Русский
Русский
English
Статистика
Реклама

Парниковый эффект

Перевод Итак, вы хотите создать компанию по улавливанию и хранению углерода

16.05.2021 02:16:45 | Автор: admin
image

Хотите выиграть приз в миллион долларов от Илона Маска? Улавливание углерода (УУ) в наши дни тема чрезвычайно популярная. Десятки новых компаний занимаются вопросом удаления лишнего CO2 из атмосферы с целью стабилизации климата.

Сам я не эксперт по УУ, но периодически мне задают вопросы на эту тему. Поэтому я предлагаю вам данную статью, чтобы помочь организовать наши мысли и уточнить стратегию по разработке и оценке широкого спектра систем улавливания углерода (СУУ).

Стоит ли чего-то наша технология УУ? Давайте изучим нашу гипотетическую машину для УУ с двух точек зрения: физической и экономической.

Физика


Не является ли наша машина скрытым вечным двигателем?


В прошлой жизни я несколько лет занимался проектированием маглев-систем, и часто натыкался на концепции других проектировщиков, эффективность которых была слишком идеальной для реального мира. Если сопротивление системы отрицательно, это вечный двигатель.

Если на концентрацию CO2 система тратит меньше энергии, чем на выпуск его в воздух это вечный двигатель. Если наша машина сжимает поток газа без расхода энергии или генерации паразитного тепла, она нарушает законы термодинамики. Вечные двигатели, очевидно, не существуют так что проверяйте математику!

Что такого известно нам, чего не знают все остальные?


Что это за неочевидный противоречивый факт? Как наша система его использует?

Сколько энергии реально потребляет наша система?


СУУ иногда используют температурное чередование в слоях сорбента или электрохимическое разделение для увеличения концентрации CO2 с обычной, 420 частей на миллион (0,042 об. %), до почти 100%. Требуется ли для работы нашей системы много электрической или тепловой энергии? Откуда она берётся?

Если это электрохимическая система, она использует больше или меньше энергии на моль CO2 по сравнению с выплавкой алюминия (1500 кДж/моль)? Используется ли там большой ток малого напряжения? Есть ли у нас под рукой униполярный генератор? Сколько меди требует система? Если при напряжении ячейки Y нам требуется Х электронов на молекулу CO2, получается X*Y*95 кДж/моль. Насколько близко мы подобрались к этому ограничению?

Уменьшает ли наша система суммарное количество CO2 в воздухе?


Если наша система по сбору CO2 выделяет оксид кальция (негашёную известь), образующуюся при термическом кальцинировании и сжигании природного газа, она будет выделять больше CO2, чем уловит за весь срок службы. Оп-па.

Более общий вопрос: сколько лет она должна работать, чтобы превысить количество CO2, выделенное за время работы?

Как мы подходим к оценке теоретических ограничений?


Энтропия Гиббса растворения CO2 в атмосфере равняется примерно 19,4 кДж/моль. Это небольшое значение поэтому никто не занимается генерацией энергии при помощи осмотического градиента концентрированного CO2 в атмосфере. Приближается ли наша система к этому параметру хоть сколько-нибудь заметно? А надо ли это ей? Может ли она к нему приблизиться? Если мы используем электрохимическое разделение, как мы справляемся с омическим нагревом и вязкостью?

Является ли электрическая эффективность одним из основных ограничений нашей системы? Нужно ли ей быть эффективной, и каковы альтернативные издержки повышения эффективности на 1%? Если электричество будет дешеветь на 1% в год, эквивалентно ли это будет виртуальному увеличению её эффективности на 1%?

Действительно ли наша машина концентрирует атмосферный CO2?


Наш агрегат мигает лампочками, а из трубы у неё выходит CO2 с концентрацией в 100%. Значит, всё норм? Не совсем. Сохраняет ли она углерод? Не сжигаем ли мы случайно части нашей машины? Точно?

Думаю, что в данном случае идеальным стандартом будет нулевой радиоуглеродный возраст CO2, полученного концентрацией из атмосферы при этом CO2 полученный, допустим, в результате случайного электролиза добытого из земли карбоната будет очень старым и не радиоактивным. Для проверки углерода-14 требуется масс-спектрометр. В США полно лабораторий, которые за несколько сотен долларов проведут такой тест, хотя обычно образец сначала нужно будет превратить в графит.

Однако датирование углерода не лишено недостатков органические источники углерода, типа растительных масел, дерева или угля, молодые с точки зрения радиоуглеродного датирования. Так что если наша машина использует, допустим, кондитерский жир для смазки, нам нужно тщательно проверить математику, а также задуматься о том, что мы вообще делаем.

Можем ли мы подтвердить наши результаты?


Понимаем ли мы нашу систему тестирования? Описали ли мы каждый аспект работы машины количественно? Не запутает ли видео с презентацией её работы инвесторов? Очевидны ли ключевые вехи? Сможет ли человек, посмотревший видео, сам построить такую машину и провести такое же испытание? Хорошо ли описаны информация по тесту и результаты для того, чтобы их мог проверить независимый эксперт? Хорошо ли мы понимаем, как должен выглядеть и восприниматься хорошо задокументированный эксперимент, или нам надо пойти прочесть работу-другую по биологии?

В области УУ можно встретить множество слабо разбирающихся в этом людей, и нам нужно задать высокий уровень стандартам документирования. Мы не планируем публиковать секреты наших разработок, но вряд ли можно ожидать, что инвесторы будут расставаться со своими деньгами в обмен на обещания и надежды.

Можно ли масштабировать наш проект?


Есть ли фундаментальные физические ограничения на реализацию проекта? Если мы собираемся собирать по 10 Гт CO2 в год, высаживая деревья, сколько воды потребуется, чтобы их поливать? Сможет ли фотосинтез конкурировать с добычей ископаемых? Какие фундаментальные ограничения на масштабирование нашего проекта? Есть ли доступ к капиталам? Окупаемость инвестиций? Нужны ли редкие реагенты? Нет ли у компании подозрительных сооснователей? Есть ли доступ к энергосетям достаточной мощности? Каков легальный статус углеродных налогов?

Готова ли наша СУУ к выходу из лаборатории?


Система питания двигателя, использовавшаяся компанией Tesla на заре деятельности, была чрезвычайно ненадёжной. Там использовались десятки аналоговых операционных усилителей, крутивших асинхронный мотор переменного тока. История полна проектов, которые не могли окупиться, поскольку были недостаточно взрослыми для выхода в производство.

Есть ли у нас какая-то лабораторная модель, которую можно показать людям? Работает ли она? Ясно ли, какие её части сделаны наскоро, а какие имеют реальное значение? Безопасно ли находиться с ней в одной комнате?

Готова ли технология к производству? Можем ли мы дать прототип среднему инженеру, недавно закончившему институт, и сказать сделай нам 10 000 штук таких, и быть достаточно уверенными в том, что получатся рабочие, надёжные и достаточно эффективные приборы? Разобрались ли мы со всеми ошибками перед тем, как искать крупных инвестиций, или машина находится на уровне научного эксперимента?

Финансы


Сколько стоит наш CO2?


Можем ли выдавать CO2 по $1000 за тонну, по $100 или по $10? Сколько стоит наш CO2? Сколько мы хотим, чтобы он стоил? А сколько нужно, чтобы он стоил? Как мы выглядим в сравнении с конкурентами? Насколько можно доверять нашим планам по улучшению машины?

Насколько дорогая наша СУУ?


Какова структура капитальных расходов? Сколько тонн CO2 машина должна уловить, чтобы окупить себя за вычетом операционных расходов, стоимости финансирования, амортизации? Сколько времени на это уйдёт?

Если наша машина улавливает килограмм CO2 в день при стоимости $100 за тонну, она заработает $36,5 в год. Если стоимость постройки нашей машины составит $500, то чтобы окупить только эту стоимость, потребуется 15 лет. Траты в $500 за запчасти и труд находятся где-то в промежутке от большого торта до простейшей посудомойки, если говорить о масштабе и сложности проекта. Любой мало-мальски умелый техник должен собирать пяток таких машин в день, то есть, мы должны выдавать примерно 1500 машин в год. И всё равно прибыль составит всего $50 000, чего не хватит даже на обучение в институте [в США / прим. пер.].

Если капитальные расходы амортизируются за 10-30 лет работы, как оценить капитальные затраты? Рассчитываем ли мы на правительственные займы с низкой процентной ставкой? Будем ли мы андеррайтерами для наших клиентов, покупающих у нас устройства? Как диверсифицировать риски в данной области, учитывая их сильную корреляцию (как в технологических, так и в регуляторных областях)?

Или мы сможем отбить затраты за несколько месяцев или лет, и рассчитывать на кратковременный кредит или даже собственные средства?

Как быстро машина изнашивается? Не обесценивается ли она быстрее, чем окупается?

Какова стоимость работы СУУ?


Какие у нас операционные расходы? Нужны ли рабочие для обслуживания? Какие у машины расходники реагенты, клапана, фурнитура, насосы, электроды, ПО?

Как операционные расходы укладываются в график амортизации капитальных расходов? Не тратит ли машина на работу больше, чем на амортизацию? Оправдается ли усложнение конструкции с целью уменьшения текущих расходов? Или же машина настолько надёжная, что её можно включить и забыть и НАСА сможет использовать её для работы с атмосферой на Луне?

Развёртываем мы машину у себя во дворе или где-нибудь в пустыне? Как мы будем добираться до клиентов и осуществлять поддержку оборудования в удалённых или труднодоступных местах?

Вернёмся к энергии


Важна ли стоимость энергии для финансового плана? Десять лет назад стоимость электричества делала зелёный водород (полученный при помощи электролиза из воды) слишком дорогим по сравнению с голубым (полученным из природного газа паровой конверсией). Сегодня солнечная электроэнергия в пиковые часы обходится в 10 раз дешевле. Как изменятся наша бизнес-модель и оптимизация системы, если электричество станет дороже, или, наоборот, дешевле во время срока службы нашей машины?

Энергоёмкий ли наш процесс? Сравним ли он с охлаждением или электроочисткой магния? Не привлечём ли мы внимания властей как нелегальная плантация запрещённой травы или дата-центр?

Насколько хрупкая у нас цепочка поставок?


Зависит ли наша машина от редких материалов? Чего мы не сможем купить в стройматериалах или на сайте Alibaba? Или на сайте Шёлковый путь? Легко ли нам поменять поставщиков, или наш проект зависит от состояния бизнеса и доброй воли единственной фирмы где-то во Внешней Монголии? Поглощаем ли мы CO2 при помощи амидов, цеолитов или металл-органических каркасных структур? Насколько дороги эти особые материалы? Работают ли в лаборатории, способной их производить, наши родственники или супруг(а)? Могут ли они масштабировать производство так же быстро, как мы бизнес, и с какой маргинальной стоимостью? Сколько стоят металл-органические каркасные структуры?

Есть ли у нас в списке покупок хоть что-нибудь более токсичное, чем считается приемлемым, или требующее особо осторожного обращения? Плутоний? Запрещённые вещества? Диоксидифторид? Раствор пиранья? Нужны ли нам сертифицированные специалисты? Потянем ли мы их медстраховку? Не заинтересуем ли мы управление по борьбе с наркотиками или министерство внутренней безопасности?

Зависит ли наш процесс от доступности и доброй воли одного или нескольких узкоспециализированных докторов наук? Есть ли у нас план удержания талантов? Насколько экзотичен наш процесс?

Нужны ли нам волшебные материалы?


Работает ли наша система только с веществами, чистыми на 99,999999%? Что будет в случае загрязнения никаких проблем, понизится эффективность или всё внезапно может рвануть? Испортят ли наши катализаторы обычные загрязнители воздуха водяной пар, кислород, запах пад-тай?

Расходуются ли катализаторы в системе? Не являются ли они тайными расходными материалами? Есть у нас план по поставкам, обслуживанию и замене того, что мы не планировали портить? Сколько кобальта нам нужно на тонну CO2?

Нужно ли нам волшебство масштабирования?


Все знают, что относительная дешевизна автомобилей возможна за счёт огромных и дорогих производств, благодаря которым можно ежегодно производить сотни тысяч абсолютно одинаковых экземпляров.

Есть ли у нашей СУУ та же проблема, из-за которой мы не можем снизить капитальные расходы до приемлемых, пока не построим полностью автоматическую фабрику в миллион квадратных метров? Почему её нельзя собирать на манер LEGO? Строили ли мы сами огромную автоматическую фабрику? Идут ли эти знания на пользу делу? Может, нам лучше предлагать людям полностью автоматические фабрики в миллион квадратных метров как услугу?

Есть ли вообще критический масштаб, ниже которого у нашей системы нет смысла? Можем ли мы оправдать экономику масштаба, или мы просто фантазируем, из-за того, что построить нашу систему будет дороже, чем заработать за 20 лет, получая по $1000 за тонну?

Есть ли у нас поток доходов?


Или нам нужно полагаться на скоординированные действия нескольких десятков правительств, утверждающих надёжные налоговые льготы или выплаты, образующие рынок бесконечной глубины с нулевой эластичностью для продажи CO2?

Куда пойдёт наш концентрированный CO2? Превратится в топливо? Пластик? Копоть? Графит? Цемент? Пойдёт под землю? В газировку? Какова ежегодная ёмкость этих рынков? Какой её процент мы уловим?

Если мы продаём наш CO2 только PepsiCo, он очень быстро вернётся а втмосферу. Есть ли у нас план по более надёжному хранению CO2?

Кто будет покупать у нас CO2, в какой форме, сколько и по какой цене? Как будет выглядеть наш бизнес, если этот рынок будет насыщен? Допустим, если мы продаём 1000 тонн в год по $100 за тонну, доход нашего бизнеса составляет $100 тысяч в год. Достаточно ли этого для работы команды?

Где в бизнесе создаётся ценность?


Если мы делаем СУУ, которую через 20 лет надо амортизировать, мы продаём очень дорогие виджеты любителям долгов, и хорошо бы в больших количествах. Что в машине самое дорогое? Где мы добавляем ценность?

Допустим, мы делаем СУУ на качающихся цеолитовых ячейках, типа таких, что используются на МКС. Большую часть их стоимости составляют новые цеолиты. Для уменьшения стоимости и улучшения контроля качества мы решили интегрировать в процесс производство цеолитов, улучшив стоимость на 20%. Поскольку цеолиты составляли порядка 90% капитальных расходов машины, теперь более 95% ценности компании состоит в производстве цеолитов. И что, мы теперь замаскированная цеолитовая фабрика?

И если в долгосрочной перспективе улавливание CO2 промышленных масштабов будет сильно зависеть от массового производства экзотических материалов, как компьютерная индустрия зависела от фотолитографии на безумно чистых кремниевых кристаллов, имеет ли смысл вертикализация промышленности? С чего мы начинаем в этой цепочке ценностей, и где заканчиваем? Поставка химических веществ как услуга?
Подробнее..

Последние облака. Подробно о гипотезе влажной стратосферы

28.02.2021 18:05:07 | Автор: admin

В 2004 году, на момент выхода фильма Послезавтра, сохранялось ощущение, что подобный сюжет является фантастикой, преувеличением или просто страшилкой. Сегодня мы живем в мире, где уже превратилась в недавнюю историю филиппика Греты Тунберг, где рекордно обмелел водопад Виктория, а на Ямале зафиксирована вспышка сибирской язвы болезнь сохранилась в трупе северного оленя, долгие годы пролежавшем в вечной мерзлоте, которая сегодня все сильнее тает. Буквально на момент подготовки этого материала читаем о беспрецедентном ослаблении Гольфстрима. Книга Необитаемая Земля в 2020 году стала бестселлером по версии Нью-Йорк Таймс, и еще в 2020 году была издана на русском языке.

Но таковы жанры фантастики и постапокалиптики, а вместе с ними и экологический дискурс что по-настоящему грозные последствия глобального потепления остаются в тени, поскольку не слишком зрелищны, растянуты во времени и на данный момент маловероятны. Даже менее вероятны, чем сюжет Послезавтра в 2004 году. Я очень удивился, насколько скудно раскрыты в Рунете и практически не раскрыты на Хабре вопросы бесконтрольного парникового эффекта и влажной стратосферы и сегодня хочу остановиться на них.

Тропосфера и тропопауза

Начнем с общего устройства атмосферы.

Весь климат, вся погода, а также явления, связанные с глобальным потеплением, происходят в тропосфере, которая толще всего у экватора (16-17 км), а тоньше всего у полюсов. Границей между тропосферой и стратосферой является тропопауза, расположенная на высоте 8-10 километров. Температура атмосферы, составляющая на уровне моря в среднем 15 C, плавно понижается с высотой и достигает первого минимума -65 С именно в районе тропопаузы. Также удалось установить, что в зависимости от времени года верхняя граница тропосферы немного колеблется в теплые сезоны эта граница немного выше.
В тропосфере сосредоточено примерно 9/10 всей массы атмосферы, накапливаются парниковые газы, образуются циклоны и происходит циркуляция воздуха. Также именно в тропосфере образуется большинство видов облаков:

Здесь обратим внимание на то, что озоновый слой, защищающий поверхность Земли от губительного ультрафиолетового излучения, расположен значительно выше тропопаузы, на высоте 22-25 километров.

Между тропосферой и озоновым слоем находится еще один важный слой, называемый холодная ловушка (cold trap). Это именно тот слой, в котором температура тропосферы достигает минимума. Поэтому в области холодной ловушки водяной пар конденсируется, превращается в облака и возвращается в круговорот воды, а выше почти не попадает.

Те молекулы воды, которые проникают выше тропопаузы и выше озонового слоя, подвергаются фотолизу. Ионизирующее излучение расщепляет молекулу воды на кислород и водород, после чего водород улетучивается в космос. Именно таким образом планета земного типа может потерять всю воду и превратиться в аналог Венеры.

Здесь уместно отметить, что три планеты земной группы Марс, Земля и Венера при всей схожести геологического строения принципиально отличаются запасами воды. Если распределить всю воду Марса равномерным слоем по поверхности планеты, его мощность составит 2-7 метров (в зависимости от точного объема воды на Марсе). На Земле аналогичный показатель составил бы 2,5 км, а на Венере не более 20 см, причем, вся вода на Венере существует в виде следовых количеств водяного пара в атмосфере.

Такая разница указывает, что механизмы утраты воды на Марсе и Венере были разными. Если на Марсе опустынивание, вероятно, произошло из-за деградации магнитосферы, на Венере это были катастрофические последствия парникового эффекта.

Углекислый газ и холодная ловушка

Влияние углекислого газа на функционирование и проницаемость холодной ловушки заслуживает подробного описания, которое я приведу по этой работе, которая называется "Улетучивание воды на землеподобных планетах с атмосферами, насыщенными CO2" (Water loss from terrestrial planets with CO2-rich atmospheres).

Степень, в которой холодная ловушка ограничивает потерю воды, значительно зависит от количества CO2 в атмосфере. Во-первых, CO2 влияет на общее содержание воды в атмосфере, так как провоцирует парниковый эффект, тем самым повышая температуру на поверхности планеты. Однако, сила поглощения, проявляемая углекислым газом в полосах 15 и 4,3 m, обеспечивает эффективное охлаждение даже при низком давлении, что и играет ключевую роль в поддержании температуры холодной ловушки. Кроме того, CO2 также может напрямую ограничивать улетучивание водорода в самых верхних слоях атмосферы, поскольку хорошо испускает тепловое излучение в инфракрасном спектре, и таким образом подъедает энергию, которая могла бы стимулировать убегание водорода. Следовательно, история водного покрова на планетах земной группы тесно связано с историей концентрации углекислого газа. Считалось, что на Земле уровень диоксида углерода в геологических масштабах зависит от карбонатно-силикатного цикла: чем выше температура, тем быстрее происходит выветривание осадочных пород и, следовательно, образование карбонатов. Карбонаты связывают часть атмосферного углекислого газа, и благодаря этому температура воздуха вновь понижается.

Такой гомеостаз должен мог сохраняться неограниченно долго, если бы не антропогенное вмешательство в климатические процессы. Суть проблемы в том, чтобы не дать планете скатиться в состояние неуправляемого парникового эффекта. Исследованием именно этого катастрофического сценария в 1990-е годы занялся Джим Кастинг, до этого работавший в NASA. Он всерьез интересовался не только тенденциями изменения климата, но и границами зоны обитаемости в Солнечной системе. Так, именно Кастинг обнаружил, что средняя температура на поверхности нашей планеты, исходя из ее альбедо (отражающей способности) должна составлять примерно -18 градусов Цельсия, но на самом деле составляет около +17 градусов. Таким образом, температура сильно зависит от парникового эффекта, без которого на Земле было бы слишком холодно.

Наибольшую обеспокоенность в качестве парникового газа вызывает именно CO2, но Кастинг подсчитал, что для запуска механизма влажной стратосферы из-за одного только сжигания углерода уровень CO2 в атмосфере должен превысить нынешний примерно в двадцать пять раз, для чего, по всей вероятности, не хватит ни возможностей современной цивилизации, ни запасов углерода на Земле.

Тем не менее, подобные допущения можно считать оптимистичными. Дело в том, что сильным парниковым эффектом обладает не только углекислый газ, но и водяной пар. Вода имеет высокую теплоемкость, а чем больше теплого водяного пара образуется в атмосфере, тем выше могут формироваться облака. Из-за таяния ледников, вызванного парниковым эффектом углекислого газа, тропосфера становится все более влажной, а также снижается отражающая способность всей планеты полярные льды отражают гораздо больше солнечного света, чем гораздо более темная морская вода.

Наконец, существует фактор таяния вечной мерзлоты, в результате чего в атмосферу поступает метан. При этом парниковый эффект метана в 25 раз сильнее, чем у углекислого газа, а запасы метана в вечной мерзлоте пока удается оценить лишь приблизительно.

Таким образом, существует три фактора риска, подталкивающих тропопаузу вверх и приближающих ее к озоновому слою:

1. Увеличение концентрации углекислого газа в атмосфере, дающее парниковый эффект

2. Увеличение концентрации водяного пара в атмосфере, дающее не только. дополнительный парниковый эффект, но и активизацию образования облаков. При этом облака образуются все выше.

3. Таяние ледников, снижающее альбедо планеты. Вода темнее льда, поэтому океан нагревается, а вслед за ним продолжает нагреваться атмосфера.

Когда холодная ловушка откажет

Все это заставляет задуматься о пессимистичных сценариях и о тех лимитах потепления, которые может выдержать тропосфера.

Существует распространенное заблуждение, согласно которому бесконтрольный парниковый эффект является простым продолжением положительной обратной связи, провоцируемой водяным паром. Чем сильнее нагревается планета, тем больше воды испаряется. Поскольку водяной пар является парниковым газом, предполагалось, что такие процессы могут привести к выкипанию океана. Но на самом деле переход к бесконтрольному парниковому эффекту более сложен: существует предел, до которого планета может сбрасывать в космос тепловое (длинноволновое) излучение. Некоторое время температурное равновесие может поддерживаться за счет такой отдачи, но рано или поздно тропосфера перестает остывать, растет температура тропопаузы, и парниковый эффект становится лавинообразным. Тогда тепловое равновесие на Земле установится снова, но уже на точке около 1400 K (1127 С); в таком случае океаны успеют выкипеть до дна, а планета станет излучать тепло в космос в инфракрасном спектре, где водяной пар утрачивает парниковые свойства.

В 1967 и 1969 году первые расчеты такой теплоемкости атмосферы были выполнены, соответственно, Макото Комабаяси и Эндрю Ингерсоллом. В 1988 и начале 1990-х появились оценки Кастинга, о которых шла речь выше, а в 1992 складывающуюся картину систематизировал Шиничи Накадзима. Согласно его расчетам, холодная ловушка начнет терять эффективность, а тропопауза сдвигаться вверх уже при небольшом повышении температуры воздуха у поверхности Земли. В данном случае наиболее важен коэффициент смешения водяного пара, то есть, отношение давления водяного пара к общему атмосферному давлению. Чем он выше, тем ниже эффективность холодной ловушки, и тем выше образуются облака. В настоящее время такая приповерхностная температура воздуха составляет 290 K (17 С), а коэффициент смешения 10%. При повышении приповерхностной температуры до 300 K (27 С), 310 K (37 С) и 330 K (57 С) коэффициент смешения водяного пара возрастет в 1,5, 2,7 и 21 раз соответственно.

Новейшие модели, разработанные в 2013 и 2015 году, позволяют предположить, что критическая температура тропосферы (при которой в масштабах всей тропосферы происходит конвекция водяного пара, и тропосфера начинает разогревать стратосферу, то есть, тропопауза исчезает) должна быть еще выше, и составить 350-370 K (77-97 С), согласно модели Вулфа и Туна (2015). Согласно этой модели, стабильный климат, в принципе, допускающий сохранение современной биосферы, возможен при температурах около 363 K (90 С). Тем не менее, уже при приповерхностной температуре порядка 350 K (77 С) водяной пар начнет активно проникать в стратосферу. При этом атмосферное давление у поверхности Земли будет возрастать, поэтому даже при температуре 373 K (100 С) кипение океана не начнется, но при такой температуре океан определенно станет безжизненным, из-за чего окажутся обречены и все прочие земные экосистемы.

Максимальная температура, зафиксированная у поверхности Земли в последние годы, составляет около 330 K (54-57 С). При этом мы вряд ли сможем поднять температуру тропосферы на 20 градусов, просто сжигая ископаемое топливо. Подобный сценарий более вероятен в случае повышения солнечной активности примерно на 15,5%, что, как ожидается, произойдет в ближайшие 1,5 миллиарда лет. В таком случае нижние слои тропосферы будут наполнены горячим водяным паром, но в верхних слоях тропосферы и в стратосфере какое-то время сохранится мощный слой облаков. Облака повысят альбедо планеты, что позволит на некоторое время стабилизировать климат, но содержащийся в них водяной пар будет необратимо распадаться на кислород и водород в процессе фотолиза.

Заключение

Соответственно, климатические запасы прочности у нашей планеты еще достаточно велики, а окончательно сломать климат одними только выбросами углекислого газа в атмосферу мы, по-видимому, не сможем. Парижское климатическое соглашение 2015 года, которое уже сейчас кажется непозволительно оптимистичным, предусматривает меры по сдерживанию глобального потепления в пределах 2 С до конца нынешнего века тогда как до точки невозврата нам остается еще не менее 40 С. Тем не менее, мы весьма приблизительно представляем, насколько могут разогнать глобальное потепление водяной пар и в особенности метан, а также насколько уменьшится отражательная способность планеты в случае таяния всех ледников. Поэтому остается продолжать наблюдение и надеяться, что нам удастся сохранить в целости тропопаузу и холодную ловушку, подобно тому, как удается постепенно, но не без рецидивов, залатать озоновую дыру над Антарктидой.

Подробнее..

Книга How to Avoid a Climate Disaster,конспект, часть 1 из 2, Билл Гейтс

07.03.2021 14:18:26 | Автор: admin

Чипирующий вакцинами людей Bill Gates 2 недели назад выпустил свою книгу про глобальное потепление и обнуление выбросов CO2.Феерический ускорятель техногенного прогресса конечно + всепланетного масштаба.

  1. Супер structured и top down

  2. Наглядные цифры (масштабы/цены/сроки)

  3. Пишет - запарился читать - разрозненную инфо и решил все обобщить. Междисциплинарно прямо зажег

How to Avoid a Climate Disaster, конспект, часть 1 из 2

Big idea

  • Нам нужно обнулить выбросы парниковых газов, декады, а потом научиться убирать из атмосферы, управлять планетарной экосистемой. Требует новых открытий + дистрибуции по миру. Я верю в человечество

  • Все выделяет CO2: отопление/кондеи, добыча, производство, транспорт, стройка, агротех

  • Человечеству важна эта гигантская цель, и быстрее, чем раньше сопоставимого масштаба, нужны прорывы в науке и инжиниринге, нужен общественный консенсус (его пока нет), нужна стимулирующая госполитика, чтобы пропушить переход в zero CO2 emission

Чем плохо потепление?

  • Потепление точно антропогенное, см графики XX в., вопрос моделей только в темпах - через 30 лет или через 50 лет будет сильно теплее

  • Ведёт в тч к засухам и ливням, бедные (0.6-1 млрд чел) по миру зависящие от земледелия и скота, будут вынуждены переселяться, чтобы не умереть с голоду. Еда для мира тоже подорожает. Даже если потепление не станет экзистенциальной катастрофой за следующее поколение, оно усилит неравенство

Как быть?

  • Столкнулся в 2005 в Африке делая благотворительность, что там проблемы с просто дешевой энергетикой, дальше не обращал внимания, потом прозрел

  • В 2015 сделал Breakthrough Enregy межгосударственную коалицию, и частные 40 богачей (Джек Ма, Хосла, Далио, Кларман, Безос итп). Вложили несколько млрд $ в 50 стартапов, а также advocacy инициативы

  • Богатые страны должны пролидировать переход на зеленую энергетику. Сейчас 40% выбросов CO2 делает 16% населения мира (богатые страны).

  • Потребление энергии вырастет на 50% к 2050 = это как ежемесячно добавлять по одному Нью-Йорку, но 40 лет подряд, т.к. повышение уровня жизни

Выбросы СО2 идут от:

  • Производство (сталь цемент пластик) 31%

  • Электричество 27%

  • Агро (в т.ч. скот) 19%

  • Транспорт и самолеты/грузовики/суда 16% (половина из этого = 8% - легковые авто). (Виктор: т.е. Илон работает в направлении 8% выбросов, а остается еще в 12 раз больший объем?)

  • Кондеи, холодильники, обогрев 7%

Масштабы энергетики

  • Энергетика - это ОЧЕНЬ долгий маховик в цивилизации: уголь с 1840 по 1900 рос с доли 5% до 50% от всей энергетики, нефть 60 лет с 1910 до 40%, газ 60 лет с 1930 до 20% всей энергетики

  • Процессоры стали в 1 млн раз быстрее с 70ых, но это outlier, а все остальные технологии так радикально не улучшаются. Нет путей сделать за 50 лет в 1 млн раз более энергоэффективный автомобиль. Солнечные панели 50 лет назад кпд 15% от солнечного света, сейчас 25%. и т.д.

  • Энергетика: оборот $5 трлн в год, и тотально зарегулирована (в отличие, скажем, от интернета). В софте все быстро, в, скажем, биотехе - годы.

  • И все это регулирование устарело, нужно новое. 97% ученых согласны, что климат меняется из-за людей, а в обществе и власти - нет согласия, что пора действовать

Как думать про предлагаемые решения?

Я долго читал разное и всюду рваная подача инфо, не было целостности. А я оч top down. Теперь использую такой framework:

  1. Какой % от общих выбросов в 51 млрд тонн повлияет данная технология? (в случае успеха) (их VC фонд Breakthrough Energy кладет только если potential impact больше 1%)

  2. Решения нужны во всех 5 сегментах СО2: электричество, производство, агро, транспорт, кондеи/отопление

  3. кВт= 1 дом. гВт = средний город. Сотни гВт = большая богатая страна

  4. Сколько кв.м. Земли понадобится на данную технологию?

  5. Green Premium = какая будет переплата за экологичность относительно сегодняшнего уклада на ископаемом топливе? И смогут ли страны средних доходов ее себе позволить?

Электричество

  • Сейчас эл-во - это 27% от общих выбросов СО2, но если его засолвить, то можно будет и промышленность менять на новый уклад, и транспорт. Иными словами, доля зеленого эл-ва в общем СО2 возрастет

  • Вояжил с сыном на электростанции, я в трепете перед нашей физической инфраструктурой (но я nerd)

  • В экваториальной Африке меньше 50% людей имеет надежное эл-во. Нужно топать в магаз, зарядить телефон ($0.25 за раз, в сотню (!) раз дороже, чем в развитых странах)

  • Оказывается, затапливание земли для ГЭС выбрасывает метан из почвы и нужно 50-100 лет работы ГЭС, чтобы окупить этот неожиданный эффект

  • Эл-во подешевело в 200 раз с 1900 по 2000 г., всего 2% ВВП США сейчас. Это связано со стимулированием в 20ом веке, и сейчас госсубсидии на ископаемое топливо достигают $400 млрд/год (по оценке IEA). Только в 2019 угольных электростанций построили на 250 гВт (это как 60 чернобыльских АЭС)

  • В США семья тратит 29 кВт/день. Переплата за зеленое эл-во в США может быть 15% = +$18 мес = подъемно. Кроме самых бедных кто тратят 10% доходов на эл-во. В EU +20% тоже

  • Небольшая премия в США возможна, тк на юге solar panels, на Midwest ветер, а на севере ГЭС

  • Азия и Африка сложно. Китай вытащил из бедности сотни млн людей за счет снижения цены угольных электростанций в 4 раза. И теперь хотят Индию/Индонезию/итп/Африку. Как сделают выбор эти страны?

  • Renewables также неравномерно распределены по миру, где-то пасмурно и нет ветра = нужно передавать издалека (а передача энергии уже сейчас стоит 1/3 его конечной цены. Но ключевое там - запасы мощности на непрерывность в пиковые нагрузки)

  • Чем больший процент зеленого электричества, тем сложнее с его способностью покрывать пики. Я не верю в аккумуляторы - это запретительно дорого (сейчас = $100/кВт) для таких масштабов: с поправкой на число зарядов Li-Ion батарей, цена света ночью будет в 3 раза дороже, чем днем + абсолютный масштаб: за 3 дня энергии Токио требуют батарей на $400 млрд (сейчас в мире столько выпускают за 10 лет). Лучше временно включать газовые электростанции. Ну и ждать 5x прогресса в аккумуляторах

  • Но сезонность в renewables - вот самая жесть. В Эквадоре солнце ровно, в Сиэттле где я живу - 2x разница в году, в Канаде и РФ - до 12x. АЭС и газовые станции нам в помощь.

  • Германия реализует амбициозный план достичь к 2050г 60% электричества из возобновляемых источников

  • Если будем переводить металлургию итп на эл-во, к 2050 г объём электрогенерации должен стать 2-3x от сегодня. Это +75 гВт/год 30 лет подряд (сейчас ввод 22 гВт/год)

  • С 2010 по 2020 solar panels подешевели в 10x

  • Для renewables нужно строить высоковольтные магистрали через всю страну (из середины где ветер и из юга где солнце - на побережья, где города). Финансирую исследование где моделируют сеть электропередач на все США с учетом renewables + нужны такие модели по всему миру

  • Подводы мощности к каждому дому нужно будет, как минимум, удвоить = тоже мега инфраструктурный масштаб

  • ЛЭП закопать стоит 5-10x дороже + остается проблема нагрева проводов, нужны новые технологии

  • США повезло с солнцем и ветром, а миру нужны новые открытия в чистой энергетике

АЭС

  • Только АЭС - если днем и ночью + без влияния сезонности. В США 20% энергии, во Франции 70% (а по миру солнце + ветер=7%)

  • Из расчета на 1 кВт на сооружение ГЭС/ветряков/солнечных панелей надо в 10-15 раз больше цемента/стали/стекла чем на АЭС/газ/уголь. Если учесть простой ветряков и солнечных панелей 60% времени, то разница возрастает еще в 3x. А АЭС uptime - 90% ( = простой 10%)

  • Three Mile Island/Чернобыль/Фукусима остановили решение проблемы их ошибок, отрасль замерла. Авто убивают людей, давайте их не производить

  • С 2008г основал компанию TerraPower, для нового поколения реактора, пока в суперкомпьютерах, но работают с US gov для создания прототипа

Термояд

  • Термоядерные реакторы: как солнце - водород в виде газа электризуют до состояния плазмы и температура 50 млн градусов, водород превращается в гелий и выделяет колоссальный объем тепла. Удерживают все это в основном магнитным полем или лазером. Главная ценность - не нужны редкоземельные (уран) вещества, а просто водород из воды. Уже давно пытаются, все не сделают. термояд всегда будет в 40 годах впереди (с) отраслевая шутка

  • EU+6 стран с 2010 строят во Fr проект ITER: к 2025 первая плазма, к концу 2030-ых - электричество = 30 лет

Ветряки

  • США потребляют 1000 гВт электричества ( = 250 Чернобыльских АЭС)

  • Англия и Китай вваливают субсидии в прибрежные ветряки. А в США оч regulated, учет интересов владельцев недвиги на пляжах, туризма, рыбаков, экологов

Геотермальная энергия

  • Мало где доступна, и абсолютные масштабы небольшие: может дать максимум несколько % от общего мирового потребления энергии сегодня

Запасание энергии

  • Аккумуляторы - я потратил больше всего времени на это, и на инвестиции в такие стартапы. Похоже, макс в 3 раза улучшим, неизвестно когда

  • Резервуары с водой - подходит для масштаба городов, по сути электронасосами многократно накачиваешь хранилище воды для ГЭС

  • Еще пробуют закачивать в подземные резервуары под давлением

  • Водород - это может перевернуть мир как ПК. Зеленой энергией делаешь водород, его можно возить, хранить, и про окислении он тоже не дает CO2. Но молекулы такие маленькие, что под давлением просачиваются сквозь металл баков. Электролиз дорогой, нужны прорывы

Захват СО2

  • Можно улавливать после горения на ТЭЦ до 90% СО2, но чисто cost для операторов, поэтому никто не делал

  • В атмосфере ловить сложно. Всего 1 молекула из 2500 в воздухе - это СО2

Производство

  • В Сиэттле есть мост 250м, сделанный на 77 плавающих бетонных поплавках, чудо инженерии. Китай произвел за 21ый век 26 млрд тонн цемента, а США 4 млрд ЗА ВЕСЬ 20ый век. + сталь. + пластик. + стекло. + алюминий. + удобрения. Рост благосостояния локально ведет к необитаемости планеты вдолгую. Поэтому нужно зеленую переплату, чтобы жить как жили, но не опасно

  • Для стали жгут уголь 1700 градусов. Индия Китай Япония плавят каждая больше стали чем США. Мир будет выплавлять 3 млрд тонн/год к 2050

  • Для цемента нужен еще и кальций, его добывают из известняка (а это кальций + СО2)

  • Пластик в десяток раз меньше на фоне стали и цемента, но все равно состоит из углерода, а его берут из нефти (с 1950ых, прорыв в химии). Пластик скорее оч долго и кислотно разлагается в природе, нежели влияет на парниковый эффект

  • На пр-ве 3 фактора CO2: 1 эл-во для фабрик 2 тепло (плавить и т.п.) 3 часть пр-ва материала (известняк для цемента). Нужно перетекать на эл-во, а где нельзя (тысячи градусов температуры) - ставить уловители СО2

  • Переплата за экологичность будет +10..15% за пластик, +15..30% за сталь, и +75..140% за цемент. Без госрегулирования такая переплата не будет оплачиваться

  • Цемент пока нельзя делать без СО2, так что надо улавливать на пр-ве + и из атмосферы тоже

  • Инновации лежат в области электрификации пр-ва, сбора вторсырья, меньшем потреблении, деревянных дорогах и т.п.

Агротех

Скот

  • Тут выделяется метан (в 28 раз сильнее парниковый эффект чем СО2) и NO2 (в 265 раз сильнее СО2). Метан и NO2 отвечают за 80% парникового эффекта в агротехе, а он дает 7 млрд тонн/год из 51 млрд тонн/год СО2 в целом

  • Развитые страны оч плавно растят потребление мяса, Китай пока сильно. Нобелевский лауреат Norman Borlaug в 60ые улучшил пшеницу и 1 млрд чел в мире спас от голодания. Но к концу 21го века население будет +40% = 10-11 млрд чел = спрос на еду все равно останется большим = нам нужны несколько прорывов уровня Borlaugа

  • В желудках за счет бактерий идет ферментация, выделяется метан, 1 млрд голов скота, только за счет газов скота = 4% от 51 млрд тонн СО2. Еще столько же дает навоз и кал скота. А еще вода, трава и зерно для них (!). В Южной Америке и Африке выделяет до в 5 раз больше т.к. хуже породы = upside for optimization

  • Отказаться от мяса сложно будет, в т.ч. культура, но можно например растительное - я инвестор в Beyond Meat и Impossible Foods. А еще выращивать из стволовых клеток животных - Memphis Meats

Удобрения

  • В 1908г Haber и Bosch открыли синтетические удобрения, самое большое изобретение о котором не знают большинство людей

  • Но растения усваивают только половину, остальное утекает в почву, загрязняет, а также окисляется и летит в атмосферу = растит парниковый эффект на 2-3%. Простых и экономичных решений этому пока нет

Вырубка лесов

  • Отвечает за треть выбросов в агро

  • Это не вопрос технологий, а стимулов в обществе и политике

  • Сажать деревья? Не оч оправданно. За 40 лет 1 дерево поглотит 4 тонны СО2. Если оно сгорит - все опять улетит в атмосферу. Эффект если сажать именно в тропиках. Чтобы заместить деревьями эффект СО2 хотя бы США, нужно посадить их на 25 млн кв миль - это половина земель земного шара

Прочее

  • Книгу писал его спичрайтер, с которым он уже 14 лет работает (Josh Daniel)

  • Китай хочет стать carbon neutral к 2060г. Байден вернет США обратно на этот путь после Трампа

  • Потепление требует мировой кооперации + развитые страны (как и с COVID) будут распространять clean tech по миру не потому что это альтруизм, а потому что в Техасе не снизится температура если в Индии продолжат жечь уголь

  • Декарбонизация уничтожит много рабочих мест в добыче топлива, металлургии, цементе, и развитые страны должны позаботиться о рабочих местах working class по всему миру

  • Нужно междисциплинарный научный подход. Хотя вдолгую отдача от R&D самая большая, вкороткую она тоже есть: госинвестиции США во все сферы R&D в 2018г создали прямо и косвенно 1.6 млн раб мест, $126 млрд зарплат и $39 млрд налогов

Подробнее..

Насколько экологична атомная энергетика? На самом деле так же, как солнечная и ветровая

19.04.2021 20:16:49 | Автор: admin

В конце марта вышел отчет научного центра Еврокомиссии (Joint Research Centre) об экологических аспектах атомной энергетики. Еврокомиссия попросила его разобраться, стоит ли поддерживать атом так же как возобновляемую энергетику в рамках европейского Зеленого курса. Общий вывод отчета конечно да, ведь атомная энергетика не опаснее для людей (да, с учетом Чернобыля и Фукусимы, см. ниже) и окружающей среды, чем другие возобновляемые источники энергии, развитие которых уже поддерживается в Европе в рамках инициативы Таксономия. А атом вот не поддерживается. Ну и этот отчет показал, что научных оснований для такой вот дискриминации нет. Но обо всем по порядку, в 23 пунктах.А для желающих в конце есть видеоверсия этой статьи на моем youtube-канале.

1. Не секрет, что мир и Европа стараются справиться с последствиями глобального потепления или как-то притормозить его развитие. А оно вызвано деятельностью человека, в первую очередь выбросами CO2. Это сейчас научно совершенно точно обосновано, и я не буду сейчас на этом останавливаться. Для сомневающихся рекомендую посмотреть прекрасную лекцию гляциолога Алексея Екайкина. Так что десятки стран приняли на себя обязательства по снижению выбросов.

2. Европа на этом пути одна из лидеров. В рамках Зеленого курса (European Green Deal), они хотят стать первым в мире углеродно-нейтральным регионом к 2050 году. Не случайно именно оттуда идут основные новости о переходе на возобновляемые источники энергии (ВИЭ), постепенном запрете двигателей внутреннего сгорания, углеродные налоги и прочие экологические инициативы. Впрочем, в абсолютных показателях и по выбросам, и по вводу ВИЭ, лидируют пока Китай и США.

3. Для реализации Зеленого курса в Европе существует множество разных стимулирующих и поддерживающих механизмов. Один из важнейших это регламент EU Taxonomy. Это такой свод рекомендаций для финансовых и инвестиционных фондов о том, в какие технологии можно вкладываться, а в какие нежелательно, с точки зрения их помощи целям Зеленого курса, экологичности и устойчивого развития. Так что Таксономия не ограничивается только вопросами климата, она направлена на достижение 6 важных целей:

  • смягчение последствий изменения климата

  • адаптация к изменению климата

  • охрана водных и морских ресурсов,

  • повторное использование ресурсов (циркулярная экономика),

  • сокращение выбросов и загрязнений,

  • защита биоразнообразия

Для включения в Таксономию технология или практика должна помогать в достижении минимум одной из целей, а другим не наносить серьезного ущерба (критерий DNSH, т.е. Does not significantly harm). Не могу точно сказать насколько это жесткое правило и верно ли я вообще в этом разобрался, но понятно, что включение в Таксономию той или иной технологии сильно упрощает ей жизнь в Европе, а невключение может поставить вопрос о ее конкурентоспособности и перспективах без национальной поддержки.

4. Таксономию долго готовили и в общих чертах приняли весной-летом прошлого года. Помимо прочего, туда включили ветровую и солнечную генерацию, а вот атомную пока не включили. Нет, сомнений в том, что АЭС помогает в борьбе с изменением климата нет. За жизненный цикл АЭС выбрасывают очень мало CO2. Критерий для включения в Таксономию технологии электрогенерации выбросы менее 100 г/кВт*ч. По данным отчета JRC, у АЭС выбросы CO2 в среднем 28 г/кВт*ч, что сопоставимо с выбросами гидро- и ветровых станций, и даже ниже, чем у солнечных панелей, у которых средний выброс около 85 г/кВт*ч (см стр. 40 из отчета [4]). Цифры разнятся в разных источниках (например, в отчете ICPP 2014 указываются средние показатели выбросов для АЭС в 12 г/кВт*ч, а для промышленной фотовольтаики в 48 г/кВт*ч) но порядок и соотношение примерно такие. При этом выбросы газовых и угольных станций составляют порядка 500 и 900 г/кВт*ч, соответственно. А средние удельные выбросы в электроэнергетике в Европе сейчас около 275 г/кВт*ч (ссылка, стр 6).

Удельные выбросы CO2 за жизненный цикл разных видов генерации. График из отчета JRC.Удельные выбросы CO2 за жизненный цикл разных видов генерации. График из отчета JRC.

Почему у солнечных панелей углеродный след выше? Не копал глубоко, но на днях на глаза попалось как раз на эту тему любопытное расследование Bloomberg о производстве кремния в Китае. Китай контролирует 80% мировых поставок кремния для солнечных панелей, а 4 крупнейшие его фабрики расположены в полузакрытой провинции Синьцзян (Xinjiang) и дают 50% мирового производства. Репортеры Bloomberg выяснили, что эти фабрики используют дешевую но грязную угольную электроэнергию (40% затрат на производство кремния - электричество), и суда по всему еще и подневольный труд. Так что вопрос об экологическом следе этой технологии, так сильно завязанной на одну не самую прозрачную страну, не так прост.

5. Отдельно надо отметить, что АЭС на текущий момент обеспечивают около 30% всей низкоуглеродной энергии в мире, а в Европе все 40%. Доля атомной энергетики в Европе (28 стран ЕС) 26%, что больше, чем в любой неевропейской стране. При этом доля солца+ветра в ЕС - 17%, а гидроэнергетики всего 12% (данные на 2019 г из Eurostat Energy data, см стр. 28). И по основному сценарию развития энергетики в Европе (EUCO30, стр. 37 отчета), для достижения европейских климатических целей доля атома к 2050 году должна составлять около 22%. Но поддерживать его хотят не все.

Вклады различных источников в выработку низкоуглеродной электроэнергии в развитых странах. График из отчета JRC.Вклады различных источников в выработку низкоуглеродной электроэнергии в развитых странах. График из отчета JRC.

6. Поводом для отказа во включении АЭС в Таксономию стали усилия стран, в которых сильны антиатомные настроения Германии, Австрии и Италии. Они выразили сомнения в том, что проблема радиоактивных отходов и отработавшего ядерного топлива нарушает критерий DNSH. Поэтому то Еврокомиссия и поручила экспертам своего научного центра (Joint Research Centre) разобраться в вопросе и подготовить доклад на эту тему. Его то они и представили в конце марта (ссылка).

Отдельно хочется отметить, что это довольно круто, что внутри руководящего органа ЕС вообще есть такой научный центр, который помогает анализировать различные решения и предложения с научной точки зрения.

7. Эксперты представили 400-страничный отчет с обзором доступных научных исследований по всем аспектам атомной энергетики от добычи урана, его обогащения и изготовления топлива, эксплуатации и вывод АЭС из эксплуатации, до вопроса обращения с отходами и ядерным топливом при разных сценариях топливного цикла, а также влияние на здоровье людей как в штатных условиях, так и в случае серьезных аварий. Отчет в итоге состоит из двух частей: сравнения экологических аспектов различных видов генерации, и отдельно из подробного анализа обращения с радиоактивными отходами.

8. Общие выводы такие. По удельным выбросам загрязняющих веществ за жизненный цикл, а кроме CO2 это и оксиды азота и серы, твердые частицы PM2.5 (ответственны за миллионы смертей в год по данным ВОЗ) и всякая канцерогенная органика типа бензола и формальдегидов, атомная энергетика сопоставима, а по ряду параметров и лучше ветровой и солнечной.

дельные выбросы оксидов азота и серы для различных энергоисточников.дельные выбросы оксидов азота и серы для различных энергоисточников.Удельные выбросы твердых частиц PM2.5 и неметановой органики (NMVOC - бензол, этанол, формальдегид и т.д.)Удельные выбросы твердых частиц PM2.5 и неметановой органики (NMVOC - бензол, этанол, формальдегид и т.д.)

В плане образования химически-опасных отходов и загрязнения водоемов (закисление, сброс соединений азота и фосфора) АЭС гораздо чище ветровой и солнечной энергетики.

Удельное образование химически-опасных отходов, требующих захоронения, для разных видов генерации энергииУдельное образование химически-опасных отходов, требующих захоронения, для разных видов генерации энергии

9. АЭС в меньшей степени влияют на экосистемы и биоразнообразие, чем солнечные и ветровые электростанции, т.к. требуют гораздо меньшего изменения земной поверхности. И речь не только о месте, занимаемом станциями сопоставимой мощности, но о всей цепочке добычи ресурсов и утилизации отходов.

Сравнение требуемой площади изъятия земли для различных источников энергии (с учетом жизненного цикла технологий)Сравнение требуемой площади изъятия земли для различных источников энергии (с учетом жизненного цикла технологий)

Кстати, удельная потребность в добыче ресурсов для АЭС тоже гораздо меньше, чем для ветровой и солнечной энергетики. Все это следствия самой большой концентрации атомной энергии из всех существующих видов энергии. По крайней мере в сотни тысяч раз выше, чем химической.

Сравнение удельных затрат ресурсов на производство единицы электроэнергии по разным типам генерации.Сравнение удельных затрат ресурсов на производство единицы электроэнергии по разным типам генерации.

10. Но как и у любой технологии, кроме плюсов у атома есть и минусы. В плане теплового загрязнения и потребления водных ресурсов атомная энергетика уступает фотовольтаике (солнечным панелям) и ветроэнергетике, и сопоставима с воздействием концентрационной тепловой солнечной энергетики (это когда тепло солнца собирается зеркалами), угольной и гидроэнергетики. Поэтому требуется подбор площадок, технологии (пруд-охладитель, прямоточное охлаждение, градирни и пр.) и внимание к этому аспекту, чтобы минимизировать его негативные эффекты. В этом плане наименьшее негативное воздействие получается при расположении АЭС морском берегу, где их обычно и стараются размещать.

11. Что же касается радиоактивных отходов, то обзору практики и теории обращения с ними и их захоронения посвящена большая часть доклада и вердикт тут однозначный да, это важная проблема, но существующие решения, как по поверхностному хранению низкоактивных отходов (частично об этом я писал отдельную статью), так и по подземному захоронению высокоактивных отходов в природных формациях (и об этом я писал отдельную статью, применительно к тому что делается в России), позволяют обращаться с ними безопасно и без вреда людям и окружающей среде.

Отмечено, что существует широкий научно-технический консенсус относительно возможности безопасного захоронения отходов. И отдельно подчеркнуто, что в Таксономии уже одобрены технологии подземного захоронения СO2, базирующиеся на тех же научных данных и похожих нормах регулирования, что и захоронение радиоактивных отходов.

12. Что касается радиационного воздействия на человека, то оно пренебрежимо мало. Дополнительное облучение, вызванное всем жизненным циклом АЭС, составляет не более 1/10000 от обычной дозы, получаемой людьми от природных источников. Это эквивалент употребления двух бананов в год. Один банан это доза в 0,1 мкЗв за счет содержащегося в нем природного изотопа калий-40.

13. Но это все были в основном отдельные показатели воздействия по разным факторам или элементам окружающей среды. В чем-то АЭС лучше, в чем-то сопоставимы, а в чем-то хуже других видов генерации. При этом ни один из показателей для АЭС не является запретительным по критерию DNSH (Does not significantly harm). Но чтобы оценить суммарное негативное воздействие на здоровье человека разные виды генерации сравнивают по величине удельной преждевременной смертности или потерянных лет жизни на единицу выработанного электричества. И по этим показателям АЭС уступают только гидроэнергетике, сопоставимы с ветровой и превосходят солнечную генерацию. Ну и самом собой, самые опасные в этом плане все виды сжигаемого топлива, особенно уголь, поскольку его выбросы реально убивают миллионы людей каждый год. Не говоря уже о их влиянии на климат.

Общее воздействие на здоровье и смертность людей от разных видов генерации с учетом их выбросов и сбросов по всему жизненному циклу. Гидроэнергетика тут лучше всех, атом и ветер сопоставимы и чуть лучше солнца.Общее воздействие на здоровье и смертность людей от разных видов генерации с учетом их выбросов и сбросов по всему жизненному циклу. Гидроэнергетика тут лучше всех, атом и ветер сопоставимы и чуть лучше солнца.

14. Что касается аварий и серьезных инцидентов. Тут есть два показателя. Первый это максимальное число жертв при крупной аварии. Для АЭС оно сопоставимо с гидроэнергетикой или крупными авариями в нефтяной индустрии и оценивается в 30000 человек в случае крупной аварии. Причем, если для гидроэнергетики это исторические цифры реальных аварий (см. дамба Баньцяо, Китай, 1975 г.), то для АЭС это величина расчетная, поскольку суммарное число жертв крупнейших аварий на АЭС - Чернобыля и Фукусимы, по оценкам ВОЗ, порядка 5000 человек [6,7].

Максимальное число жертв от крупных аварий (черные точки) и удельная смертность от аварий (не обязательно самых крупных, но с жертвами) на единицу произведенной электроэнергии.Максимальное число жертв от крупных аварий (черные точки) и удельная смертность от аварий (не обязательно самых крупных, но с жертвами) на единицу произведенной электроэнергии.

Авторы отчета подчеркивают, что для общественного восприятия куда страшнее редкие (в случае АЭС очень редкие) но серьезные аварии, чем частые, но менее фатальные события. Однако статистика показывает, что же на самом деле больше убивает. В этом смысле важнее второй показатель.

15. Второй показатель это удельная смертность от аварий на единицу произведенного электричества (fatality rate см. картинку выше). По этому показателю АЭС второго поколения, составляющих основу текущего парка АЭС, лучше любого сжигаемого топлива и гидроэнергетики, сопоставимы с ветрогенерацией, и уступают лишь солнечной генерации. АЭС третьего поколения, которые строятся последние 10 лет и спроектированы с учетом опыта крупных аварий как раз с особым вниманием к локализации их последствий, превосходят по этому показателю все виды генерации.

Т.е. это означает, что даже с учетом жертв Чернобыля и Фукусимы, удельная смертность от атомной энергетики сопоставима с включенными в Таксономию ветровой и солнечной генерацией и гораздо меньше, чем у станций на ископаемом топливе. В конце своей прошлой статьи о Фукусиме я уже приводил аналогичные оценки.

Более того, даже безаварийное сжигание ископаемых топлив приводит к тому, что ежегодно только в Европе 400 тыс. человек умирают из-за загрязнения воздуха. АЭС же за счет сокращения выбросов за всю историю спасли около 1,8 млн человек [8] т.е. куда больше, чем ветряки и солнце.

16. Отдельно поясню, что отчет касается именно экологических аспектов и не касается экономики. Задача отчета дать экспертам Еврокомиссии рекомендации и критерии для включения или невключения отдельных аспектов атомной энергетики в механизмы поддержки Таксономии. Будут ли потом этой поддержкой пользоваться частные или государственные инвесторы это дело инвесторов. Тем не менее, в части сравнения с другими видами генерации есть в отчете и экономический показатель LCOE, т.е. усредненной по пожизненному циклу показатель себестоимости электроэнергии.

Так вот, себестоимость атомного электричества существующих АЭС в Европе к 2030-му году будет самая низкая в сравнении с любыми другими видами генерации, а если говорить о новых энергоблоках, то она будет немного дороже солнечных и ветровых, но вполне конкурентоспособна и сопоставима с газовыми станциями.

Показатели LCOE для разных видов генерации в Европе к 2030 году. Данные из отчета JRCПоказатели LCOE для разных видов генерации в Европе к 2030 году. Данные из отчета JRC

17. Общие выводы отчета атомная энергетика отлично помогает смягчать последствия изменения климата, при этом не выявлено никаких научно-обоснованных доказательств, что она наносит больший ущерб здоровью людей или окружающей среде, чем другие виды генерации электроэнергии, уже включенные в Таксономию.

18. Что дальше? Теперь этот отчет будут еще 2 месяца изучать в двух других экспертных группах Еврокомиссии (по радиационной защите и по здоровью). В мае в Таксономию должны быть внесены поправки, расширяющие список включенных в нее технологий, к которым были вопросы ранее. Кроме атома идут споры и по природному газу, как переходному топливу от угля, и по некоторым технологиям в сельском хозяйстве, биоэнергии и т.д. Вопрос о включении или невключении в Таксономию атомной энергии остается открытым. Хотя что тут может быть непонятно после такого отчета...

19. Реакция. Европейский Гринпис уже ожидаемо заявил [9], что эксперты, написавшие отчет, связаны с атомной отраслью и необъективны, а Еврокомиссии надо прислушаться к мнению общественности. Атомная отрасль, конечно, отнеслась к отчету очень позитивно, и представители разных атомных ассоциаций и организаций предлагают не затягивать с включением атомной энергетики в Таксономию. Высказываются даже мнения, что после такого отчета хорошо бы и Германии пересмотреть свое отношение к атому.

20. Gримерно в то же время, в конце марта, лидеры 7 европейских стран Франции, Чехии, Венгрии, Польши, Румынии, Словакии и Словении, отправили в Еврокомиссию коллективное письмо [10] с призывом включить атомную энергетику в Таксономию и перестать ее дискредитировать и притеснять. Аргументы политиков более приземленные, типа она не только помогает в борьбе с климатическими изменениями и сокращении выбросов, но и важна для экономики, что логично, т.к. все эти страны либо имеют развитую атомную энергетику, либо планируют ее развивать.

21. Кроме того, в конце марта в Еврокомиссию направили открытое письмо и 46 некоммерческих организаций из 18 стран (в т.ч. из Германии, Австрии и Италии, правительства которых отказываются или отказались от атома) с тем же призывом - принять усилия по поддержке всех низкоуглеродных источников, помогающих бороться с изменениями климата, включая атомную энергетику, которая уже много лет вносит в эту борьбу самый большой вклад. Собственно, это тоже голос общественности, к которому призывает прислушаться Гринпис. Ссылка на письмо - [12].

22. А на днях еще и в Германии аудит их счетной палаты показал [11], что их энергопереход и отказ от атома не так однозначно хорош (дорог и небезопасен), как могло показаться раньше.

23. Короче, весьма увлекательно следить за Европой, в которой вопрос атомной энергетики стоит так вот остро и неоднозначно и вокруг которого ломается так много копий. Хочется, конечно, надеяться, что в итоге решения будут приниматься на основании научных исследований и прозрачного анализа, а не из популистских и политических соображений. Какими бы в итоге эти решения не были. Споры спорами, но климат, окружающая среда и умирающие от загрязнений люди ждать не будут.

Для тех кому интересен иной формат, я сделал видеоверсию этой статьи. Подписывайтесь на мой канал об атомной энергетике и ядерных технологиях. Вы можете поддержать его лайками или подпиской.

Список источников:

1. Лекция об изменении климата Алексея Екайкина

2. European Green Deal

3. EU Taxonomy Regulation

4. Собственно тот самый отчет JRS

5. Eurostat Energy data

6. ВОЗ о количестве жертв Чернобыля

7. Моя статья о последствий аварии на АЭС Фукусима, в т.ч. количество жертв.

8. Оценка числа спасенных жизней благодаря АЭС - Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power Pushker A. Kharecha* and James E. Hansen

9. Заявление Гринпис по поводу отчета и его критика.

10. Письмо лидеров 7 стран в главе ЕС в поддержку атомной энергетики.

11. Критика Энергоперехода Германии по результатам правительственного аудита.

12. Письмо главе Еврокомиссии от 46 НКО со всего мира в поддержку атома и включения его в Таксономию.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru