Что происходит с хоботом, когда слон пьет, какую силу он применяет, когда поднимает мелкие объекты, и где можно применить полученные данные? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Слоны хоть и являются самыми крупными обладателями хобота, но далеко не единственными. Бабочки, ленточные черви, пиявки, клопы, тапиры, морские слоны и т.д. все они обладают той или иной формой хобота. В разных случаях хобот служит органом осязание, питания и даже защиты.

Для слонов же хобот, образованный из носа и верхней губы, является своего рода швейцарским ножом. С его помощью они набирают воду (которую потом выливают в рот), подбирают мелкие предметы, срывают плоды, дышат во время переправы через водоемы, используют в коммуникации со своими сородичами и т.д.


Изображение 1

Один африканский слон (Loxodonta africana) ежедневно потребляет более 200 кг растительности, тратя около 18 часов в день на добычу травы, листьев, фруктов и коры деревьев (1a).

Самое удивительно то, что хобот слона может весить порядка 100 кг, но при этом слон с легкостью может поднять с пола мелкий и хрупкий предмет, не повредив его. Секрет такой аккуратности не только в гибкости и подвижности хобота, но и в воздухе, который он всасывает. Ученые предположили, что важную роль в том, как слон манипулирует хоботом, играют ноздри и легкие животного. Во время всасывания воды также происходят определенные изменения, вызванные сокращением мышц, что позволяет слону получать больше воды за один заход.

Факт того, что слоны используют воду и воздух в качестве дополнительных инструментов для манипуляции с объектами окружающей среды, был описан еще в 1871 году Чарльзом Дарвином. Он заметил, что слоны могут перемещать объекты вне их досягаемости с помощью дуновения через хобот. Слоны могут регулировать продолжительность дуновения в зависимости от расстояния до объекта и даже намеренно направлять струю воздуха на стену, которая затем оттолкнет объект ближе к ним.

Ученые отмечают, что животные, которые манипулируют объектами с помощью потока жидкости, обычно обитают в воде, а не на суше. Ярким примером являются рыбы из рода Toxotes (брызгуны), способные выстреливать струей воды в насекомых над поверхностью водоема.


Брызгун на охоте.

Кальмары и осьминоги также стреляют водой, но не для охот, а для передвижения. Многие виды рыб используют так называемое всасывающее кормление, когда они втягивают еду в ротовое отверстие.

Учитывая уникальность подобного поведения среди наземных существ, слоны и их хоботы требуют изучения, считают ученые. Посему было проведено несколько тестов, во время которых ученые фиксировали любые изменения морфологии хобота слона во время кормления, забора воды и манипуляций с мелкими хрупкими объектами.

Результаты исследования


В ходе тестов (14 заходов) подопытного слона кормили брюквой, нарезанной кубиками разных размеров. Захват хоботом менялся в зависимости от размера и количества кубиков (1b). Когда слону давали 10 мелких кубиков (менее 40 мм), он использовал цепкий конец хобота без всасывания. Если же мелких кубиков было больше 10, то слон предпочитал всасывание (1c). Забавно, что ученые охарактеризовали звук, которым сопровождался этот процесс, как звук работающего пылесоса.


Методы сбора мелких (16 мм) и крупных (32 мм) кубиков брюквы. В первом случае присутствует всасывание (обратите внимание на звук). Во втором его нет, так как кубики слишком большие.

Любопытно, что во время тестов с зернами всасывание не использовалось, вместо этого слон пытался захватить как можно больше зерен в пригоршню. Скорее всего всасывания не было, чтобы предотвратить застревание зерен в хоботе.

Далее трапеза слона продолжилась чипсами (тортилья), чтобы оценить его взаимодействие с крупными плоскими объектами. Толщина чипса не более 500 мкм, посему его сложно поднять с плоской поверхности (использовалась силовая платформа). Для разрушения чипса нужно приложить силу в 11 2 Н (Ньютон), что составляет около 1% от веса хобота слона.

После первого контакта процесс поднятия чипса занимал 3.0 0.2 секунды. Сам процесс можно разделить на три этапа (1d и 1e): приближение к объекту, поиск объекта, подъем объекта.


Притягивание чипса методом всасывания воздуха (видео замедлено в 5 раз).

Слон сначала не касался чипса напрямую, а дотрагивался до внешнего края силовой платформы, прикладывая при этом силу в 4 1 Н. На этапе поиска он приближался к чипсу, применяя силу в 5 Н, т.е. 50% от необходимой для разрушения чипса силы.

Во время этапа подъема наблюдалось два разных поведения. В первом случае слон применял всасывание на фиксированном расстоянии от чипса (1d). Во втором применял всасывание, прижимая хобот прямо к чипсу (1e). Любопытно и то, что в любом случае слон практически всегда поднимал чипс без его повреждения.

Визуальные наблюдения за слонами хоть и веселое занятие, но они дают слишком мало данных. Потому ученые дополнительно измеряли создаваемое давление всасывания во время тестов с водой. Дабы лучше визуализировать поток, всасываемый хоботом, в воду были добавлены семена чиа. Профиль потока кажется параболическим, о чем свидетельствует большее расстояние, пройденное семенами чиа в области центра ноздрей ().


Изображение 2

График 2c показывает ход потока жидкости в хоботе по времени, измеренный по мере уменьшения жидкости в резервуаре. Во время трех тестовых заходов слон всасывал воду в течение 1.5 0.1 с, что соответствует объемному расходу Qw = 3.7 0.3 л/с. И тут ученые опять проводят странное сравнение (для американцев это вполне нормальная практика): такой объемный расход эквивалентен 20 смывам туалета (не знаю, как такое сравнение может помочь оценить или визуализировать силу потока, но ладно).


Эксперимент с всасыванием воды.

Общий объем жидкости в хоботе составил 5.5 0.41 литра. После всасывания 3 литров была пауза примерно в полсекунды, в момент которой скорость потока была 1 1.2 л/с. Затем поток снова увеличивался до 4.5 2.1 л/с в последние полсекунды цикла всасывания. Подобная динамика наблюдалась во время всех наблюдений. Ученые предполагают, что кратковременные перерывы во время всасывания необходимы для предотвращения попадания воды в постериальный сфинктер хобота.

Для дальнейшего анализа необходимо было установить внутренний объем хобота (длиной примерно 1.9 м). Для этого были использованы данные измерений поперечного сечения хобота. Полость хобота имеет радиус 1 см на дистальном конце и 3 см на проксимальном. Расчетный объем хобота в таком случае будет 5.2 литра, что почти равно объему втягиваемой воды (5.5 л). Как слон может втягивать воду в объеме большем, чем объем его собственного хобота? Ранее проведенные исследования показали наличие мышечной структуры, идущей от ноздрей, которая позволяет хоботу расширяться.

Далее ученые провели ультразвуковое исследования (3a), чтобы выяснить пределы расширения этой структуры. Ультрасонографические измерения стенок хобота проводились в трех условиях: естественное дыхание, втягивание воды и втягивание воды с отрубями.


Изображение 3

На снимках 3c и 3d видно, что радиальные мышцы сокращались, когда слон втягивал воду с отрубями.


Ультразвуковое исследование носовой стенки слона во время всасывания отрубей. Красной стрелкой отмечена граница между жидкостью и стенкой носа.

Исходный радиус хобота и ноздри равны 7.5 и 1.5 см соответственно. Следовательно, толщина исследуемой стенки хобота равна 6 см. При всасывании воды толщина стенки уменьшалась до 5.7 см, а при всасывании воды с отрубями до 5.6 см.

Было установлено, что радиус ноздри во время всасывания воздуха, воды и воды с отрубями составил: 1.5 0.2 см, 1.8 0.2 см и 1.9 0.2 см соответственно (3e). Таким образом значения радиуса во время всасывания воды и воды с отрубями увеличивались на 18% и 28% соответственно.

Если предположить, что радиус увеличивается по всей длине хобота, то внутренний объем хобота увеличивается на 40% для воды и на 64% для воды с отрубями.

Однако у любой системы есть свой предел. Ученые создали математическую модель для расчета эффективного расстояния для кормления методом всасывания (2d). Модель позволила установить максимальное давление, применяемое в экспериментах с водой, и максимального расстояния от чипса, на котором слон может его поднять с помощью всасывания.

В экспериментах с водой средняя скорость воды (uw) в хоботе представляет собой расход, деленный на площадь поперечного сечения ноздрей: Qw / (2a2) 2.7 м/с, где a = 2.1 см это радиус ноздри. Максимальное давление наблюдалось в конце цикла всасывания, когда вода достигает максимальной скорости и высоты в хоботе. Если рассчитать число Рейнольдса* потока внутри ноздри, можно узнать, испытывает ли жидкость турбулентность.
Число Рейнольдса* отношение инерционных сил к силам вязкого трения в вязких жидкостях и газах.
Число Рейнольдса для транспортировки воды по трубе Rew = 8.1 х 104, а число Рейнольдса для воздуха 4.2 х 106. Учитывая, что эти числа Рейнольдса выше 4000, для аппроксимации можно использовать закон Бернулли*. В результате было установлено, что прилагаемое давление составляет -20 кПа.
Закон Бернулли* если вдоль линии тока давление жидкости возрастает, то скорость течения убывает, и наоборот.
Если аналогичное давление применяется во время всасывания чипса, то скорость воздуха составляет 150 м/с. Также расчеты показывают, что расстояние, на котором слон может эффективно притягивать объекты, линейно зависит от размера ноздри. Следовательно, объект с меньшей массой или большей площадью может эффективно всасываться и на большем расстоянии, чем во врем экспериментов с чипсами.

В экспериментах площадь поверхности чипса составляла 113 см2, а масса 10 г. Учитывая ускорение свободного падения (в расчетах было 9.81 м/с2) и рассчитанное давление (-20 кПа), ученые установили, что максимальная высота эффективного всасывания составляет 4.6 см.

Важнейшим аспектом, влияющим на эффективность всасывания, является давление в легких слона. Слоны могут создавать высокое давление в легких из-за их специализированной дыхательной системы. Растяжимая сеть коллагеновых волокон заполняет плевральное пространство, свободно соединяя легкие с грудной стенкой, при это не ограничивая движения легкого по отношению к грудной стенке (Почему у слона нет плевральной полости?, Джон Б. Уэст, 2002).

Именно эта анатомическая особенность позволяет генерировать потоки воздуха с такой большой скоростью. Кроме того, эндоторакальная фасция* у слонов в восемь раз толще, чем у людей, кроликов, крыс и мышей, что может создавать дополнительное давление в их легких.
Эндоторакальная фасция* слой рыхлой соединительной ткани глубоко в межреберных промежутках и ребрах, отделяющий эти структуры от подлежащей плевры. Фасциальный слой является самой внешней мембраной грудной полости.


Изображение 4

В заключение ученые, основываясь на полученных данных, решили определить, способны ли другие животные притягивать объекты всасыванием, как и слоны. Сначала было оценено соотношение массы тела к радиусу ноздри (4a), который увеличивается с размерами существа (из тех, что учитывались в расчетах).

У слонов самые широкие ноздри из всех исследованных млекопитающих, с радиусом ноздри от 10 мм на кончике до 30 мм на расстоянии 90 см от него. Используя слонов как точку отчета, ученые составили диаграмму максимального расстояния, на котором млекопитающие в теории может притягивать объекты всасыванием (4b). К примеру, для коров такое расстояние составляет 1 см, а для свиней и тапиров 0.65 см.

Ну и самое забавное, конечно. Человек тоже может притягивать предметы всасывая воздух, правда они будут не толще листа бумаги, а максимальное расстояние для успешности трюка с чипсом не может быть больше 0.4 мм. А любые флуктуации воздуха между чипсом и носом сделает трюк невыполнимым.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


За что можно любить науку, так это за ее безграничность. Человек готов с необъятным любопытством исследовать все, от таинственного космоса и глубин океанов до хобота слона.

В данном исследовании ученые провели эксперименты и расчеты, детально описывающие то, как именно слону удается притягивать объекты с помощью всасывания. С одной стороны это кажется весьма простым процессом, однако для его реализации необходимо множество факторов, от нестандартных легких до гибкой мышечной структуры хобота.

Для слона его хобот является и манипулятором, и датчиком окружающей среды, и инструментом по забору образцов. Обоняние слонов намного лучше нашего, а гибкость и подвижность хобота позволяют им взаимодействовать даже с самыми хрупкими предметами, не повреждая их.

Слоны это удивительные создания, которых можно с легкостью назвать примером того, как даже самые, на первый взгляд, странные причуды эволюции обладают смыслом, логикой и практическим применением.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята. :)

P.S. Большая просьба после прочтения сего материала не пробовать дома притянуть чипсы методом втягивания воздуха. Вряд ли авторы исследования хотели, чтобы вы поперхнулись, пытаясь изобразить Дамбо.

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Стартап Nautilus Data Technologies готовит к спуску на воду новый дата-центр

22.06.2020 18:15:30 | Автор: admin


В индустрии дата-центров работа продолжается, несмотря на кризис. Например, стартап Nautilus Data Technologies недавно заявил о намерении запустить новый плавучий ДЦ. О Nautilus Data Technologies стало известно несколько лет назад, когда компания сообщила о планах разработать плавучий дата-центр. Казалось, это очередная идея-фикс, которая никогда не будет реализована. Но нет, в 2015 году компания начала работу над своим первым дата-центром Eli M. Его плавучая основа была спущена на воду в 30 километрах от Сан-Франциско. Мощность ДЦ составила 8 МВт, а вместимость 800 серверных стоек.

Стартап ранее получил около $36 миллионов инвестиций от разных партнеров. Сейчас в него вложился крупнейший инвестор компания Orion Energy Partners. Инвестировала она в водоплавающие дата-центры $100 млн. Средства пойдут на расширение возможностей дата-центров, создание дополнительных объектов, новые исследования и т.п.


Двухпалубный дата-центр от Nautilus Data Technologies с модульной структурой

Зачем нужны плавучие дата-центры? Основное их достоинство мобильность. Так, если у какой-либо компании возникнет необходимость в дополнительных ресурсах, она может пришвартовать такой дата-центр к берегу, в регионе где работает, и оперативно получить необходимые ресурсы. Инвесторы, которые вложились в компанию, планируют создать сразу несколько таких дата-центров, разместив их в порту Сингапура. На суше дата-центр здесь не построить банально не хватает свободных площадей, плотность застройки очень высокая. А вот у берега пожалуйста. По словам разработчиков, развернуть полноценный плавучий дата-центр можно примерно за полгода.

Также представители компании говорят, что мобильность дата-центра дает возможность быстро отчалить от берега, если в регионе возникает проблема наводнение, пожар, локальный конфликт и т.п.

Стоит понимать, что это не автономный ДЦ, для работы ему необходима соответствующая инфраструктура каналы связи, энергосеть и т.п. Посреди океана работать такой объект не сможет. Но транспортировать его можно практически в любой регион, куда можно добраться по воде океану, морю или судоходной реке.


Внешний вид нового дата-центра

Положительным моментом здесь является система охлаждения. Она водная, и для ее создания не нужно разворачивать сложную систему подвода и отвода воды. Хладоноситель всегда под рукой. Он набирается прямо из океана или моря (через специальные люки, расположенные ниже ватерлинии плавучей основы), немного очищается и используется для охлаждения. Далее нагретая вода выливается обратно в море или океан. Благодаря тому, что воду не нужно качать по трубопроводам издалека, энергопотребление ДЦ ниже, чем у стандартного объекта аналогичной мощности. У тестового дата-центра компании PUE составил 1,045, на реальном объекте он чуть выше 1,15. По расчетам, проведенным специалистами по охране окружающей среды, негативное влияние на окружающую среду будет минимальным. Локальная и тем более глобальная экосистемы не пострадают.


Так выглядит система охлаждения серверов на базе теплообменников в задней дверце серверной стойки (производитель ColdLogik)

Что касается нового ДЦ, то он уже получил название Stockton I. Строительство ведется в порту Стоктон в северной части штата Калифорния. Согласно плану, в эксплуатацию дата-центр запустят в конце 2020 года. Еще один объект компания Nautilus Data Technologies строит в доках Лимерика в Ирландии. Стоимость создания ирландского ДЦ $35 млн. По словам разработчиков, энергоэффективность плавучих дата-центров на 80% выше обычных, кроме того, плотность стоек в таких объектах в несколько раз выше, чем в стандартных ДЦ. Капитальные затраты снижаются вплоть до 30% по сравнению с аналогичным показателем для стандартного ДЦ.
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru