Русский
Русский
English
Статистика
Реклама

Новый физтех итмо

Новый физтех дайджест наших исследований

08.05.2021 20:10:07 | Автор: admin

Представляем новую [первая] подборку избранных публикаций о научных работах и достижениях представителей Нового физтеха ИТМО. Обсуждаем, что к чему, и делимся информацией о проектах, которыми занимаются наши специалисты и научные сотрудники.

Фотография: Dyu - Ha. Источник: Unsplash.comФотография: Dyu - Ha. Источник: Unsplash.com

Как квазичастицы помогут в разработке квантовой памяти

Новый физтех Indicator

Делимся рассказом о том, каким образом можно корректировать свойства вещества с помощью светового воздействия. Речь идет о процессах, приводящих к формированию поляритона частицы, энергия которой зависит от силы взаимодействия света с веществом. В низкоэнергетическом состоянии она обладает как качествами материи, так и света, а магнитными свойствами и проводимостью вещества можно управлять.

Этим проектом занимается Иван Иорш, профессор Нового физтеха ИТМО. Ранее он вместе с коллегами показал, как можно работать с неклассическими состояниями света: получать одиночные и парные фотоны, добиваться эффекта квантованного движения атомов фактически условий для записи информации в формате квантовой памяти.


За счет чего квазикристалл сумел задержать свет

Новый физтех N+1 Advanced Optical Materials

Михаил Рыбин, доктор науки доцент Нового физтеха ИТМО, простыми словами объясняет суть проделанной работы. Она сконцентрирована в области полупроводников и направлена на расширение знаний о природе, свойствах и законах распространения частиц в их кристаллических структурах. Речь идет о разработке так называемых ловушек для света, которые могли бы открыть новые возможности для проектирования лазеров и сенсоров.

Михаил объясняет, почему для этой задачи квазикристаллы подходят в наибольшей степени. Одна из его научных работ по этой теме была опубликована еще в 2017-м, а в прошлом году ему и его коллегам удалось синтезировать образец сложноструктурированного квазикристалла и подтвердить его оптические свойства способность к локализации света.


Зачем управлять цветом лазера с помощью наночастиц

Новый физтех Коммерсантъ Applied Physics Letters

Продолжение истории с разработанными ранее нанобампами массивами наноструктур, генерируемыми с помощью импульсного лазерного излучения. На этот раз ученые из Дальневосточного федерального университета и Университета ИТМО оптимизировали форм-фактор таких наночастиц для того, чтобы длиной волны отраженного света можно было управлять и проектировать новые сенсоры и высокоточные газоанализаторы.

Артем Черепахин, являющийся инженером ДВФУ и выпускником Университета ИТМО, вместе с Сергеем Макаровым, возглавляющим нашу лабораторию гибридной нанофотоники и оптоэлектроники, делятся результатами и объясняют перспективы научной работы.



Как пролить свет под правильным углом

Новый физтех Коммерсантъ ACS Photonics

Олег Ермаков и Андрей Богданов, представляющие Новый физтех, вместе с коллегами из Германии и Австралии предложили новый подход к захвату света оптоволокном. Их решение позволяет работать без существенных потерь даже при углах падения, превышающих семьдесят градусов. Этих результатов они добились за счет использования диэлектрической наноструктуры на торце оптоволокна. Она выступает и в роли кольцевой дифракционной решетки, направляющей свет вдоль оси оптики вне зависимости от исходного угла падения.

Разработка еще требует оптимизации. Этим команда уже занимается, плюс тестирует производство с помощью технологии нанопечатной литографии. Дальнейшее развитие может включать применение технологии в аппаратуре для эндоскопии и лапароскопии, квантовых коммуникациях и, конечно же, при проектировании датчиков для оптоволокна.


Как добиться максимальной добротности

Новый физтех Коммерсантъ

Наши специалисты вместе с коллегами из Санкт-Петербургского государственного электротехнического университета и Австралийского национального университета предложили решение проблемы компактизации резонаторов устройств, которые применяют, чтобы ловить и усиливать падающую волну. Процесс уменьшения размеров таких систем связан с затуханием добротности, однако команде ученых удалось разрешить этот момент с помощью связанных состоянийв континууме безызлучательных состояний с подавляющими друг друга резонансами. В материале [и еще одной заметке по теме на нашем новостном портале] есть некоторые подробности на этот счет от непосредственных участников проекта и обсуждение перспектив технологии в нише оптических компьютеров и микроволновой техники.


Другие материалы Нового физтеха на Хабре:


Подробнее..

Топологическая фотоника как математическая концепция помогает создавать перспективные устройства

14.06.2020 20:23:04 | Автор: admin
Математический аппарат нередко формировался в процессе решения практических задач: зачатки векторной алгебры возникли при попытках сложить скорости и силы, понятие скорости привело к введению производной и так далее. Однако сегодня мы поговорим о случае, когда изначально абстрактная математическая концепция привела к открытию новых физических эффектов и созданию направления в физике под названием топологическая фотоника. Объясним, как это произошло.



Технической основой для реализации обмена информацией служит цифровая электроника. Она использует полупроводниковые устройства (в основном, транзисторы). На их основе собирают логические элементы: регистры, переключатели, счетчики и микросхемы. Процессоры могут состоять из миллиардов таких элементов, поэтому встает вопрос о скорости их переключения и распространения сигналов в такой сложной цепи. При типичной частоте в 3 ГГц один такт занимает около 300 пс. За это время меняются напряжения и токи, возникают и затухают переходные процессы в общем, устанавливается новое состояние. Это накладывает ограничения на транзисторы, а именно их граничную частоту (она должна в разы превышать тактовую частоту процессора).

Граничная частота транзисторов лежит в пределах сотен ГГц. Дальнейшая миниатюризация могла бы увеличить это значение, однако слишком маленькими транзисторы делать нельзя. Иначе там, где электроны проходить не должны, они будут туннелировать. Есть отдельная статья блога компании Intel, посвященная более последовательному объяснению этого вопроса. Пока эти проблемы частично решают путем увеличения числа процессоров и добавления многоуровневой кэш-памяти, которая является своеобразным буфером между процессором и оперативной памятью.

Аналогичная задача возникает и при передаче сигналов на большие расстояния. Именно поэтому по возможности используют оптоволокно, в котором электрический ток заменяется на поток фотонов частиц света, которые двигаются с предельно возможной скоростью. Помимо скорости, переход на свет избавляет от чрезмерного перегрева систем и делает их эксплуатацию безопаснее. Но и здесь возникают определенные сложности. Один из вопросов потери на поглощение и рассеяние света в среде распространения (затухание света в оптоволокне составляет несколько дБ/км). И когда мы задумываемся о том, как его разрешить, то подходим к основной теме статьи, а именно к топологической фотонике. Именно она помогает добиться определенных конфигураций проводящих свет структур, чтобы электромагнитные волны сами огибали препятствия.

Причем здесь топология


Как раздел математики, топология изучает свойства, которые не меняются при непрерывных деформациях объекта. Многие слышали о примере с кружкой и бубликом если плавно сплющивать и растягивать каждый из предметов без надрезов и самопересечений, то число отверстий в них сохранится. Этот факт имеет строгую математическую формулировку и распространяется на объекты произвольной природы. При этом сохраняющееся число называется топологическим инвариантом.

Эту математическую концепцию применили к зонной теории твердых тел. Согласно этой теории, во всех кристаллах (в том числе фотонных периодических структурах с чередующейся в пространстве диэлектрической или магнитной проницаемостью) могут распространяться волны только тех частот, которые лежат в разрешенных интервалах частот, или зонах. Каждой частоте соответствует своя длина волны (или, как принято в физике твердого тела, волновое число величина, обратная длине волны).

Если построить график в осях волновое число-частота, то получится так называемая зонная диаграмма, которая содержит в себе информацию о периодической структуре. При непрерывном деформировании зоны на диаграмме, без перекрытия запрещенных зон и самопересечений, существует такая величина, которая остается неизменной. Оказалось, что она связана с добавочной фазой, которую приобретает волна при медленном (адиабатическом) циклическом изменении параметров рассматриваемой системы. Эту величину называет числом Черна и вычисляют, когда изучают топологические свойства периодических структур. Если оно равно нулю, то добавочной фазы нет, и система называется топологически тривиальной (например, вакуум).


Иллюстрация ненулевой фазы Берри. При прохождении замкнутой траектории в пределах одной зоны, собственный вектор (стрелка) поворачивается на 180 градусов из-за нетривиальной топологии этой зоны, которая закручена в ленту Мёбиуса

Понятие добавочной фазы кажется всего лишь абстрактной теоретической конструкцией. Какой от этого практический толк? На этот вопрос отвечает ключевая концепция, которая в англоязычной литературе получила название bulk-edge correspondence (дословно объемно-краевое соответствие). Оказывается, что если мы состыкуем две структуры с различными числами Черна, то на определенной частоте возникнет пограничное (интерфейсное) состояние, локализованное ровно на стыке.

Оно является как бы связующим звеном зонных структур, и поэтому его частота лежит прямо в запрещенной зоне. В результате требуется приложить достаточно сильное воздействие, чтобы сломать соответствующее пограничное состояние. Этот факт называют топологической защищенностью интерфейсное состояние будет устойчиво к беспорядку в системе и, более того, будет огибать препятствия по границе. Ему больше ничего не остается делать!


Электромагнитное краевое состояние

Так как край между рассматриваемой топологической структурой и вакуумом также является границей раздела, на краю также будут существовать состояния, которые называются краевыми. Если речь идет об одномерной цепочке частиц, то это будет застывшее на краю состояние. Это не значит, что людям удалось остановить свет поле в таком состоянии колеблется во времени, но не двигается в пространстве, как, например, стоячая волна в резонаторе. В двух- и трехмерных случаях краевые состояния уже могут перемещаться вдоль края или поверхности без рассеяния на дефектах, что имеет перспективы в создании топологически защищенных устройств.

Как сделать топологию зон нетривиальной


Механизмы реализации топологических состояний принято делить на два класса с нарушенной симметрией к обращению времени (T-симметрией) и с сохраненной Т-симметрией. Пример первого типа это квантовый эффект Холла. Если представить двумерный электронный газ во внешнем перпендикулярном магнитном поле, то вследствие действия на электроны силы Лоренца они начнут вращаться по орбитам в одном направлении. Внутри этого газа токи, созданные соседними электронами внутри системы, будут компенсироваться, а токи у края нет, создавая проводящую границу. В объеме эта система изолятор, а по краю проводник, рассеиваться назад электроны не могут из-за магнитного поля. Такая фаза материи называется топологическим изолятором.

Другой сценарий отсутствие внешнего магнитного поля. Тогда, казалось бы, однонаправленные краевые состояния существовать не могут: обращая в уравнениях время, можно добиться, чтобы эти краевые состояния распространялись в обратном направлении. Однако тут стоит дополнить модель в реальных экспериментах нередко имеют дело с двумерной системой атомов, внутри которых уже движутся электроны. Тогда важную поправку в описанную картину вносит спин-орбитальное взаимодействие из-за орбитального движения электрона вокруг ядра будет создаваться мгновенное магнитное поле, которое будет определенным образом ориентировать спин электрона.

Электроны с одним спином будут проводить ток по краю в одну сторону, а электроны с противоположным спином в другую (спиновый эффект Холла). Это не значит, что все вещества являются топологическими изоляторами, поскольку спин-орбитальное взаимодействие эффект универсальный; главное наличие запрещенной зоны и отличный от нуля топологический инвариант.

В электромагнитном контексте нарушение симметрии к обращению времени соответствует использованию какого-либо магнито-оптического явления. Например, эффекта Фарадея, когда статическое внешнее магнитное поле влияет на оптические свойства среды (показатели преломления для право- и левоциркулярно поляризованных волн будут различными)[1]. Аналог спинового эффекта Холла в системах с сохраненной Т-симметрией бианизотропия, при которой внешнее электрическое поле помимо электрического дипольного момента в частице наводит еще магнитный момент, а магнитное поле электрический дипольный момент[2], позволяет это реализовать.


Электромагнитное топологическое состояние, распространяющееся вдоль границы раздела двух структур с разной топологией зон

Еще немного классификации


Свет можно рассматривать как с классической точки зрения (электромагнитная волна), так и с квантовой (фотон) в зависимости от размеров рассматриваемой системы и величин передаваемых энергий и импульсов. Концепции топологической фотоники можно применять как к классическому свету, так и к квантовому. Классические системы исследуют в основном для создания устойчивых к беспорядку систем с возможностью управления светом без рассеяния. Сюда можно отнести топологические волноводы, делители, переключатели и другие устройства, где требуется особая стабильность работы. Интересное решение топологическая структура на основе активных элементов топологического лазера, который работает в одномодовом режиме, позволяя реализовать устойчивый транспорт генерируемого лазерного излучения[3]. Интересной оказывается физика нелинейно-оптических эффектов в топологически нетривиальных системах за счет существенной локализации поля в топологических состояниях усиливается генерация третьей гармоники с края одномерной цепочки из кремниевых наночастиц[4].

Недавние исследования физики пар фотонов, взаимодействующих друг с другом за счет нелинейности среды, показали, что такие связанные пары также способны локализоваться на краю, реализуя топологические состояния. Стоит также упомянуть топологические состояния высших порядков так называют низкоразмерные состояния, локализованные в углах в случае двух- или трехмерной системы (corner state), или состояния, локализованные на ребрах трехмерных структур (hinge state). В недавних экспериментах удалось создать квадрупольный топологический изолятор в инфракрасной области спектра (свет чуть более длинноволновый, чем видимое излучение). В будущем, комбинируя различные типы топологических состояний и новые конструктивные решения, ученые смогут добиться новых степеней свободы в управлении светом.

Итоги


Ученые в ряде ведущих лабораторий по всему миру работают над созданием новых и совершенствованием существующих фотонных топологических структур. На практике это фотонный кристалл, в котором каким-то образом реализована нетривиальная топология фотонных зон. Если на такую структуру светить на определенной частоте электромагнитное поле (или фотон) локализуется на краю и распространяется с определенной скоростью без рассеяния на дефектах. Этот подход позволяет создать топологические волноводы и лазеры, добиться усиления нелинейных эффектов.

Основная проблема широкого использования таких структур на практике цена. Изготовление массивов из наночастиц сложный технологический процесс. Однако даже в таких условиях ученым и инженерам удается создавать модели, либо являющиеся макроаналогами соответствующих оптических структур и работающие на более низких частотах, в области микроволн, либо системы, описываемые с помощью тех же уравнений (топоэлектрические цепи). Это отличный способ экспериментально отработать ту или иную модель для дальнейшего ее уменьшения до наноразмеров.

[1] Zheng Wang, Yidong Chong, J.D. Joannopoulos and Marin Soljai Observation of unidirectional backscattering-immune topological electromagnetic states Nature 461, 772775 (2009)

[2] Alexander B. Khanikaev, S. Hossein Mousavi, Wang-Kong Tse, Mehdi Kargarian, Allan H. MacDonald and Gennady Shvets Photonic topological insulators Nature Materials 12, 233239 (2013)

[3] Miguel A. Bandres, Steffen Wittek, Gal Harari, Midya Parto, Jinhan Ren, Mordechai Segev, Demetrios N. Christodoulides, Mercedeh Khajavikhan Topological insulator laser: experiment Science 359, 6381, eaar4005

[4] Sergey Kruk, Alexander Poddubny, Daria Smirnova, Lei Wang, Alexey Slobozhanyuk, Alexander Shorokhov, Ivan Kravchenko, Barry Luther-Davies and Yuri Kivshar Nonlinear light generation in topological nanostructures Nature Nanotechnology 14, 126130 (2019)
Подробнее..

Личный опыт как мы готовили курс по компьютерному моделированию в бакалавриате Нового физтеха

31.01.2021 14:19:04 | Автор: admin

Это специальная рубрика Нового физтеха ИТМО. Здесь учёные, преподаватели и студенты физико-технического факультета размышляют о науке и трудовых буднях. Михаил Петров, Иван Тофтул, Ксения Барышникова и Игорь Рожанский рассказывают, как команда физтеха подошла к запуску курса по компьютерному моделированию для студентов бакалавриата.

Было/стало

Физику исторически делили на экспериментальную и теоретическую, но с развитием вычислительных мощностей и упрощением вычислений в целом, появилось направление на стыке численное моделирование. По сути это компьютерный эксперимент, который позволяет разрабатывать сложные физические системы, проверять их жизнеспособность и эффективность еще до трудоемких испытаний на сложном дорогостоящем оборудовании.

К началу третьего курса наши студенты неплохо знают линейную алгебру, дифференциальные исчисления и базовые приёмы численных методов. Далее они подходят ближе к научной работе. Однако реальные задачи в фундаментальной и прикладной науке бывают весьма громоздкие и трудоемкие. Научить видеть те, к которым можно подступиться аналитически, а тем более решать их, чрезвычайно сложно, да и таких задач мало (автор упоминает исследование фундаментального предела скорости звука, где ответ удалось уложить в абстракт(!) статьи).

В своем курсе мы сфокусировались на умении решать физические задачи численно. Мы делали упор на использование готовых библиотек и численных пакетов (например, SciPy и COMSOL), которые позволяют быстро получить ответ и приступить к анализу. При таком подходе компьютер берет на себя вычисления, а студент фокусируется на понимании закономерностей.

Введение численных расчетов позволяет фильтровать ошибки аналитической теорииВведение численных расчетов позволяет фильтровать ошибки аналитической теории

На первом этапе подготовки курса мы сформулировали следующие задачи:

  1. Научить студентов готовить математическую модель на основе физической (явно записать уравнения, которые будут решаться), а потом и реализовывать ее на компьютере.

  2. Познакомить их с пакетами физического моделирования на примере COMSOL Multiphysics.

  3. Показать, как численные ошибки приводят к ошибкам в физических величинах или даже к неверным физическим результатам.

Лабораторные работы

Они должны быть максимально иллюстративны как с точки зрения численных методов, так и с точки зрения актуальности физической модели. Мы реализовалидесять лабораторных работ.


Эпидемия зомби

  • Инструмент Python, MATLAB.

  • Математика составление и решение систем ДУ, анализ результатов.

  • Физика стандартные эпид. модель распространения заболевания вроде SIR и др. (когда мы готовили этот курс, даже не могли предположить, что тема будет столь актуальной).

  • Значимость понимание типичных тенденций эпидемий помогает эффективно и ответственно действовать в ситуациях схожими с глобальной пандемией. Аналогичное описание динамики системы ещё встречается, например, в экономике.


Оптический пинцет и темпловой шум

  • Инструмент Python, MATLAB.

  • Математика решение стохастических динамических уравнений.

  • Физика моделирование движения микро- и наночастицы в оптическом пинцете с учетом тепловых шумов.

  • Значимость добавление стохастики в систему является распространенным приемом для приближении модельной системы к реалистичной.


Квантовая яма

  • Инструмент Python, MATLAB.

  • Математика решение задач на собственные значения.

  • Физика решение уравнения Шредингера, определение состоянийэлектрона в произвольной квантовой яме.

  • Значимость фундаментальная задача квантовой механики с точки зрения численного моделирования.


Сетка сопротивлений Миллера-Абрамса

  • Инструмент Python, MATLAB.

  • Математика решение систем линейных уравнений.

  • Физика элементы теории перколяции, определение проводимости случайной сетки.

  • Значимость методы перколяции сейчас используются в биологии, экологии, городском движении, а также для создания высокоемкостных аккумуляторов [раз, два, три].


Определение уровня Ферми

  • Инструмент Python, MATLAB.

  • Математика решение алгебраических уравнений,метод Ньютона.

  • Физика определение уровня Ферми в полупроводнике с произвольным уровнем легирования.

  • Значимость модель расчета одного из ключевых параметров из мира полупроводников. Эта задача актуальна, пока фотонный компьютер не стал настольным.


Планарный волновод

  • Инструмент Python, MATLAB.

  • Математика решение алгебраических уравнений и задачи на собственные значения.

  • Физика определение дисперсионных соотношений мод планарного волновода.

  • Значимость изучение волноводных мод на простом примере. Волноводы сейчас встречаются повсеместно.



Точечный заряд над проводящей плоскостью

  • Инструмент COMSOL Multiphysics.

  • Математика первое знакомство с COMSOL.

  • Физика простейшая электростатика.

  • Значимость знакомство с одним из стандартов численных проверок теор. моделей.


Нормальное падение на границу раздела двух сред

  • Инструмент COMSOL Multiphysics.

  • Математика моделирование граничных условий.

  • Физика прохождение света через границу раздела двух сред.

  • Значимость знакомство с одним из стандартов численных проверок теор. моделей.


Распределение тепла у провода с током

  • Инструмент COMSOL Multiphysics.

  • Математика одновременное использование нескольких пакетов физики.

  • Физика джоулев нагрев и уравнение теплопроводности.

  • Значимость бытовые явления с помощью численного моделирования.


Финальный проект где лучше поставить WiFi роутер / колонки

  • Инструмент COMSOL Multiphysics.

  • Значимость дать задачу с открытым ответом, проверить полученные знания и навыки.


Каждому своё решение

У нас не было жестких ограничений на выбор языка программирования, IDE и методов решения. Остановились на трёх вариантах:

  • Python и MATLAB. Языки высокого уровня со множеством готовых библиотек очевидный выбор. Разумеется, есть альтернативы, которые выигрывают при определенных сценариях. Например, неплохо зарекомендовала себя Julia, но популярность вариантов выше и возможность нагуглить почти любую проблему, перевесила чашу весов.

  • COMSOL Multiphysics один из стандартов численных расчётов в научном сообществе и настоящий комбайн по решению комплексных задач методом конечных элементов (FEM). Позволяет совмещать несколько расчётных модулей в одной симуляции например, электромагнетизм и теплопроводность. Проверка аналитических формул может сравниваться с численной моделью в COMSOL, что является одной из первых стадий перед сравнением с реальным экспериментом. В Новом физтехе ИТМО это один из наиболее часто используемых инструментов. Для обмена опытом проводятся даже COMSOL Days.

Презентация это важно

Для карьеры в науке или индустрии необходимо умение внятно представлять результаты своей работы. Поэтому мы сфокусировались на использовании системы вёрстки, которую давно приняли в научном сообществе. Для оформления предложили следующие рекомендации:

  1. Документ должен быть оформлен в LaTeX.

  2. Содержать аннотацию, теоретическое введение, результаты и выводы, как в научной статье.

  3. Картинки должны отображать суть работы быть понятными для коллег из смежных областей (для этого необходимы подписи осей, параметров и так далее).

Пример одной из иллюстраций для ЛР 1 многоступенчатая схема противодействия зомби-апокалипсису (работу выполнил Денис Сахно). Здесь можно увидеть историю эпидемии. Студент не стал описывать области в подписях к рисунку, а явно указал их на самом графике.

Дисперсии электрона в периодическом потенциале (ЛР 3, выполнил Денис Седов). График публикационного качества. Есть понятное описание, ссылки на формулы и основные методы.

Исследование собственных мод плоского волновода (ЛР 6, выполнил Глеб Федорович):

Расчет поля роутера Wi-Fi. Один из финальных проектов (выполнили Руслан Гладков, Никита Устименко, Антон Шубник и Денис Седов). В данной работе студенты представили карты распределения. В процессе группа столкнулась с проблемой расчет для реальных размеров получался слишком тяжелым, поэтому задачу решали для комнаты сантиметровых размеров.

Заключение

Мы коротко рассказали о курсе по компьютерному моделированию. К его окончанию студенты учатся больше смотреть на физику решаемых задач, а не закапываться в численные методы, если в этом нетнеобходимости. На выходе они получают ряд работ публикационного качества. В данном виде программу слушали бакалавры третьего курса в осеннем семестре 2019 года.


Другие материалы у нас на Хабре:


Подробнее..

Новый физтех избранные исследования

27.03.2021 20:12:03 | Автор: admin

Это подборка из пяти научных работ представителей Нового физтеха ИТМО, опубликованных в западных журналах и русскоязычных СМИ. Делимся опытом и обсуждаем результаты.

Изображение: Umberto. Источник: Unsplash.comИзображение: Umberto. Источник: Unsplash.com

Удержать свет в нанорезонаторе на рекордно долгое время

Новый физтех Science N+1 SpaceDaily

Группа физиковНового физтеха вместе с коллегами из Австралийского национального университета в Канберре и Университета Корё в Сеуле около года назад представила первый в мире нанометровый резонатор, удерживающий свет на две с лишним сотни периодов колебаний световой волны. Ранее такие результаты на небольшом масштабе были недостижимы на практике, но около трех лет назад получили теоретическое обоснование силами ученых из Университета ИТМО, физико-технического института им. А.Ф. Иоффеи Австралийского национального университета. В прошлом году дело дошло до реализации, а потом и разработки устройства, эффективным образом повышающего длину волны входного света в два раза.

Технология с высокой вероятностью станет основой для новых средств связи, оптических приборов и сенсоров. В нашем блоге ученые, принявшие участие в проекте, делятся инсайтами о выборе форм-фактора и соотношения диаметра к высоте резонатора. Плюс обсуждают возможности для развития теоретических и практических ответвлений этой работы.


Cинтез частиц карбоната кальция для доставки лекарств

Новый физтех ACS Sustainable Chemistry and Engineering Коммерсантъ

Это совместная работа экспертов Нового физтеха, специалистов Первого мед. университета в Санкт-Петербурге и Тель-Авивского университета. Ученые проанализировали условия роста частиц карбоната кальция, провели тесты на биосовместимость и изучили способность их захвата опухолевой клеткой в зависимости от формы и морфологии таких частиц.

Подобные средства доставки биоактивных веществ считают перспективными. Они не требуют существенных затрат на производство и деградируют во внутриклеточном пространстве.



Комплектующие для фотонных компьютеров из перовскита

Новый физтех Small Коммерсантъ

Вместе с коллегами из Дальневосточного федерального университета нашим ученым удалось провести серию весьма успешных экспериментов по работе с перовскитом. Подготовка материала была на стороне Нового физтеха, а его обработку осуществляли с помощью фемтосекундного лазера. За счет экспертизы специалистов ДВФУ в области наноструктурирования получилось прорезать перовскит и избежать перегрева. Плюс нанести канавки в несколько нанометров и сохранить оптические свойства материала.

Эти результаты говорят о перспективе развития новых типов записи данных с расширенными возможностями для считывания и защиты например, в виде микроскопических QR-кодов, доступных для чтения при подсветке с нужного угла.

Дополнительные опции появляются в области производства солнечных батарей и изготовления фотоэлементов различных цветов. Технология годится и для массового выпуска нанолазеров их печати на интегральных схемах оптических чипов.


Как перемешивать жидкости с помощью света

Новый физтех Advanced Science РИА Новости

Речь об инфраструктуре для разработки новых лекарств, экспресс-диагностики заболеваний и биологических исследований. В ситуациях, когда эти задачи решают с помощью лабораторий на чипе, требуются особые методы контроля диффузии молекул. Причем не только ее общей скорости, но и хода определенной части емкости микрореактора. Этой темой занялись наши ученые и специалисты Академии наук Чехии. Вместе они представили решение, состоящее из наноантенны в виде кубика кремния размером в пару сотен нанометров и наночастиц золота. Первый отвечает за управление световой волной и генерирует оптический вихрь, а золото перемешивает реактивы, позволяя усилить диффузию в десятки раз в нужной локации.


Фотография: Phil Hearing. Источник: Unsplash.comФотография: Phil Hearing. Источник: Unsplash.com

Прозрачный или отражающий в ИК-спектре материал

Новый физтех Optica Naked Science

Метаповерхности, состоящие из элементов сложной формы, позволяют управлять светом не хуже, чем объемные материалы. Однако их свойства можно установить исключительно в момент производства. Обойти это ограничение смог коллектив из ИТМО и Эксетерского университета. Ученые предложили метаматериал, изготовленный при помощи электронной литографии из основы в виде бутерброда, состоящего из кремниевой подложки, материала с фразой памятью (GeSbTe) и еще одного слоя с напылением кремния. Итоговый продукт меняет уровень прозрачности без механических воздействий для этого используют импульсный лазер.

Подобные разработки позволят приступить к проектированию оптических устройств нового типа вроде специальных ИК-лидаров и сверхтонких линз для объективов мобильных гаджетов.


Другие материалы Нового физтеха на Хабре:


Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru