Русский
Русский
English
Статистика
Реклама

Адаптация

Видеоконференции как бороться с высокой загрузкой ЦПУ?

31.05.2021 16:13:25 | Автор: admin

Меня зовут Алексей Доильницын, я архитектор в DINS. Наша компания участвует в разработке UCaaS-платформы (Unified Communication as a Service) RingCentral, которой пользуется более 400 тыс. компаний по всему миру.

Я работаю в команде, которая отвечает за разработку сервиса видеоконференций RingCentral Video или RCV. Видеоконференции с большим количеством участников в галерее часто бывают неподъемными для устаревших лэптопов. Мы решили эту проблему с помощью теории систем автоматического управления (САУ).


RCV стал особенно актуальным в начале 2020 года в связи с массовым переходом на работу из дома. Тогда же мы столкнулись с интересной проблемой: некоторые пользователи жаловались на постоянный гул вентиляторов, на быстрое расходование батареи и торможение устройства. Оказалось, что конференции с большим количеством участников в галерее бывают неподъемными для устаревших лэптопов, которые часто встречаются дома. И мы стали эту проблему решать с помощью теории систем автоматического управления.

Задача и подход к решению

RingCentral Video выпускает нативного клиента для основных платформ Mac и Windows. Клиент построен на Electron (библиотека для разработки настольных приложений с использованием HTML), что существенно экономит ресурсы разработки, так как по сути позволяет разработать только одно веб-приложение на JavaScript, которое актуально сразу для трех основных платформ веб, Mac и Windows.

По нашему опыту, двухъядерные процессоры Intel старше 5 лет уже зачастую не справляются с типичными корпоративными конференциями с 8-16 участниками.

4-х ядерные современные Core i5 это, наверное, минимальная конфигурация для подобных задач. У более слабых компьютеров возникают проблемы вроде высокого расхода батареи и подвисания компьютера.

Для решения этой задачи я решил воспользоваться теорией систем автоматического управления (САУ). Ее обычно используют для решения таких задач, как стабилизация танковой башни или поддержание постоянной температуры в плавильной печи. САУ обеспечивают надежность и устойчивость управления.

Вместо того, чтобы заставлять пользователя выбирать ключевые параметры системы (разрешение и количество видео потоков, битрейт и т.п.), программная система может сама адаптироваться к внешним условиям (загрузка ЦПУ (CPU), пропускная способность сети), автоматически выбирая наиболее оптимальные параметры.

Построение системы управления

Система управления функционирует в JavaScript коде клиента видеоконференции.

Объектом управления в нашем случае являются видеопотоки, рисуемые на экране пользователя. На загрузку ЦПУ в первую очередь влияют количество потоков и разрешение видео (высота х ширина).

9 видеопотоков в разрешении 640x360:

В качестве обратной связи выбираем системную загрузку ЦПУ. Поскольку в браузере нет соответствующего API, измеряем загрузку ЦПУ в нативном коде (в плагине Electron) и периодически шлем событие с текущей загрузкой ЦПУ в JavaScript код.

Выбираем целевой коридор загрузки ЦПУ, например, 40-50%.

В качестве ошибки используем разницу между текущей загрузкой ЦПУ и ближайшей границей коридора. Например, текущая загрузка 80%, значит ошибка 80-50=30 в абсолютных величинах, или по отношению в коридору: 30/50=0.6 (60%).

Основная логика системы управления проста. Система срабатывает на прилетающие информационные события, в которых передается текущая загрузка ЦПУ. События приходят с достаточно большим интервалом в 10 секунд, чтобы учесть инерцию системы на отработку управляющих воздействий.

  • Если загрузка ЦПУ выше целевого коридора, то сначала уменьшаем разрешение потоков, потом начинаем выключать потоки.

  • Если загрузка ЦПУ ниже целевого коридора, то сначала включаем выключенные потоки, потом увеличиваем их разрешение.

  • Если загрузка внутри коридора, то ничего не делаем во избежание колебаний.

При этом количество потоков, на которые будет оказано воздействие, рассчитывается из величины ошибки. Например, клиент отрисовывает 16 видеопотоков в среднем разрешении 640х360. Если загрузка ЦПУ 80% и соответственно ошибка равна 0.6, то за один шаг мы уменьшим разрешение для 16*0.6=10 потоков. Это делается для того, чтобы система быстрее реагировала на большие возмущения. При этом мы учитываем, что отрисовка одного потока занимает от долей до единиц процентов полной загрузки системы.

Проблемы, возникшие в результате эксплуатации

Внутри коридора

В процессе тестирования нам встретилась ситуация, когда система, находясь внутри коридора, получает внешнее возмущение в виде антивируса, который существенно повышает загрузку ЦПУ на некоторое время. Так как наша система управления не различает внешние и внутренние воздействия, она штатно реагирует на повышение загрузки отключением видео потоков. После завершения работы антивируса система возвращается обратно в коридор, но уже с отключенными видео потоками. Находясь в коридоре, система ничего не предпринимает, дабы избежать незатухающих колебаний. Для пользователя такое поведение выглядит странно.

Решение: все-таки включать видео потоки внутри коридора, но медленно, например, по одному потоку на каждый третий вызов.

Мощный компьютер

На мощном компьютере обработка потока видео занимает доли процента от общей загрузки ЦПУ, и отключать видео потоки бессмысленно, так как они практически не влияют на загрузку системы.

Решение: измерять, сколько ЦПУ потребляет наш процесс в процентах от общего потребления системы. Если доля нашего процесса менее 50%, то отключать систему управления.

Финальный тест

В финальном тесте на старом лаптопе с процессором i5-3210M (4 cores @ 3 GHz) участвовали 8 участников (ботов) в разрешении 320х180. Стартовая загрузка ЦПУ около 80%.

Через 30 секунд отключается четыре участника, загрузка опускается до 65%.

Ниже опускаться уже некуда, так как минимальное количество участников на экране 4.

В итоге система управления успешно прошла тесты и сдана в промышленную эксплуатацию.

Если у вас появились какие-то вопросы или хотелось бы узнать что-то еще об RCV пишите в комментариях.

Подробнее..

Умная одежда устройство модуляции температуры на основе графена

24.06.2020 10:13:26 | Автор: admin


У природы нет плохой погоды, как поется в знаменитой песне из кинофильма Служебный роман. Однако далеко не все готовы согласиться с этим утверждением. Кому-то нравится холод, кто-то предпочитает жару, кому-то все равно. Я же отношусь к тем людям, которые будут жаловаться и на жару, и на холод, нам подавай комфортные +20 C. К сожалению, не всегда и не у всех любителей нейтрального климата есть возможность жить в регионах, где он есть. Сейчас лето в самом разгаре, удушающая жара лишь изредка прерывается кратковременными грозами, которые не особо помогают. Если природа не готова идти нам навстречу, значит стоит делать что-то самим. Сегодня мы познакомимся с исследованием, в котором ученые из Манчестерского университета (Великобритания) разработали умную адаптивную ткань, способную снижать температуру тела человека ее носящего в жаркие дни. Что легло в основу умной ткани, как протекал процесс разработки, и какие дополнительные свойства и варианты применения имеются у этого изобретения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Прежде, чем рассказать нам о своем творении, ученые отмечают, что прогресс в области пользовательской электроники за последние годы идет семимильными шагами. Буквально каждый день появляется что-то новенькое и необычное. Тем не менее, существует ряд ограничений, которые мешают тем или иным разработкам перейти от стадии лабораторных тестов к стадии массового производства. В аспекте производства умных тканей основной проблемой является сложность интеграции электронных / оптических материалов внутрь волокон ткани. Самый простой вариант в носимой электронике это создание отдельных гаджетов (браслеты, часы и т.д.), которые не требуют внедрения в другую систему (в данном случае, ткань), но спектр возможностей этих устройств будет ограничен.

По словам ученых, чтобы достичь вразумительных результатов в сопряжении электроники и ткани, необходимо либо изменить технологию производства ткани, либо использовать нестандартные материалы для электронной части носимого устройства.

Одним из таких материалов является двумерный графен. Однако в предыдущих попытках его использовать ученые полагались больше на его электропроводность. В данном же труде было сделано ударение на оптическую составляющую, т.е. была предложена идея использовать графен в качестве оптической платформы.

Тепловое излучение от многослойного графена может модулироваться электрически через интеркалирование* ионов.
Интеркаляция* обратимое внедрение молекулы или группы молекул между другими молекулами или группами молекул.
В данном исследовании ученые представляют нашему вниманию технологию оптического текстиля, основанную на интеграции в текстиль динамических инфракрасных устройств на базе электрически перестраиваемого графена, образованного методом химического осаждения из паровой фазы (ХОПФ).

Результаты исследования


Устройства состоят из объединенных слоев инфракрасно прозрачного полимерного слоя, многослойного графена, выращенного с использованием метода ХОПФ, слоя тканевого разделителя и проводящей ткани (схема устройства на ).


Изображение 1

Изготовление начинается с выращивания многослойных графеновых пленок на никелевой фольге. Тонкая полиэфирная (PE) пленка, которая функционирует как прозрачный для инфракрасного излучения защитный слой, ламинируется на многослойный графен перед травлением Ni-фольги. Графен на полиэфирном листе прикрепляется к ткани с помощью термоплавкого клея.

Одним из важных моментов данной разработки является удобство использования и практичность, потому необходимо было удостовериться в хорошей адгезии между графеном и подложкой (тканью). Это было сделано посредством нескольких циклов стирки и посредством испытаний на механическое сжатие.

Далее на задний электрод (проводящая ткань) был нанесен ионный жидкий электролит (BMIMPF6), который впоследствии диффундировал в текстильную подложку. Текстиль действует как разделитель и ионопроводящий слой, обеспечивая ионное движение, когда разность напряжений приложена к графену и заднему электроду.

На 1b показаны примеры изготовленных устройств на натуральных (хлопок) и синтетических текстильных материалах (полиэфир).

Электрохимическая стабильность заднего электрода играет решающую роль в долговременной стабильности устройства. В качестве основы для заднего электрода тестировались разные материалы: проводящий текстиль на основе серебра, сетка из нержавеющей стали, золотое напыление, графен и восстановленный оксид графена.

Массив задних электродов и проводку на текстиле изготовили с помощью фотолитографии с последующей металлизацией и процессом отрыва*.
Отрыв* в технологии микроструктурирования представляет собой способ создания структур целевого материала на поверхности подложки с использованием жертвенного материала (например, фоторезиста).
Полученные пиксельные электроды позволяют определять динамические инфракрасные структуры на непрерывном графеновом слое с помощью выборочной интеркаляции.

Принцип работы устройств основан на обратимой интеркаляции ионов в графеновые слои и модулировании его электрических и оптических свойств. При 0 В многослойный графен имеет высокое инфракрасное поглощение, что приводит к высокой излучательной способности, раскрывая фактическую температуру устройства ().


Изображение 2

При подаче достаточной разности напряжений (> 2.5 В) ионная жидкость интеркалирует в слои графена, увеличивая оптическую проводимость и подавляя излучательную способность, тем самым скрывая фактическую температуру устройства. Термографы устройства записывались с помощью длинноволновой инфракрасной камеры, которая визуализирует изображения по закону Стефана-Больцмана:
P = T4
где P количество падающего теплового излучения на матрице болометров*; излучательная способность поверхности; постоянная Стефана-Больцмана; T температура поверхности в Кельвинах.
Болометр* тепловой приемник излучения (преобразует энергию поглощенного электромагнитного излучения в тепловую).
Текстильные устройства находясь непосредственно в тепловом контакте с источниками тепла, такими как тело человека, для предотвращения ложного экранирования температуры источника. Кроме того, графен функционирует как слой с высокой теплопроводностью, который удваивает температуропроводность в плоскости текстиля, улучшая теплопроводность от источника к поверхности.

Временной отклик устройств был получен путем записи видео тепловизором, чтобы получить изменение видимой температуры поверхности (2b).


Динамическое изменение инфракрасного излучения на хлопковом устройстве.

Полная интеркаляция (подавление излучательной способности) занимает ~5 с, когда ток устройства не ограничен. Стоит отметить, что эти измерения проводились в лабораторных условиях (21 C), ограничивающих минимальную кажущуюся температуру.

Устройства могут многократно циклически переключаться между состояниями с высокой и низкой излучательной способностью (2c), однако превышение электрохимического окна электролита ухудшает рабочие характеристики устройства.

Модуляция излучательной способности определялась количественно с помощью измерений отражения в инфракрасном и ближнем инфракрасном диапазонах с использованием инфракрасного Фурье-спектрометр (FTIR), оборудованного интегрирующей сферой. При 0 В коэффициент отражения внутреннего устройства почти плоский (2d) и составляет около 30%, за исключением поглощения в верхней полиэфирной пленке на длинах волн ~3.4, ~6.8, ~13.9 мкм и поглощения в атмосфере (например, CO2, H2O).


Демонстрация работы адаптивного инфракрасного текстильного устройства.

В диапазоне спектральной чувствительности тепловой камеры (8-13 мкм) такие поглощения минимизируются благодаря тщательному выбору верхней защитной пленки. Коэффициент излучения (или коэффициент поглощения) рассчитывается как 1 R, где R коэффициент отражения, поскольку свет не проходит через устройство. По мере того, как ионы интеркалируют графеновые слои, энергия Ферми и оптическая проводимость графена увеличиваются, тем самым увеличивая коэффициент отражения инфракрасного излучения.

Средняя излучательная способность устройства в диапазоне длин волн 8-13 мкм достаточно высока ( 0.7) для 0 В и поддерживается в таком значении до порогового напряжения ( 2.5 В) с последующим резким падением до 0.35 при > 4 В (), что отлично согласуется с термограммами на 2а.

Модуляция излучательной способности охватывает как длинноволновый инфракрасный (8-13 мкм), так и средневолновый инфракрасный (MWIR, 3-5 мкм) диапазон. В MWIR, тем не менее, полиэфирная пленка демонстрирует значительное поглощение из-за режима растяжения C-H связей, который не зависит от приложенного напряжения, ограничивая диапазон модуляции излучательной способности до 0.7-0.5 (2e). Из этого следует, что любые устройства, работающие в этом диапазоне длин волн, нуждаются в нестандартном защитном слое.

Другим эффектом полиэфирного слоя является повышенная излучательная способность поверхности благодаря термической экстракции полиэфиром, у которого показатель преломления больше, чем у воздуха.

Также наблюдалась модуляция излучательной способности (0.2-0.4) и в коротковолновом инфракрасном диапазоне (SWIR, 0.9-1.7 мкм). А вот модуляция в видимом спектре была незначительной из-за недостаточного легирования графена.

Улучшить модуляцию в SWIR и видимом диапазоне возможно за счет использования ионной жидкости с большим электрохимическим окном, которая будет совместима с текстилем.

Учитывая, что ткань должна быть растяжимой и гибкой, используемые графеновые элементы должны действовать соответственно. Однако многослойный графен не растягивается и не гнется ввиду механического воздействия. Потому в разработке была использована нестандартная изогнутая конструкция графена, что обеспечило уровень деформации до 60%.


Изображение 3

Решить все проблемы с гибкостью и механическим напряжением можно за счет использования массивов электродов, в не единого элемента. На показан пример такого варианта конфигурации с массивом из 25 индивидуально адресуемых электродов и датчиком термобатареи. В качестве активного слоя использовался большой цельный лист многослойного графена на хлопчатобумажной ткани (3b). Каждый электрод контролирует излучательную способность площадью 2х2 см. Внешняя электронная схема была запрограммирована реагировать на тепловую сигнатуру от датчика. Графики 3c и 3d показывают сигналы датчика и кажущуюся температуру активного пикселя (область контроля 2х2).

Мультипиксельное текстильное устройство отображает буквы C или H (обозначающие cold и hot), настраивая излучательную способность соответствующих пикселей, реагирующих на наличие/отсутствие горячего объекта над датчиком. На 3e показаны тепловые изображения работы устройства при взаимодействии с рукой человека.

Далее ученые провели фактическое практическое испытание устройства, внедренного в обычную футболку. Из-за естественной температуры тела, в условиях окружающей среды, человеческое тело излучает около 100 Вт инфракрасного света в основном в LWIR диапазоне. Этот спектральный диапазон также совпадает с окном атмосферного пропускания, которое позволяет распространять излучаемый LWIR свет на большие расстояния.

Устройство для футболки было изготовлено путем ламинирования пленки графен/полиэфир размером 6х6 см непосредственно на поверхности футболки из 100% хлопка и сеткой из нержавеющей стали на обратной стороне ().


Изображение 4

Для передачи закодированного сигнала был использован микроконтроллер, который был запрограммирован передавать буквы N, G и I азбукой Морзе. Тире и точки создавались путем подавления кажущейся температуры на длительное (9 с) и короткое (3 с) время.

На 4b и показаны инфракрасные снимки футболки в состояниях с высокой и низкой излучательной способностью, а шкала справа показывает зарегистрированную с расстояния в 3 м кажущуюся температуру.

Использование микроконтроллера позволяет строить более сложные схемы на текстиле, что, в свою очередь, обеспечивает более безопасные протоколы связи, например, инициирование связи при получении внешних запускающих стимулов. А человеческое тело в данной конфигурации может служить источником энергии.

В данном опыте скорость связи с использованием одной заплатки ограничена процессом интеркаляции/деинтеркаляции, который масштабируется в зависимости от площади устройства.


Передача букв N, G и I азбукой Морзе.

Ученые заявляют, что использование небольших электрических сигналов для модуляции инфракрасной излучательной способности является значительным преимуществом по сравнению с альтернативами, поскольку оно обеспечивает адаптивный отклик, что необходимо для применения в динамическом тепловом камуфляже и управлении тепловым режимом.


Увеличение отражающей способности полиэфирного устройства в ближнем инфракрасном диапазоне.

Разработанное устройство требует низкого напряжения (~ 3 В) и совсем немного энергии (5.5 х 10-4 мАч/см2 на одно событие интеркаляции, что соответствует плотности заряда ~ 1014 см-2 для каждого слоя графена). Следовательно, обычная дисковая батарейка на 1000 мАч может активировать устройство размером с футболку (1 м2) около 180 раз. Кроме того, энергия потребляется исключительно во время цикла зарядки (интеркаляции). А средняя мощность в режиме ожидания практически равна нулю, что позволяет значительно продлить использования одного устройства без замены внешнего источника питания. Это, конечно, если не рассматривать идею с использованием человека в качестве источника энергии.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Мода переменчива, как и погода. А вот наука, хоть иногда и кажется хаотичной, но все же следует одним и тем же естественным законам.

В данном труде ученые использовали оптические свойства графена в своей разработке графенового адаптивного оптического текстиля. Это устройство позволяет не только модулировать его температуру, но и дает возможность лучше понять термические и механические свойства графена. Успешная демонстрация модуляции оптических свойств на различных типах текстиля может дать толчок более широкому использованию волокнистых архитектур. Спектр применения подобных технологий не ограничивается элементами гардероба, она может быть крайне полезна и в технологиях связи, и даже в адаптивных скафандрах.

Сами же ученые намерены шагнуть еще дальше. В дальнейшем они планируют использовать свою разработку в спутниках на околоземной орбите. Спутники, как никто другой, испытывают экстремальные перепады температуры: в тени Земли они замерзают, а обращаясь к Солнцу очень нагреваются. Использование данной технологии в теории позволяет получить контроль над тепловым излучением, следовательно, и над температурой самого спутника. От обычной футболки к спутникам на орбите остается лишь надеяться, что амбиции ученых будут подкреплены успешными результатами их дальнейших исследований.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Вынужденный экспресс-курс эволюции дигиталис и колибри

16.04.2021 10:20:09 | Автор: admin


Природа порой бывает очень цинична и прямолинейна в своих проявлениях. То, что может показаться невероятным примером дружбы между разными видами, на самом деле является взаимовыгодным партнерством, в котором ни один из участников не будет дальше дружить, если второй перестанет быть выгоден. Подобное взаимодействие видов называют симбиозом, у которого имеется несколько разновидностей. К примеру, мутуализм описывает связь видов, когда присутствие видов-напарников является обязательным условием выживания каждого из них. Ярким тому примером являются растения и существа их опыляющие. Но что делать растению, если оно оказалось в новой среде обитания без своих прежних партнеров-опылителей? Конечно же, эволюционировать и очень-очень быстро. Ученые из Британского экологического общества установили, что подобная ситуация произошла с дигиталисом, т.е. с наперстянкой. Примерно 200 лет тому назад это растение, преимущественно произрастающее в Средиземноморье, пересекло океан (не без помощи человека) и попало в Центральную Америку. Под кого пришлось быстро подстраиваться растению-путешественнику, какие изменения в структуре цветка произошли, и зачем они произошли? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Дигиталис или наперстянка получили свое говорящее имя от латинского слова digitus, что в переводе означает палец. Авторство названия приписывают Леонарту Фуксу, который впервые описал данное растение в своей книге De historia stirpium commentarii insignes, где называл его Fingerhut, то бишь наперсток.


Леонарт Фукс

В древнеанглийском языке наперстянка имела название foxes glofe/glofa, т.е. лисьи перчатки. В местах обитания лис росло очень много наперстянки, от чего появилась легенда, что лисы одевали цветки этого растения, чтобы бесшумно охотиться на свою добычу. Другое древнеанглийское название witch's glove (ведьмина перчатка) указывают на ядовитость данного растения.

Несмотря на эстетическое удовольствие, которое может принести дигиталис, это растение может как лечить, так и калечить. Дело в том, что листья (по большей степени) содержат гликозиды*.
Гликозиды* органические соединения, молекулы которых состоят из двух частей: углеводного (пиранозидного или фуранозидного) остатка и неуглеводного фрагмента (агликона).
Данные соединения регулируют работу сердца, улучшают мочеотделение и снимают отечность. Но, как мы знаем, разница между лекарством и ядом заключается в дозе. При ненормированном употреблении дигиталис может вызвать сильнейшее отравление со всеми приятными бонусами: диарея, рвота, головная боль, одышка, головокружение, падение пульса, конвульсии, делирий и галлюцинации. Вишенкой на торте является вероятность получить сердечный приступ. Минимальная смертельная доза составляет всего лишь 2.25 грамма. По этой причине самостоятельное использование наперстянки в качестве лекарственного средства категорически запрещено.

От неприятного перейдем к приятному, к внешнему виду наперстянки. Растение может быть высотой от 30 до 150 см. Самой очевидной визуальной ноткой наперстянки, естественно, являются многочисленные цветы длиной от 1 до 15 мм, расположенные вдоль ствола. Форма цветков действительно напоминает наперсток или колокол. В ночное время многие насекомые прячутся в цветках дигиталис, так как температура в них гораздо выше, чем снаружи.

Благодаря своей красоте дигиталис стал нередким элементом многих произведений изобразительного искусства.


Портрет доктора Гаше (Ван Гог, 1890) и Наперстянки (Фридрих Карл Фриске, 1912-1913).

Но не эстетика и даже не ядовитые свойства наперстянки привлекли внимание авторов рассматриваемого нами сегодня труда. Данный вид, произрастающий по большей степени на территории Средиземноморья, примерно 200 лет назад попал в Центральную Америку, где претерпел ряд изменений во имя адаптации и выживания.

Основной причиной адаптации стала потеря прежних опылителей, которые не отправились в путешествие через океан вместе с растением. Для многих растений опылители являются жизненно необходимыми партнерами, от которых зависит не только процветание конкретного растения, но и сохранность всего вида. Учитывая это, многие растения подстраиваются под опылителей, что проявляется в морфологических признаках цветков. Форма, цвет, аромат все эти элементы морфологии цветков нацелены на привлечение внимания опылителей.

Проблема в том, что морфология наперстянки была максимально адаптирована под средиземноморских (бабочки, чаще всего), а не под центрально-американских опылителей. Конечно, местные насекомые могли опылять дигиталис, но эффективность этого процесса была не максимальна, как в случае с европейскими бабочками. А это вполне могло бы привести к вымиранию виду на территории Центральной Америки, если бы вид не начал меняться.


Изображение 1: продольный разрез цветка Digitalis purpurea с удаленными частью венчика и одной тычинкой. Цветочные нектарники расположены у основания завязи, в суженной проксимальной части трубки венчика.

Ученые отмечают, что эволюционные изменения растения, дабы соответствовать опылителям, не являются редкостью. Однако в случае с дигиталисом эта адаптация произошла рекордно быстро. Следовательно, изучение разницы между видами дигиталиса (средиземноморским и центрально-американским) позволяет лучше понять механизмы быстрой эволюции.

Можно подумать, зачем меняться, насекомые и в Африке насекомые. Однако после переезда в Центральную Америку дигиталис столкнулся с совершенно новым типом опылителей с колибри. Именно из-за этих прытких птичек бедному растению пришлось пройти курс экспресс эволюции.


Изображение 2: спрессованные цветки Digitalis purpurea, иллюстрирующие проведенные морфологические измерения: (a) длина и высота венчика целиком; (b) длина и ширина трубки проксимального венчика.

В ходе исследования ученые провели сравнение коренных популяций (из Южной Англии) и натурализованных популяций в двух районах, где обитают колибри(Колумбия в Южной Америке и Коста-Рика в Центральной Америке). Была проведена оценка самих опылителей, частоту посещения ими цветков и эффективность переноса пыльцы. Также была измерена морфология цветков и характеристики нектара. Связь между этими показателями может играть важную роль в механизмах (и причинах) быстрой адаптации.

Результаты исследования


Сначала было проведено сравнение результатов ручного опыления двух популяций D. purpurea из Англии (из двух регионов) и одной популяции из Южной Америки. Во всех популяциях ручное опыление давало значительно различающееся количество семян (примерно 801.5; N = 8-20 цветков на обработку в каждой популяции).


Изображение 3

Дальнейшие тесты показали, что цветы, собранные для автономного самоопыления (естественного самоопыления) дали значительно меньше семян, чем контрольная группа, как из Англии, так и из Колумбии. В некоторых случаях семян не было вообще. Это лишь подтверждает, что данные растения, где бы они не произрастали, крайне зависимы от опылителей.

Было установлено, что количество семян, полученных в результате самоопыления или за счет опылителей, не сильно отличалось между регионами. Это свидетельствует о том, что растения из каждого региона (Англия или Колумбия) были полностью адаптированы к своей нынешней окружающей среде и к своим нынешним опылителям.

Далее ученые провели оценку частоты посещения опылителями места произрастания дигиталиса, где учитывали посещения продолжительностью 3 минуты. В результате было получено 25-31 час наблюдений для Центральной и Южной Америки: Флореста 524, Чоачи 624 и Ла-Джорджина 506 посещений; и 7-10 часов наблюдений для Англии: Калькот Вуд 140, Холи Кросс 201, Лодер-Вэлли 161 посещений.


Изображение 4

Популяции в тропических горах обладали более разнообразными опылителями (7 видов), чем нативные (2 вида). Самым распространенным опылителем среди всех популяций оказался шмель, а именно вид Bombus. Колибри же в некоторых популяциях составляли примерно 27% от общего числа опылителей. А вот мелкие насекомые и пчелы появлялись крайне редко, поскольку им сложно добраться до пыльцы из-за длинных волосков у основания венчика.

Разница в частоте посещений цветов опылителями начинает проглядываться, когда речь заходит о видовом разнообразии. Цветы в Англии чаще посещались шмелями, а цветы в Америке колибри, что указывает на морфологические отличия в структуре цветков.

Любопытно, что похищение нектара (когда насекомое получает нектар через отверстие, проделанное у основания цветка) на территории Англии встречалось всего в 10.4% случаев. При этом в Флоресте примерно 64% растений имели минимум один ограбленный цветок, из которых примерно 12% были полностью раскрытые цветки. Опять же, это указывает на морфологию цветка, которая не позволяет опылителям получать нектар классическим путем, вынуждая их воровать.


Изображение 5

Эффективность опылителей с точки зрения переноса пыльцы также была проверена. Колибри за одно посещение цветка передавали ему гораздо больше пыльцы (4380 2964 гранул), чем те же шмели (728 1053 гранул) или другие насекомые Колумбии (график выше).

От сравнения опылителей перейдем к результатам сравнения самих цветов.


Изображение 6

Размеры целой трубки венчика у популяций из Америки (N = 783 цветка от 250 растений из 7 популяций) и популяций из Англии (N = 559 цветков от 165 растений из 4 популяциях) никак не отличались (6a). Но проксимальная трубка венчика была в среднем на 13% и 26% больше (в Колумбии и Коста-Рике соответственно), чем у цветков Англии (6b). По объему и по концентрации нектара отличий не было обнаружено. Также не было разницы и в вегетативных признаках всего растения (к примеру, высота соцветия до первого цветка и диаметр розетки).

Важным отличием было число производимых цветков и плодов. Популяции из Америки производили в среднем на 58.2% меньше цветков и плодов при одинаковом количестве семян на один плод: Англия 124.1 цветов/плод на одно растение, Колумбия 53.0, Коста-Рика 48.8. В результате растения из Америки производили на 64.2 % меньше семян.

Касательно более корректных изменений, произошедших с цветками после их перемещения в новый ареал, ученые установили, что таковые были не так уж и разительны. По большей степени главное изменение заключается в проксимальной длине венчика для трех популяций и ширине венчика для одной популяции.

Цветки дигиталиса обладают длинными и узкими проксимальными трубками венчика, где содержится нектар. Из-за такой формы доступ к нему имеют лишь опылители с длинным ротовым аппаратом (например, вышеупомянутые длинноязычные шмели). Сравнение популяций дигиталиса из Англии, Колумбии и Коста-Рики показало, что в двух последних случаях цветки оснащены более длинными трубками, чем популяция Англии.

Подобная морфология цветка очень распространена для растений, опыляемых колибри. Предположительно, это улучшает точность переноса пыльцы во время опыления колибри, при этом отсеивая других опылителей ввиду их низкой эффективности.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Двести лет назад дигиталис преодолел невероятное для своего вида расстояние, получив в свое распоряжение новый ареал произрастания. В комплекте с новой локацией были и новые опылители, часть из которых была значительно менее эффективна, чем те, что остались на родине цветка. Это побудило дигиталис к быстрой эволюционной адаптации, которая произошла за 85 поколений (учитывая, что некоторые виды этого растения двухлетние).

Основное изменение морфологии цветка заключается в увеличении длины трубки венчика, где хранится нектар. За счет этого опылители, чей ротовой аппарат недостаточно длинный, не могли добраться до нектара, т.е. исключались из процесса опыления. Колибри же обладают выдающимся ротовым аппаратом, особенно колибри-мечеклюв (длина тела до 22 см, из которых 11 см это клюв). Сравнение колибри и шмелей подтвердило, что первые намного эффективнее переносят пыльцу. Однако, как заявляют сами ученые, хоть связь между морфологическими изменениями цветка и наличием колибри существует, она еще не является стопроцентным доказательством того, что исключительно колибри спровоцировали подобные изменения. В дальнейшем ученые планирую провести генетические тесты различных популяций дигиталиса из разных ареалов произрастания.

Результаты данного исследования являются примером быстрой эволюции, которая пока еще не так хорошо изучена. Радикальные изменения окружающей среды, вызванные природными или техногенными факторами, ставит перед организмом весьма простой выбор погибнуть или адаптироваться. Эволюция, как мы ее понимаем, занимает тысячи, а то и десятки тысяч лет. Но в редких исключениях этот процесс протекает значительно быстрее.

Учитывая пчелиный кризис, подобного рода труды могут помочь лучше понять, как растения могут приспособиться к новым условиям и новым опылителям. Это, в свою очередь, открывает новые возможности в области генетических модификаций, этот процесс ускорить.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru