Русский
Русский
English
Статистика
Реклама

Излучение

Белее некуда краска, отражающая до 98.1 солнечного света

21.04.2021 10:22:09 | Автор: admin


Изобретение велосипеда зачастую описывает процесс создания чего-то, что уже создано. Другими словами, бессмысленный труд. Однако в научном мире существует множество трудов, которые можно описать этой фразой. Тем не менее многократное создание одного и того же велосипеда разными людьми позволяет взглянуть на него под разным углом, тем самым усовершенствовав его. Подобная ситуация сложилась и с материалами, способными отражать большой процент солнечного тепла, дабы получить пассивное охлаждение без необходимости в системах кондиционирования. Эта тема уже затрагивалась нами ранее (http://personeltest.ru/aways/habr.com/ru/company/ua-hosting/blog/510582/), но ученые из университета Пердью (США) решили взглянуть на эту проблему по-своему, создав при этом ультрабелую краску, способную отражать до 98.1% солнечных лучей. В чем секрет нового лакокрасочного материала, как он создавался, и будет ли его использование на практике действительно выгодным и экологичным? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Лейтмотивом исследований, связанных со снижением экономической и экологической нагрузки на охлаждение, является радиационное (излучательное) охлаждение. Данный метод заключается в пассивном охлаждении за счет специальных устройств, материалов, покрытий и прочего. Чаще всего для реализации радиационного охлаждения применяются сложные многослойные структуры или отражающие металлические слои. Эффект от них, конечно, имеется, однако такой вариант не особо практичен и выгоден.

Попытки реализовать радиационное охлаждение с помощью одного слоя краски тоже часто заканчиваются провалом, ибо в таком случае этот слой будет весьма толстый, а эффект охлаждения незначительный.

Однако, радиационное охлаждение все же имеет свои преимущества, если правильно его реализовать. К примеру, в отличие от активного охлаждения, которое требует электричества, радиационное охлаждение использует атмосферное прозрачное окно (небесное окно) для испускания теплового излучения непосредственно в глубокое небо без потребления энергии. Если тепловое излучение через небесное окно превышает поглощение солнечного света, то на поверхности может сохраняться холодная окружающая среда даже под прямыми солнечными лучами.

Ранее уже были попытки создать краску, способную реализовать радиационное охлаждение. Был вариант, в котором использовался тонкий слой TiO2 на алюминиевой подложке. В зимний день такая структура демонстрировала температуру на 2 C ниже температуры окружающей среды. Однако, по словам ученых, это, вероятно, было связано скорее с подложкой, а не с самой краской.

Были и варианты без каких-либо красок, основанные на многослойных структурах. В одном из таких вариантов использовались металлический слой, полиэтиленовый аэрогель и делигнифицированная древесина. Очевидно, что подобные конструкции крайне сложны и дороги в реализации, не говоря уже о большой толщине результирующего покрытия.

Другими словами, методов реализации радиационного охлаждения существует довольно много, каждый из них обладает рядом преимуществ и недостатков. Авторы рассматриваемого нами сегодня труда решили попытать удачу в этой области и создали еще один метод пассивного охлаждения, основанный на сочетании пленки из наночастиц BaSO4 и краски, содержащей эти же наночастицы.

Результаты исследования


Выбор BaSO4 в качестве главного героя данного труда был неслучайным. BaSO4 имеет широкую запрещенную зону, что хорошо для малого солнечного поглощения, и фононный резонанс на 9 мкм, что хорошо для высокой излучательной способности. Приняв во внимание эти особенности, удалось создать пленку из наночастиц BaSO4 с высоким коэффициентом отражения солнечного света (97.6%) и коэффициентом излучения прозрачного окна (0.96).

Для повышения стабильности и надежности пленки была создана акриловая краска, содержащая наночастицы BaSO4 (60% от объема). Высокая концентрация наночастиц и их широкое распределение по размерам позволяют снизить показатель преломления BaSO4, что приводит к коэффициенту отражения солнечного света в 98.1% и излучательной способности в 0.95. По заявлению ученых, их BaSO4-акриловая краска имеет показатель качества 0.77, который является одним из самых высоких среди подобных структур для радиационного охлаждения. При этом их вариант надежен, легок в использовании, а также прекрасно имплементируется в промышленный процесс производства красок.


Изображение 1

Коммерческие белые краски (TiO2-акриловая) не могут достичь полноценного охлаждения из-за высокого поглощения в УФ-диапазоне (из-за ширины запрещенной зоны TiO2 в 3.2 эВ) и ближнем инфракрасном (NIR) диапазоне (из-за акриловой абсорбции).

В данном труде была изготовлена пленка из частиц BaSO4 толщиной 150 мкм на кремниевой пластине () в совмещении с коммерческой белой краской. На СЭМ-снимках (СЭМ от сканирующий электронный микроскоп) пленки BaSO4 (1b) видно образование воздушных пустот. Интерфейсы между наночастицами BaSO4 и воздушной полостью увеличивают рассеяние фотонов в пленке, тем самым увеличивая общий коэффициент отражения солнечного света.

Для повышения надежности структуры необходимо обеспечить устойчивость BaSO4 пленки к воздействию окружающей среды. Именно для этого и была использована акриловая краска. Однако, краска на базе BaSO4 (1c) обладает низким коэффициентом преломления, в отличие от TiO2. Чтобы исправить это, концентрация частиц BaSO4 в краске была повышена до 60%, что значительно выше, чем в промышленных красках.


Изображение 2

Как показано на изображении 2a, для достижения успешного охлаждения ниже температуры окружающей среды необходимы высокая степень отражения солнечного света и высокая степень излучательной способности. Для достижения этого необходимо было уменьшить поглощение в УФ-диапазоне. Это было достигнуто за счет BaSO4, обладающего запрещенной зоной в ~6 эВ.

А за счет фононного резонанса на 9 мкм возможно проектирование частиц определенного размера так, чтобы лишь один слой был необходим для достижения как отражательной способности, так и излучательной. В результате оптимальный размер частиц BaSO4 составил 400 нм. В результате пленка BaSO4 обладала коэффициентом отражения солнечного света в 97.6% и коэффициентом излучения в 0.96 (2b). Эти показатели лучше тех, что демонстрируют коммерчески доступные теплоотражающие краски (коэффициент отражения солнечного света от 80% до 91%).

Ученые отмечают, что использованная в их структуре кремниевая подложка была всего лишь фундаментом, и никак не участвовала в повышении показателей охлаждения. На графике 2c показано сравнение коэффициента отражения различных структур: с подложкой (разный материал и толщина) и без нее. Как мы можем видеть, использование подложки никак не влияет на охлаждающую способность всей структуры.

Что касается краски, то вариант с высоким содержанием частиц BaSO4 показал лучшие результаты: коэффициент отражения солнечного света 98.1%; коэффициент излучения 0.95. Физика, лежащая в основе высокой степени отражения, была смоделирована посредством метода Монте-Карло* (2d).
Метод Монте-Карло* метод изучения случайных процессов, когда оные описываются математической моделью с использованием генератора случайных величин. Модель многократно обсчитывается, а на основе полученных данных рассчитываются вероятностные характеристики изучаемого процесса.
Толщина слоя краски также была установлена посредством моделирования и практических опытов. При толщине 400 мкм достигались максимальные значения показателей отражения и излучения, тогда как при других толщинах они были немного меньше: при 200 мкм 95.8%; при 224 мкм 96.2%; при 280 мкм 96.8% (2e).


Изображение 3

Далее были проведены полевые испытания, дабы воочию понаблюдать за работой созданной структуры. Опыты проводились 14-16 марта 2018 года в городе Вест-Лафайет (штат Индиана) при пиковом солнечном излучении 907 Вт/м2 и влажности 42% (3a).

Температура образца упала на 10.5 C ниже температуры окружающей среды в течение ночи и оставалась на 4.5 C ниже температуры окружающей среды даже при пиковом солнечном излучении. Для сравнения, коммерческие варианты краски нагревались на 6.8 C выше температуры окружающей среды при таких же условиях опыта.

Дополнительные опыты в городе Рино (штат Невада) 28 июля 2018 года показали, что мощность охлаждения достигла в среднем 117 Вт/м2 за суточный период при 10% влажности (3b).

Мощность теплового излучения увеличивалась с повышением температуры поверхности в дневное время, что компенсирует более высокое поглощение солнечной энергии. Таким образом, оценка мощности охлаждения без учета температуры поверхности может быть неверным показателем эффективности охлаждения.

Термоэмиссионная мощность пленки BaSO4 при 15 C достигала 106 Вт/м2. Дополнительно были проведены полевые испытания BaSO4 краски (3c и 3d), которая оставалась холоднее окружающей среды в течение суток при пиковом солнечном излучении в 993 Вт/м2 и влажности около 50% (показатель получен в полдень).

Поскольку созданная BaSO4 краска предназначена для наружного применения, необходимо было также проверить ее надежность. Для этого были проведены тесты на истирание, атмосферные воздействия на открытом воздухе и определение вязкости.


Изображение 4

Во время тестов на истирание (4a) на образец помещали пару абразивных кругов с нагрузкой 250 г на каждый круг. Обновление кругов производилось каждые 500 циклов, между чем измерялась потеря массы образца. Коэффициент износа определялся как потеря массы (мг) на каждые 1000 циклов. Результирующий коэффициент износа BaSO4 краски достигал 150, что сравнимо с коммерческими красками (104). Тест влияния окружающей среды проводился довольно просто: образец помещали под открытым небом на 3 недели (4b). В течение всего времени коэффициент отражения солнечного света и коэффициент излучения оставались практически неизменными. Вязкость BaSO4 краски также была измерена и показала значения, схожие с оным для коммерческих вариантов (4c).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


В данном труде ученые в очередной раз обратили свое внимание на вопрос радиационного охлаждения, который соблазняет своей экологичностью и экономичностью по сравнению с классическими методами. Их идея заключается в использовании микроскопических частиц BaSO4 и создании двухслойной структуры. Один слой это пленка из этих частиц, второй акриловая краска, в состав которой входят опять же частицы BaSO4.

В результате полученная пленка смогла показать коэффициент отражения солнечного света 97.6%, а коэффициент излучения 0.96. Но это еще не максимум, что может разработанная структура. Совместив пленку из BaSO4 с краской, в состав которой также входит BaSO4, удалось достичь коэффициента отражения солнечного света 98.1% и коэффициента излучения 0.95.

Полевые испытания показали, что температура поверхности, покрытой BaSO4 краской, была на 4.5 C ниже температуры окружающей среды, а средняя мощность охлаждения при этом составляла 117 Вт/м2.

По надежности и износостойкости полученная краска ничем не уступает своим коммерческим собратьям. Кроме того, имплементация данной разработки в промышленность не требует больших затрат или специфического оборудования. Другими словами, создавать и использовать такой материал будет довольно просто и выгодно.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Нестандартный подход кремний и нелинейная оптика

05.05.2021 10:13:29 | Автор: admin


До начала XIX века об этом веществе мало кто знал, а сейчас без него сложно представить современный мир. Найти его можно и в кармане прохожего, и в самых современных лабораториях. Речь, конечно же, о кремнии. За двести с лишним лет своего общения с человеком кремний подарил нам множество новых и удивительных технологий. Он нашел свое применение в металлургии, в химии, в биологии, и, самое главное, в электронике. Список применений кремния очень велик, но благодаря усилиям ученых из университета Суррея (Великобритания) он может пополниться еще одним пунктом. Они провели исследование, в котором установили, что кремний может быть использован в фотонике для создания устройства, которое сможет управлять несколькими световыми лучами. Что под этим подразумевается, как это работает, и какое практическое применение имеет данное открытие? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Несмотря на свои заслуги перед компьютерными технологиями, для фотоники кремний, как правило, считается крайне плохим выбором. Изменить эту ситуацию можно за счет терагерцовой области электромагнитного спектра и за счет нелинейности.

Терагерцовое (ТГц) излучение это вид электромагнитного излучения, спектр частот которого расположен между инфракрасным и микроволновым диапазонами (3х10113х1012 Гц).

Нелинейность же является свойством динамической системы, свойства и характеристики которой зависят от ее состояния. К примеру, в линейной системе изменение амплитуды входящего сигнала на Х приводит к изменению выходного сигнала тоже на Х, а в нелинейной нет. Другими словами, изменения на выходе не пропорциональны изменениям на входе. Ярким примером нелинейной системы является хаос, который на первый взгляд кажется непредсказуемым и совершенно не вписывается в рамки линейных систем.

Таким образом мы имеем дело с нелинейной оптикой, которая изучает явления, возникающие при взаимодействии светового поля и вещества с нелинейной реакцией вектора поляризации на вектор напряженности электрического поля световой волны.

В рамках данного труда ученые отмечают, что нелинейности третьего порядка позволяют контролировать световой импульс в центросимметричных материалах, таких как кремний и диоксид кремния. Для достижения восприимчивости* третьего порядка ((3)L, где L толщина материала) можно использовать вырожденное четырехволновое смешение*, что также позволяет оптически управлять обнаружением и испусканием фотонов.
Диэлектрическая восприимчивость* мера способности вещества поляризоваться под действием электрического поля. Нелинейные восприимчивости относятся к анизотропным материалам, в которых восприимчивость не одинакова во всех направлениях, как у изотропных. В этих материалах каждая восприимчивость становится тензором (n+1) степени.
Четырехволновое смешение* явление интермодуляции в нелинейной оптике, при котором взаимодействия между двумя или тремя длинами волн создают две или одну новую длину волны.
С помощью пикосекундных импульсов от лазера на свободных электронах ученым удалось показать, что кремний, легированный P или Bi, имеет значение (3)L в ТГц области выше, чем любой другой материал в любом диапазоне длин волн.


Изображение 1

Итак, нелинейность низшего порядка в центросимметричных материалах равна (3). Она отвечает за вырожденное четырехволновое смешение (DFWM от degenerate four-wave mixing), при котором все четыре фотона имеют одинаковую энергию: два из которых возбуждаются, а два излучаются (схема выше). Отклик DFWM обладает потенциалом для применения в активных оптических средах (модуляторы, квантовые повторители и т.д.). Однако количественных измерений восприимчивости для прозрачных объемных материалов в ТГц области до сего момента практически нет, т.е. для любого материала в этом спектре частот на данный момент известно крайне мало значений (3).

Посему ученые решили поэкспериментировать с кремнием, который ранее уже пытались использовать для оценки (3), но безуспешно ввиду, скорее всего, проблем, связанных с количественной метрологией нелинейного ТГц диапазона.

Результаты исследования


В качестве опытных образцов использовался монокристаллический кремний (Si), легированный висмутом (Bi) или фосфором (P). Температура образцов в ходе опытов поддерживалась в диапазоне 510 К.

В ходе исследования были проведены опыты с использованием терагерцовых импульсов от лазера на свободных электронах как при включенном, так и при выключенном резонансе с 1s 2p переходами в Si:P и Si:Bi при 10K.

В пределе плоской волны (т.е. для бесконечно длинных импульсов и бесконечно широких лучей) комплексная амплитуда поляризации генерируемого луча (P3) связана с комплексными амплитудами поля входных лучей (F1,2) внутри материала соотношением:



т.е. интенсивность выхода определяется посредством (3). Определение (3) в уравнении выше предполагает, что импульсного эксперимента внутренние энергии импульса (Ei) трех лучей (ki) связаны соотношением:



где Ec постоянная, обратно пропорциональная (3)L, а L толщина образца.

Ec представляет собой критическую энергию импульса, при которой выходная мощность станет равной входной. Посему необходимо оставаться ниже этой границы, чтобы не пришлось учитывать нелинейные эффекты более высокого порядка.


Изображение 2

E1 варьировалось в ходе опытов, но отношение E2 / E1 при этом оставалось фиксированным (график выше). При низкой энергии наблюдалась четкая кубическая зависимость. При высокой интенсивности в опытах с резонансом происходило насыщение из-за зависящего от интенсивности уменьшения времени дефазировки, что приводило к снижению (3).

Вдали от резонанса, но в пределе длинных импульсов, соотношение между Ec и (3) напрямую зависит от геометрии и длительности импульса и выглядит следующим образом:



где n показатель преломления (в данном труде был установлен n = 3.4);
0 длина волны в свободном пространстве;
Z0 характеристический импеданс свободного пространства;
r0 и t0 среднеквадратичные радиус пучка и продолжительность импульса.

Переменная f в формуле выше напрямую зависит от потерь, а также формы и длительности импульса относительно динамических временных масштабов системы. Если f = 1, то потери незначительны. Увеличение этого показателя сигнализирует об увеличении потерь и зависит от толщины образца.

В случае проведенных опытов, то при отсутствии резонанса f был немного выше единицы, что связано с короткими импульсами. Полученные экспериментальным путем значения Ec и рассчитанные значения f позволили получить (3)expt, т.е. ожидаемое значение (3).

Имея в своем распоряжении теоретические значения (3), ученые смогли провести сравнение с результатами своих опытов.

Кремний при низкой температуре напоминает водород. Энергия уменьшена, а размеры орбиталей увеличены за счет малой эффективной массы и большой диэлектрической проницаемости.

Опыты с резонансом и без него показали хорошее соответствие теоретическим предсказаниям за исключением небольшого расхождения. Разница между этими вариантами опытов была в том, что резонанс значительно уменьшает Ec и увеличивает (3) по сравнению с нерезонансными случаями.


Изображение 3

График выше демонстрирует набор когерентных измерений (3) в других материалах, системах и диапазонах частот. Если точнее, то отображены значения (3)L, так как именно эта величина была измерена в каждом случае.

Ученые отмечают, что материалы Дирака (например, графен) демонстрируют большие значения (3)L, но и резонансные межзонные процессы или процессы со свободными носителями в зависимости от химического потенциала. В таких случаях (когда присутствуют потери поглощения) объемная восприимчивость (3) не является особенно полезным показателем качества материала, поскольку выходная мощность изменяется нетривиальным образом в зависимости от толщины образца из-за тех же потерь.

В двумерных системах и системах с квантовыми ямами* наблюдались большие значения (3).
Квантовая яма* потенциальная яма, которая ограничивает подвижность частиц с трех до двух измерений, из-за чего они могут двигаться только в плоском слое.
Во всех этих случаях измеренный выходной сигнал нормируется по толщине, а чувствительность слоя ((3)L) очень мала по сравнению со значениями, полученными в первоначальных опытах, и остается такой даже в случае систем из множества слоев.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Данное исследование изначально имело другую цель изучение атомов фосфора в кристаллах кремния для возможного применения в квантовых компьютерах. Однако в ходе опытов было установлено, что атомы фосфора способны повторно излучать лучи практически такой же мощности, как и у лазера, который был на них направлен.

Подобные эффекты возможны за счет терагерцовой области электромагнитного спектра и за счет нелинейности, которую используют для управления лазерами (например, для перенаправления луча). Буквально волей случая ученые обнаружили, что кремний обладает самой сильной нелинейностью из когда-либо обнаруженных.

Несмотря на то, что опыты проводились на образцах, охлажденных до очень низкой температуры, в их результатах есть большой потенциал. Если полностью разобраться в том, как протекают исследуемые процессы, то можно их использовать для создания кремниевых процессоров с функцией управления световыми лучами посредством других лучей, что увеличит скорость и эффективность электронных коммуникаций.

Пока это лишь теории, подтвержденные немногочисленными опытами, однако ученые уверены, что в будущем им удастся разгадать секреты нелинейности кремния.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru