Русский
Русский
English
Статистика
Реклама

Холод

Умная одежда устройство модуляции температуры на основе графена

24.06.2020 10:13:26 | Автор: admin


У природы нет плохой погоды, как поется в знаменитой песне из кинофильма Служебный роман. Однако далеко не все готовы согласиться с этим утверждением. Кому-то нравится холод, кто-то предпочитает жару, кому-то все равно. Я же отношусь к тем людям, которые будут жаловаться и на жару, и на холод, нам подавай комфортные +20 C. К сожалению, не всегда и не у всех любителей нейтрального климата есть возможность жить в регионах, где он есть. Сейчас лето в самом разгаре, удушающая жара лишь изредка прерывается кратковременными грозами, которые не особо помогают. Если природа не готова идти нам навстречу, значит стоит делать что-то самим. Сегодня мы познакомимся с исследованием, в котором ученые из Манчестерского университета (Великобритания) разработали умную адаптивную ткань, способную снижать температуру тела человека ее носящего в жаркие дни. Что легло в основу умной ткани, как протекал процесс разработки, и какие дополнительные свойства и варианты применения имеются у этого изобретения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Прежде, чем рассказать нам о своем творении, ученые отмечают, что прогресс в области пользовательской электроники за последние годы идет семимильными шагами. Буквально каждый день появляется что-то новенькое и необычное. Тем не менее, существует ряд ограничений, которые мешают тем или иным разработкам перейти от стадии лабораторных тестов к стадии массового производства. В аспекте производства умных тканей основной проблемой является сложность интеграции электронных / оптических материалов внутрь волокон ткани. Самый простой вариант в носимой электронике это создание отдельных гаджетов (браслеты, часы и т.д.), которые не требуют внедрения в другую систему (в данном случае, ткань), но спектр возможностей этих устройств будет ограничен.

По словам ученых, чтобы достичь вразумительных результатов в сопряжении электроники и ткани, необходимо либо изменить технологию производства ткани, либо использовать нестандартные материалы для электронной части носимого устройства.

Одним из таких материалов является двумерный графен. Однако в предыдущих попытках его использовать ученые полагались больше на его электропроводность. В данном же труде было сделано ударение на оптическую составляющую, т.е. была предложена идея использовать графен в качестве оптической платформы.

Тепловое излучение от многослойного графена может модулироваться электрически через интеркалирование* ионов.
Интеркаляция* обратимое внедрение молекулы или группы молекул между другими молекулами или группами молекул.
В данном исследовании ученые представляют нашему вниманию технологию оптического текстиля, основанную на интеграции в текстиль динамических инфракрасных устройств на базе электрически перестраиваемого графена, образованного методом химического осаждения из паровой фазы (ХОПФ).

Результаты исследования


Устройства состоят из объединенных слоев инфракрасно прозрачного полимерного слоя, многослойного графена, выращенного с использованием метода ХОПФ, слоя тканевого разделителя и проводящей ткани (схема устройства на ).


Изображение 1

Изготовление начинается с выращивания многослойных графеновых пленок на никелевой фольге. Тонкая полиэфирная (PE) пленка, которая функционирует как прозрачный для инфракрасного излучения защитный слой, ламинируется на многослойный графен перед травлением Ni-фольги. Графен на полиэфирном листе прикрепляется к ткани с помощью термоплавкого клея.

Одним из важных моментов данной разработки является удобство использования и практичность, потому необходимо было удостовериться в хорошей адгезии между графеном и подложкой (тканью). Это было сделано посредством нескольких циклов стирки и посредством испытаний на механическое сжатие.

Далее на задний электрод (проводящая ткань) был нанесен ионный жидкий электролит (BMIMPF6), который впоследствии диффундировал в текстильную подложку. Текстиль действует как разделитель и ионопроводящий слой, обеспечивая ионное движение, когда разность напряжений приложена к графену и заднему электроду.

На 1b показаны примеры изготовленных устройств на натуральных (хлопок) и синтетических текстильных материалах (полиэфир).

Электрохимическая стабильность заднего электрода играет решающую роль в долговременной стабильности устройства. В качестве основы для заднего электрода тестировались разные материалы: проводящий текстиль на основе серебра, сетка из нержавеющей стали, золотое напыление, графен и восстановленный оксид графена.

Массив задних электродов и проводку на текстиле изготовили с помощью фотолитографии с последующей металлизацией и процессом отрыва*.
Отрыв* в технологии микроструктурирования представляет собой способ создания структур целевого материала на поверхности подложки с использованием жертвенного материала (например, фоторезиста).
Полученные пиксельные электроды позволяют определять динамические инфракрасные структуры на непрерывном графеновом слое с помощью выборочной интеркаляции.

Принцип работы устройств основан на обратимой интеркаляции ионов в графеновые слои и модулировании его электрических и оптических свойств. При 0 В многослойный графен имеет высокое инфракрасное поглощение, что приводит к высокой излучательной способности, раскрывая фактическую температуру устройства ().


Изображение 2

При подаче достаточной разности напряжений (> 2.5 В) ионная жидкость интеркалирует в слои графена, увеличивая оптическую проводимость и подавляя излучательную способность, тем самым скрывая фактическую температуру устройства. Термографы устройства записывались с помощью длинноволновой инфракрасной камеры, которая визуализирует изображения по закону Стефана-Больцмана:
P = T4
где P количество падающего теплового излучения на матрице болометров*; излучательная способность поверхности; постоянная Стефана-Больцмана; T температура поверхности в Кельвинах.
Болометр* тепловой приемник излучения (преобразует энергию поглощенного электромагнитного излучения в тепловую).
Текстильные устройства находясь непосредственно в тепловом контакте с источниками тепла, такими как тело человека, для предотвращения ложного экранирования температуры источника. Кроме того, графен функционирует как слой с высокой теплопроводностью, который удваивает температуропроводность в плоскости текстиля, улучшая теплопроводность от источника к поверхности.

Временной отклик устройств был получен путем записи видео тепловизором, чтобы получить изменение видимой температуры поверхности (2b).


Динамическое изменение инфракрасного излучения на хлопковом устройстве.

Полная интеркаляция (подавление излучательной способности) занимает ~5 с, когда ток устройства не ограничен. Стоит отметить, что эти измерения проводились в лабораторных условиях (21 C), ограничивающих минимальную кажущуюся температуру.

Устройства могут многократно циклически переключаться между состояниями с высокой и низкой излучательной способностью (2c), однако превышение электрохимического окна электролита ухудшает рабочие характеристики устройства.

Модуляция излучательной способности определялась количественно с помощью измерений отражения в инфракрасном и ближнем инфракрасном диапазонах с использованием инфракрасного Фурье-спектрометр (FTIR), оборудованного интегрирующей сферой. При 0 В коэффициент отражения внутреннего устройства почти плоский (2d) и составляет около 30%, за исключением поглощения в верхней полиэфирной пленке на длинах волн ~3.4, ~6.8, ~13.9 мкм и поглощения в атмосфере (например, CO2, H2O).


Демонстрация работы адаптивного инфракрасного текстильного устройства.

В диапазоне спектральной чувствительности тепловой камеры (8-13 мкм) такие поглощения минимизируются благодаря тщательному выбору верхней защитной пленки. Коэффициент излучения (или коэффициент поглощения) рассчитывается как 1 R, где R коэффициент отражения, поскольку свет не проходит через устройство. По мере того, как ионы интеркалируют графеновые слои, энергия Ферми и оптическая проводимость графена увеличиваются, тем самым увеличивая коэффициент отражения инфракрасного излучения.

Средняя излучательная способность устройства в диапазоне длин волн 8-13 мкм достаточно высока ( 0.7) для 0 В и поддерживается в таком значении до порогового напряжения ( 2.5 В) с последующим резким падением до 0.35 при > 4 В (), что отлично согласуется с термограммами на 2а.

Модуляция излучательной способности охватывает как длинноволновый инфракрасный (8-13 мкм), так и средневолновый инфракрасный (MWIR, 3-5 мкм) диапазон. В MWIR, тем не менее, полиэфирная пленка демонстрирует значительное поглощение из-за режима растяжения C-H связей, который не зависит от приложенного напряжения, ограничивая диапазон модуляции излучательной способности до 0.7-0.5 (2e). Из этого следует, что любые устройства, работающие в этом диапазоне длин волн, нуждаются в нестандартном защитном слое.

Другим эффектом полиэфирного слоя является повышенная излучательная способность поверхности благодаря термической экстракции полиэфиром, у которого показатель преломления больше, чем у воздуха.

Также наблюдалась модуляция излучательной способности (0.2-0.4) и в коротковолновом инфракрасном диапазоне (SWIR, 0.9-1.7 мкм). А вот модуляция в видимом спектре была незначительной из-за недостаточного легирования графена.

Улучшить модуляцию в SWIR и видимом диапазоне возможно за счет использования ионной жидкости с большим электрохимическим окном, которая будет совместима с текстилем.

Учитывая, что ткань должна быть растяжимой и гибкой, используемые графеновые элементы должны действовать соответственно. Однако многослойный графен не растягивается и не гнется ввиду механического воздействия. Потому в разработке была использована нестандартная изогнутая конструкция графена, что обеспечило уровень деформации до 60%.


Изображение 3

Решить все проблемы с гибкостью и механическим напряжением можно за счет использования массивов электродов, в не единого элемента. На показан пример такого варианта конфигурации с массивом из 25 индивидуально адресуемых электродов и датчиком термобатареи. В качестве активного слоя использовался большой цельный лист многослойного графена на хлопчатобумажной ткани (3b). Каждый электрод контролирует излучательную способность площадью 2х2 см. Внешняя электронная схема была запрограммирована реагировать на тепловую сигнатуру от датчика. Графики 3c и 3d показывают сигналы датчика и кажущуюся температуру активного пикселя (область контроля 2х2).

Мультипиксельное текстильное устройство отображает буквы C или H (обозначающие cold и hot), настраивая излучательную способность соответствующих пикселей, реагирующих на наличие/отсутствие горячего объекта над датчиком. На 3e показаны тепловые изображения работы устройства при взаимодействии с рукой человека.

Далее ученые провели фактическое практическое испытание устройства, внедренного в обычную футболку. Из-за естественной температуры тела, в условиях окружающей среды, человеческое тело излучает около 100 Вт инфракрасного света в основном в LWIR диапазоне. Этот спектральный диапазон также совпадает с окном атмосферного пропускания, которое позволяет распространять излучаемый LWIR свет на большие расстояния.

Устройство для футболки было изготовлено путем ламинирования пленки графен/полиэфир размером 6х6 см непосредственно на поверхности футболки из 100% хлопка и сеткой из нержавеющей стали на обратной стороне ().


Изображение 4

Для передачи закодированного сигнала был использован микроконтроллер, который был запрограммирован передавать буквы N, G и I азбукой Морзе. Тире и точки создавались путем подавления кажущейся температуры на длительное (9 с) и короткое (3 с) время.

На 4b и показаны инфракрасные снимки футболки в состояниях с высокой и низкой излучательной способностью, а шкала справа показывает зарегистрированную с расстояния в 3 м кажущуюся температуру.

Использование микроконтроллера позволяет строить более сложные схемы на текстиле, что, в свою очередь, обеспечивает более безопасные протоколы связи, например, инициирование связи при получении внешних запускающих стимулов. А человеческое тело в данной конфигурации может служить источником энергии.

В данном опыте скорость связи с использованием одной заплатки ограничена процессом интеркаляции/деинтеркаляции, который масштабируется в зависимости от площади устройства.


Передача букв N, G и I азбукой Морзе.

Ученые заявляют, что использование небольших электрических сигналов для модуляции инфракрасной излучательной способности является значительным преимуществом по сравнению с альтернативами, поскольку оно обеспечивает адаптивный отклик, что необходимо для применения в динамическом тепловом камуфляже и управлении тепловым режимом.


Увеличение отражающей способности полиэфирного устройства в ближнем инфракрасном диапазоне.

Разработанное устройство требует низкого напряжения (~ 3 В) и совсем немного энергии (5.5 х 10-4 мАч/см2 на одно событие интеркаляции, что соответствует плотности заряда ~ 1014 см-2 для каждого слоя графена). Следовательно, обычная дисковая батарейка на 1000 мАч может активировать устройство размером с футболку (1 м2) около 180 раз. Кроме того, энергия потребляется исключительно во время цикла зарядки (интеркаляции). А средняя мощность в режиме ожидания практически равна нулю, что позволяет значительно продлить использования одного устройства без замены внешнего источника питания. Это, конечно, если не рассматривать идею с использованием человека в качестве источника энергии.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Мода переменчива, как и погода. А вот наука, хоть иногда и кажется хаотичной, но все же следует одним и тем же естественным законам.

В данном труде ученые использовали оптические свойства графена в своей разработке графенового адаптивного оптического текстиля. Это устройство позволяет не только модулировать его температуру, но и дает возможность лучше понять термические и механические свойства графена. Успешная демонстрация модуляции оптических свойств на различных типах текстиля может дать толчок более широкому использованию волокнистых архитектур. Спектр применения подобных технологий не ограничивается элементами гардероба, она может быть крайне полезна и в технологиях связи, и даже в адаптивных скафандрах.

Сами же ученые намерены шагнуть еще дальше. В дальнейшем они планируют использовать свою разработку в спутниках на околоземной орбите. Спутники, как никто другой, испытывают экстремальные перепады температуры: в тени Земли они замерзают, а обращаясь к Солнцу очень нагреваются. Использование данной технологии в теории позволяет получить контроль над тепловым излучением, следовательно, и над температурой самого спутника. От обычной футболки к спутникам на орбите остается лишь надеяться, что амбиции ученых будут подкреплены успешными результатами их дальнейших исследований.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Зубная фея ни при чем почему зубы испытывают боль от холода

02.04.2021 10:12:46 | Автор: admin


Человеческий организм может испытывать целый спектр неприятных ощущений. Если говорить про боль, то она бывает тянущая, режущая, давящая, пекущая, тупая, острая и т.д. Видимо ни для какого другого чувства нет столько эпитетов, сколько для боли. И все это вполне обосновано, ибо органов у нас много, и каждый из них по-разному сигнализирует наш мозг о возникшей проблеме. Посему боль можно уверенно назвать полезным, хоть и неприятным, аспектом жизнедеятельности. Однако порой сложно понять не столько источник боли, сколько механизм ее возникновения. Ученые из медицинского института Ховарда Хьюза (США) решили выяснить, почему наши зубы способны испытывать боль, причиной которой является холод. Что отвечает за восприятие холода в зубах, и каков механизм этого восприятия? Ответы на эти вопросы мы узнаем из доклада ученых. Поехали.

Основа исследования


В спектре болевых ощущений есть и куда более сильная боль (например, роды или почечная колика), тем не менее зубную вряд ли когда-нибудь приравняют к укусу комарика. Для некоторых людей одна лишь мысль про зубную боль вызывает искривление лицевых мышц в соответствующую гримасу. Что уж говорить про стоматологов, которых многие незаслуженно недолюбливают, ассоциируя их с болью. Любопытный факт: композитор знаменитой игры Silent Hill Акира Ямаока использовал звуки бормашины в своих композициях, чтобы игрок подсознательно ассоциировал мелодию с чем-то плохим/неприятным/болезненным. Но вины докторов в том, что наши зубы болят, нет (чаще всего).

Причиной возникновения неприятных ощущений могут быть механические травмы, физиологические изменения, влияние окружающей среды, пища, вредные привычки и т.д. Одной из распространенных стоматологических проблем является чувствительность зубов. Человек испытывает болевые ощущения при употреблении в пищу чего-то горячего или холодного. Кто-то ест мороженое, впиваясь в него зубами, словно волк в добычу, а кто-то готов отказаться от этой сладости полностью, лишь бы не испытывать боль.


Строение зуба человека.

Но чувствительность к холоду не возникает просто так. Чаще всего причиной тому является нарушение целостности дентина, т.е. твердой ткани зуба, вызванное кариесом. По словам ученых, в мире насчитывается порядка 2.4 миллиарда человек с кариесом зубов.

Во время развития кариеса бактериальная биопленка на поверхности зуба в сочетании с ферментируемыми углеводными субстратами вызывает деминерализацию и, в конечном итоге, разрушение зубов. Такой зуб становится чувствителен к холоду, что воспринимается как кратковременная острая невралгическая боль.

Рассматривая зуб с точки зрения функциональной анатомии, ученые приписывают механо- и ноцицептивные функции сплетению Рашкова (совокупность нервных окончаний), расположенному в пульпе* зуба.
Пульпа зуба* соединительная ткань, заполняющая полость зуба, с большим количеством нервных окончаний, кровеносных и лимфатических сосудов.
При этом есть гидродинамическая теория Бреннстрема, где преобразование тепловых и других физических стимулов для активации дентинных нервных окончаний приписывается механосенсорному процессу, индуцированному гидродинамикой.

Согласно этой теории дентинные микроканалы действуют как гидравлическое звено между физическим стимулом и нервными окончаниями, которые расположены на стыке пульпы и дентина. Однако до сих пор нет никаких экспериментальных доказательств этой теории. Поиски ответа на вопрос, что активирует ощущение холода в зубах, продолжались много лет, но без особых результатов.

Авторы рассматриваемого нами сегодня исследования решили подойти к решению этой задачи под другим углом. Определенные подтипы ионных каналов с переходным рецепторным потенциалом (TRP от transient receptor potential) сильно активируются при охлаждении, действуя как молекулярные сенсоры в коже и слизистых оболочках, где они деполяризуют нервные окончания, вызывая потенциалы действия. В коже TRPM8 и TRPA1 действуют синергетически и представляют собой основные датчики снижения температуры окружающей среды.

мРНК и белок TRPM8 и TRPA1 присутствуют в высокой плотности в тройничном ганглии (TG от trigeminal ganglion) и в сенсорных аксонах пульпы зуба. Кроме того, культивируемые одонтобластоподобные клетки человека и культивированные фибробласты пульпы зуба демонстрируют увеличение внутриклеточного кальция в ответ на холод, что частично объясняется их TRPA1 и TRPM8 каналами.

Однако физиологическое значение наблюдаемой холодовой трансдукции в одонтобластах и фибробластах до сих пор неясно, так как вклад TRPA1 и TRPM8 в вызванную холодом зубную боль в живом организме не был обнаружен.

В своих предыдущих работах ученые отмечали, что TRPC5 чувствителен к холоду в гетерологичных системах экспрессии, и его распределение в нейронах тройничного и дорсального корешков малого и среднего размера, а также в поверхностных пластинках спинного дорсального рога типично для датчиков, участвующих в измерении температуры и ощущении боли. Основной задачей исследования стала попытка понять роль ионных каналов TRPA1, TRPM8 и TRPC5 в ощущении холода зубами.

Результаты исследования


Чтобы оценить ионные каналы холодовой трансдукции для зубной боли, была использована установленная модель повреждения пульпы зуба (DPI от dental pulp injury) у мышей без TRPC5, TRPA1 и TRPM8. Основным признаком болезненного DPI у мышей является увеличение потребления сахарозы. Снизить потребление сахарозы можно было посредством введения противовоспалительного анальгетика индометацина.


Изображение 1

Было установлено, что DPI приводит к трехкратному увеличению потребления воды с 5% сахарозы при комнатной температуре (график выше).

У мышей TRPA1 -/- и TRPM8 -/- повреждение пульпы вызывало примерно одинаковое увеличение потребления сахарозы, но у мышей TRPC5 -/- потребление со временем нормализовалось, аналогично эффекту индометацина. Это указывает на то, что TRPC5 обладает чувствительностью к холоду.


Изображение 2

Чтобы обеспечить функциональное исследование всей сенсорной системы зуба, был использован интактный препарат (образец) нижнего альвеолярного нерва (нижнечелюстного нерва) мыши (схема выше). Такой образец позволяет регистрировать распространяемые потенциалы действия от нижнего альвеолярного нерва до сенсорных стимулов в нижнечелюстном резце и молярах, аналогично записи от ноцицепторов подкожного нерва с рецептивными полями в коже.


Схема расположения зубов правой половины нижней зубной арки.

Когда челюсть подвергалась воздействию холода, наблюдались большие отклики от 10% A- и C-волокон. Нейроны рецепторов холода в зубах генерировали 114 15 потенциалов действия на холодный стимул с пиковой частотой возбуждения 43 5 в секунду.
А-волокна* тип нервных волокон в классификации по скорости проведения нервного импульса, отвечающий за температуру, быстрое проведение боли. С-волокна* медленное проведение боли.

Изображение 3

Эти значения намного превышают холодовые реакции ноцицепторов кожи мыши (16 2 потенциала действия и частота срабатывания 3 1 в секунду; 3B и 3C). Пороги ноцицепторов пульпы зуба были 19 1 C, что на 2 C ниже, чем у холодовых ноцицепторов в коже (кожный порог ноцицепторов = 21 1 C; 3D). По этим параметрам между А- и С-волокнами каких-либо отличий в реакции замечено не было.

При препарировании челюстного нерва TRPC5-блокаторы HC-070 и ML204 эффективно устраняли холодовые реакции некоторых ноцицепторов зубов и в среднем снижали холодовые реакции на 59 13%. (4A и 4B). ML204, который также блокирует каналы TRPC4 и TRPC3, не действует на TRPC5 -/- мышей. Следовательно, TRPC3 и TRPC4 не участвуют в качестве гомомерных каналов в холодовых реакциях. Во всех волокнах, на которые не подействовал блокатор HC-070, остаточные холодовые реакции были устранены посредством TRPA1-блокатора HC-030031 (97 2%; 4A и 4B).


Изображение 4

Также было обнаружено, что в препаратах челюстного нерва от TRPC5 -/- мышей количество холодных ноцицепторов снижалось примерно наполовину (4C).

Важным наблюдением было то, что хотя оставшиеся ноцицепторы TRPC5 -/- зубов имели неизменную величину ответа, они имели более высокие пиковые скорости возбуждения, чем любой другой штамм (116 34 потенциала действия, скорость разряда 66 8 в секунду) и активировались при высоких пороговых температурах (22 1 C; 4E-4G). Хотя в коже мышей большинство холодовых реакций связано с TRPM8, холодовые реакции зубов оказались нечувствительными к фармакологической эквивалентам TRPM8.

Из этих опытов следует, что именно TRPC5 и TRPA1 играют важную роль в чувствительности зубов к холоду. Из этого следует вопрос необходимы ли какие-либо специфические анатомические особенности, чтобы TRPC5 и TRPA1 реагировали на холод, или они будут реагировать даже в изолированных клетках?

В поисках ответа на этот вопрос ученые обратили свое внимание к зубным первичным афферентным нейронам (DPAN от dental primary afferent neurons), которые являются клетками сенсорных окончаний в верхнечелюстном сплетении Рашкова. Культивированные в лаборатории DPAN были проверены на предмет изменений в [Ca2+], вызванных холодом или химической реакцией на агонист* TRPM8 ментол, агонист TRPA1 карвакрол, агонист TRPC5 рилузол и антагонист* ML204.
Агонист* химическое соединение, которое при взаимодействии с рецептором меняет его состояние, т.е. приводит к отклику.

Антагонист* соединение, которое блокирует, снижает или предотвращает физиологические эффекты, вызываемые связыванием агониста и рецептора.
Из всех DPAN было обнаружено порядка 17% чувствительных к холоду нейронов. Из них 74% были чувствительны к ментолу и 57% к карвакролу, но только один нейрон (< 1%) показал реакцию на агонист TRPC5 рилузол (5A и 5B).


Изображение 5

Поскольку ментол и карвакрол не обладают высокой специфичностью и могут активировать и TRPM8, и TRPA1, в ходе проверки также были использованы DPAN, полученные из штаммов без TRPC5 и TRPM8 (TRPC5/M8-DKO) или без TRPC5 и TRPA1 (TRPC5/A1-DKO).
DKO* двойной нокаут гена, когда из организма удаляют или деактивируют два определенных гена.
В DPAN, полученных от мышей TRPC5/M8-DKO, < 5% DPAN оставались чувствительными к холоду. Эти оставшиеся DPAN были в первую очередь чувствительны к ментолу и карвакролу, что указывает на активацию TRPA1 холодом.

В DPAN, полученных от мышей TRPC5/A1-DKO, 20% клеток были чувствительны к холоду. Из них 75% были чувствительны к ментолу и, следовательно, зависимы от TRPM8 (5A и 5C).

Из этого следует, что большинство DPAN используют TRPM8 для холодовых реакций, в то время как немногие нейроны полагаются на TRPA1 для независимых холодовых реакций.

Определив участников холодовой трансдукция, необходимо было определить, где она происходит. Транскриптомный анализ DPAN идентифицировал Trpm8 и Trpa1, в то время как Trpc5 был ниже порога обнаружения (6A).


Изображение 6

Тем не менее TRPC5 был дополнительно визуализирован и количественно оценен посредством многофотонной микроскопии TG мышей. Было идентифицировано 3.5% TRPC5+ DPAN (6B). В культивируемых TRPC5+ нейронах тройничного нерва была обнаружена типичная для TRPC5 вольт-амперная характеристика (6C).

Эти данные демонстрируют, что TRPC5 присутствует в сенсорных нейронах, хотя при здоровых зубах холодовые реакции TRPC5 слабо выраженные и редкие.

Остается понять, как возникает ответная реакция на холод в случае здоровых (т.е. неповрежденных) зубов. Когда ученые исследовали TRPC5 в коренных зубах мышей, они обнаружили TRPC5 практически во всех преддентильных одонтобластах* в пульпе зуба, прилегающей к корню.
Одонтобласт* клетка, развивающаяся из мезенхимы зубного сосочка и участвующая в образовании дентина зубов и в его обызвествлении.
Изображение 7

Отростки TRPC5-положительных одонтобластов в дентинных канальцах контактировали с сенсорными аксонами в интерфейсе пульпа-дентин и поднимались в тесной связи в дентинные канальцы. При этом TRPC5 не было обнаружено в фибробластах пульпы или в сенсорных аксонах, происходящих из альвеолярных нервов и исходящих через корень в нервное сплетение Рашкова или в нижний альвеолярный нерв (изображение 7 и видео ниже). Из этого следует, что TRPC5 по большей степени располагается в слое клеток одонтобласт, в отличие от более распространенных TRPM8 и TRPA1.


Видео 1


Видео 2

В заключение ученые решили проверить свои находки на человеческих зубах. В результате в здоровых зубах, удаленных по ортодонтическим или косметическим причинам, в одонтобластическом слое был найден TRPC5. В сенсорных нервах на интерфейсе пульпа-дентин и в дентинных канальцах было обнаружено больше TRPC5, чем TRPM8.


Изображение 8

Кроме того, была обнаружена часть дентинных (тип IV) TRPC5+ волокон, проходящих внутри дентинных канальцев в предполагаемом месте сенсорной трансдукции (8A-8E).

Предыдущие исследования показали, что TRPM8 снижается в аксонах гиперчувствительных к холоду зубов человека. Сравнение TRPC5 с TRPM8 в воспаленных человеческих зубах с пульпитом показало, что экспрессия сенсорного нерва TRPC5 заметно увеличилась, тогда как TRPM8 снизилась. TRPC5 распространялся на дегенерирующий дентин и весь корень зуба, где был обнаружен значительно более высокий процент TRPC5+ пульпы и волокон корня (8F-8I).

Более высокий процент TRPC5 в пульпитных зубах и присутствие дентинных волокон в нормальных и дегенерирующих дентинных канальцах предполагает, что TRPC5 выполняет функцию датчика холода в зубах человека.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Зубы человека это единственная часть тела, которая не может регенерировать. Печень, скелет и даже нервные клетки, как показали недавние исследования, могут восстанавливаться со временем. Да, этот процесс очень долгий и не всегда приводит к стопроцентному восстановлению, однако он есть, чего не скажешь про зубы.

Ввиду этого больные зубы являются одной из самых распространенных медицинских проблем в мире. Следовательно, изучение зубов позволяет лучше их лечить. Однако это не самое простое занятие. К примеру, для изучения движения жидкостей внутри зуба его необходимо разрезать. А для этого необходимо преодолеть эмаль (самую прочную ткань тела человека) и дентин (тоже весьма прочный слой зуба), при этом не нарушив целостность пульпы, кровеносных сосудов и нервов.

Несмотря на такие сложности, исследования продолжаются. В рассмотренном нами сегодня труде ученые уделили особое внимание ионному каналу TRPC5. Еще 15 лет тому назад они установили, что он чувствителен к холоду, но не знали, где именно в теле человека он задействован. Сначала предполагалось, что дело в коже, но это оказался тупиковый вариант. Тогда ученые сконцентрировали свое внимание на другой части тела, способной чувствовать холод, на зубах.

И это было верное направление, так как в зубах была обнаружена активность TRPC5. Особенно это заметно на зубах с кариесом. В ходе опытов был использован новый метод исследования зубов на примере мышей. Вместо того, чтобы вскрывать зуб, ученые рассматривали челюсть целиком (кость, зубы и нервы). Когда на зубы мышей воздействовал холодный раствор, нервная активность возрастала. Однако у мышей, лишенных TRPC5, подобной реакции не наблюдалось. Ученым также удалось отследить TRPC5 до одонтобласт, т.е. клеток между пульпой и дентином. Так что, когда вы кусаете мороженое, а ваши зубы отвечают на это острой болью, можете быть уверены в том, что ваш дентин поврежден.

Сейчас многие ученые сосредоточены на изучение мозга, сердца или других жизненно важных органов. Зубы же не получают столько внимания, хотя заслуживают его не меньше других, ведь здоровье зубов может напрямую или косвенно повлиять на здоровье всего организма.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru