Русский
Русский
English
Статистика
Реклама

Свет

Макраме из света шифрование данных на оптических узлах

21.10.2020 10:10:51 | Автор: admin


Научные изыскания позволяют нам не только лучше понимать окружающий наш мир, но и контролировать некоторые процессы и явления. За долгие годы исследований и экспериментов мы научились менять свойства материалов, манипулировать электромагнитными полями, видеть далекие планеты и звезды, разбирать по кирпичикам клетки и многое другое. Некоторые новообретенные умения сильно удивили бы ученых прошлого. Одним из таких умений является возможность менять форму луча света. Но как это применить на практике? Ученые из Оттавского университета (Оттава, США) предложили создать обрамленный оптический узел, который можно использовать для хранения и кодирования информации. Как ученые завязывали луч света в узел, каковы свойства такой структуры и насколько безопасно хранить данные на оптических узлах? На эти и другие вопросы мы найдем ответы в докладе ученых. Поехали.

Основа исследования


Любой моряк, дайвер или альпинист скажет, что правильный узел может спасти жизнь. Мастера макраме превратили узлы в настоящее искусство. А тайна наушников, самостоятельно запутывающихся в узлы, до сих пор остается не раскрыта.

Как мы прекрасно знаем, любой объект или процесс поддается математическому описанию, и узлы не исключение. С точки зрения математики, узел это вложение окружности в трехмерное евклидово пространство.


Типы простых узлов.

Математическая классификация узлов достаточно обширна (трилистник, печать Соломона, узел Листинга и т.д.). В данном же исследовании был задействован особый вид узлов обрамленный. Такой узел создается из плоской ленты. Грубо говоря, это своего рода запутанная лента Мебиуса.

Вторым компонентом исследования, естественно, был свет, а именно структурированный свет, представляющий собой оптическое поле с определенными пространственными и временными особенностями, которые можно менять. Как напоминают ученые, создание таких структур в основном опирается на концепции, связанные с сингулярной оптикой, т.е. изучение неоднородностей в оптических волновых полях. Неоднородности, которые можно найти в оптических фазах или в поляризации, именуются оптическими сингулярностями. Их можно использовать для создания оптических лучей разной сложности: от лучей с единственной сингулярностью до волновых полей, образующих топологические полосы и узлы.

К числу последних как раз и относится ранее упомянутая лента Мебиуса, а также разные типы узлов. Проблема в том, что подобные структуры часто рассматриваются как двумерные, нежели трехмерные, т.е. как оптические лучи с единственной сингулярностью.

В рассматриваемом нами сегодня исследовании ученые решили исправить этот недочет, экспериментально продемонстрировав генерацию и работу структур в волновых полях оптической поляризации, образующих обрамленные узлы. Кроме того, созданные узлы были использованы для кодирования топологической информации посредством совместного использования факторизации простых чисел и собственных топологических инвариантов узлов.

Создание оптического обрамленного узла


Узел, как мы уже знаем, это описание того, как запутанные нити/линии/полосы расположены в пространстве. По этой причине при анализе в рамках физической структуры узлы обычно обнаруживаются в полях, определяемых областями, которые однозначно образуют кривые в трехмерном пространстве. Такие узловые кривые были продемонстрированы в таких системах, как вихри в жидкостях, нули интенсивности в скалярных оптических полях и в пределах C-линий оптических полей поляризации.

C-линии, в частности, состоят из кривых чистой круговой поляризации в монохроматических электромагнитных полях. Одна из их самых отличительных особенностей связана со структурой поляризационного поля в непосредственной близости от них. Если точнее, то они заключены в поляризационные эллипсы с большой осью, которая вращается на целые числа, кратные , вдоль замкнутого контура, окружающего C-линию ( и 1d).


Изображение 1

В случае параксиальных* оптических лучей поляризация ограничивается плоскостью, поперечной распространению луча, например плоскостью xy.
Параксиальный луч* луч, который распространяется вдоль оси центрированной оптической системы.
Как показано на , это ограничение уменьшает плоскость, в которой можно проследить вращение оси поляризации. Однако непараксиальные лучи могут иметь векторы поляризации, нормаль которых не перпендикулярна распространению луча. Как показано на 1b, этот нормальный вектор, в свою очередь, определяет плоскость, в которой ось эллипса совершает половину оборота вокруг C-линии.

Наличие этих вращений является ключевой структурной особенностью, рассматриваемой при определении исследуемых обрамленных узлов.

Обрамленный узел в трехмерном пространстве представляет собой узел, оснащенный векторным полем, называемым обрамлением. Обрамление нигде не касается узла и характеризуется коэффициентом зацепления. Другими словами, оно считает, сколько раз векторное поле поворачивается (на 2 поворотов) вокруг узла. Узловые ленты обобщают обрамленные узлы до нечетного числа полу-скручиваний, например, узловые ленты Мебиуса.

Учитывая приведенное выше определение, обрамление замкнутой C-линии было определено осью соседнего эллипса поляризации, которого идет перпендикулярно касательной к C-линии.

Данная концепция проиллюстрирована на и 1b, где разными цветами отмечены эллипсы поляризации, окружающие C-линию, ось которой перпендикулярна ее касательной, что и определяет ее обрамление.

В редком случае, когда все оси перпендикулярны в определенной точке C-линии, вектор поляризации, определяющий обрамление, можно интерпретировать как тот, который обеспечивает его непрерывность с наименьшим количеством скручиваний. Эта концепция, в свою очередь, определяет обрамление, приписываемое узловой С-линии.

На показано, что это можно реализовать посредством узлового поля Ek, определяемого циркулярно поляризованной составляющей (Ek-) с узловыми фазовыми сингулярностями и продольно поляризованной составляющей (Ekz), гарантирующей, что Ek соответствует уравнениям Максвелла.

Путем наложения Ek на плоскую волну с противоположной спиральностью поляризации (Ep+) создаются узловые C-линии, возникающие из сингулярной структуры Ek (1d и 1e).

Помимо хорошо различимых трехмерных структур, узлы также могут быть представлены косами. Геометрически косы состоят из переплетенных друг с другом прядей, которые не переворачиваются на уже задействованной плоскости. Каждый узел можно представить в виде отдельной косы.


Изображение 2

Например, узел трилистник () может быть выражен как закрытие косы на 2b. Такое представление можно применить и к узлам/косам в трехмерном пространстве. Например, трилистник, внедренный в тор (2c), может быть получен посредством стереографической проекции косы, заключенной в цилиндр (2d).

Один из способов выполнить эту проекцию выразить эту косу как нули комплексного поля. Это поле записывается как функция комплексных координат (u, v), которые относятся к пространственным координатам (x, y, h), в которые коса вложена через u = x + iy и v = exp(ih). Это заплетенное поле, в свою очередь, может быть преобразовано в соответствующий ему узел со стереографической проекцией, определяемой:



где (, , z) цилиндрические координаты трехмерного пространства, в которое теперь вложен узел.

Данная проекция превращает косу, определенную на (x, y, h), в узел в (, , z), соединяя два ее конца, тем самым отображая координату h на .

Вышеупомянутая проекция в значительной степени используется при построении узловых оптических полей. В частности, скалярное оптическое поле может быть построено путем согласования его поля вдоль плоскости z = 0 с полем комплексного узла, возникающего в результате проекции косы. Когда это оптическое поле является параксиальным, то его формулировка в последующих z-плоскостях может быть получена с помощью методов параксиального распространения. Затем этот метод может быть расширен для описания параксиальных узловых C-линий.

Проекция, построенная из вышеуказанной формулы, была использована для создания структуры со свойствами, которые легче всего связать с оптическими узлами. Такой структурой стал тор Т2, полученный из проекции цилиндра С, охватывающий трехмерное представление соответствующей косы. Далее размеры узлов масштабировались так, чтобы их структура соответствовала Т2.

Также было использовано преобразование координат для кривой, образованной узловой С-линией. Это преобразование эффективно разрезает узел по заданному азимутальному углу и разворачивает его, тем самым сопоставляя координату узла с координатой h пространства. Во время этого процесса обеспечивается локальное сохранение ориентации обрамления узла. На показал узел трилистник до, а на 2f этот же узел после данной процедуры.

Такое преобразование позволило определить определенную информацию касательно узлов (угол закручивания, например). В данном случае угол закручивания состоит из азимутальной ориентации ленты в обрамлении, где нормаль совпадает с касательной к развернутому узлу (2g).

Кодирование информации на узел


Учитывая возможность извлечь угол закручивания из оптического обрамленного узла, появляется возможность использовать данную структуру для записи информации.

Метод записи данных основан на паре чисел (, ), где натуральное число, а число, связанное как с , так и с топологической структурой обрамленного узла.



где k обозначает прядь в косе рассматриваемого обрамленного узла, dk количество полуоборотов вдоль k пряди, демонстрирующей полуоборот (т.е. dk = если пряди не скручены), pk простое число, присвоенное k пряди. M = kdk состоит из общего числа полуоборотов в обрамлении узла.

Вышеперечисленные переменные позволяют определить натуральное число:



Таким образом, приведенное выше представление обрамленного узла и одной из его кос может быть использовано для кодирования и декодирования топологически защищенной информации.

Теоретический пример: Алиса и Боб


Далее ученые предлагают теоретический пример того, как этот процесс будет выглядеть. Предположим, что Алиса хотела бы отправить Бобу сообщение.

Это сообщение является результатом работы (выходные данные) программы, обрабатывающей некие входные данные (набор чисел dk, где k = 1, 2,, n). Ожидается, что запуск программы с таким набором предоставит сообщение Алисы.

Алиса представляет свою программу и ее выходные данные в виде обрамленной косы. Сама операция, выполняемая программой, идентифицируется как последовательность пересечений на планарной диаграмме косы, а исходные данные это количество полуоборотов на прядь. Программа Алисы полностью определена как обрамленная коса с n прядями в виде узловой ленты (КA).

Предположим, что Алиса не хочет отправлять Бобу оригинал обрамленной косы, а лишь КA. В таком случае возможно усложнить КA, тем самым скрыв (зашифровав) оригинальную обрамленную косу.

Следовательно, необходимо выполнить ряд действий. Сначала нужно выбрать натуральное число . Далее определить проекцию обрамленной косы по отношению к КA. Для этого нужно распределить количество полуоборотов в КA для разных прядей косы, то есть установить dk так, чтобы MA = kdk.

Следом необходимо присвоить простые числа pk прядям, демонстрирующим полуобороты. И наконец определить число согласно формуле 2.

После того как данная процедура завершена, Алиса может отправить Бобу ленту КA, завязанную узлом, и числа (, ).

Естественно, полученное сообщение необходимо расшифровать. Для этого Боб должен вычислить N,(MA), разложение которых на простые множители дает dk. За счет этого Боб может восстановить оригинал обрамленной косы, которую отправила ему Алиса.


Изображение 3

Данная операция по обмену данными показана на схеме выше.

Если свести все к простым терминам, то у Алисы есть лента (данные), которая она хочет передать Бобу. Эту ленту можно преобразовать в сложный узел и закодировать исходное состояние, предоставив средства для декодирования исключительно Бобу.

Практические эксперименты



Изображение 4

Следующим этапом исследования стала практическая реализация приведенного выше теоретического примера. В опыте были использованы параксиально-узловые C-линии, полученные посредством интерферометра Саньяка ().

Это устройство разделяет однородно поляризованный световой луч на две ортогонально поляризованные компоненты, каждая из которых модулируется пространственным модулятором света (SLM от spatial light modulator). SLM отображает голограммы, в которых зашифрованы как интенсивность, так и фаза целевого оптического поля.

Одна компонента модулируется для получения пучка с узловыми оптическими вихрями, такими как Ek- (1c). Вторая компонента модулируется, чтобы сформировать большой гауссов пучок, который равномерно покрывает всю узловую составляющую, тем самым эффективно принимая на себя роль плоской волны Ep+ (1c).

На выходе из интерферометра два луча когерентно складываются, тем самым преобразуя узловые фазовые вихри Ek- в параксиально-узловые C-линии. Узел и его обрамление затем можно реконструировать с помощью измерений поляризационной томографии, позволяющих получить профиль поляризации поля.

С помощью данной экспериментальной установки удается получить узлы разных типов: трилистник и печать Соломона (пятилистник). На 4b показаны голограммы, отображаемые на SLM, а также амплитуды и фазы полей, которые они должны создавать.

Фаза поля для узла трилистника и для узла пятилистника представлены следующими формулами:





где масштабированная и безразмерная версия цилиндрической радиальной координаты, азимутальная координата, a, b, s параметры, определяющие форму узла.

Для узла-трилистника рассматривались параметры a = 1, b = 0.5 и s = 1,2, тогда как для узла-пятилистника использовались a = 0.5, b = 0.24 и s = 0.65.


Изображение 5

Обрамленные узлы, полученные в ходе теоретических опытов, показаны на . А вот на 5b показаны узлы, полученные в ходе практических опытов. Помимо незначительных дефектов, возникающих в местах стыковки С-линий на концах узлов, наблюдается очень хорошее согласование теории и экспериментальных результатов. Схемы показывают развернутый вариант экспериментально полученных узлов. Сравнение числа полуоборотов также показало значительное совпадение теории и практики (5d).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Если очень и очень грубо суммировать колоссальный труд ученых, то мы получим две вещи. Во-первых, из лучей света можно вязать узлы разной степени сложности. Во-вторых, этот процесс позволяет записывать информацию, которая будет закодирована в ходе образования узлов.

Как отмечают сами ученые, ранее подобные структуры (оптические узлы) уже изучались, однако лишь как двумерные системы. В этом же труде их наконец-то рассмотрели как полноценные трехмерные структуры, что позволило куда лучше понять их свойства и возможные варианты применения.

Одним из таких применений является передача зашифрованных данных. Авторы исследования заявляют, что современные технологии позволяют с высокой точностью манипулировать различными параметрами лучей света (интенсивность, фаза, длина волны и т.д.). Возможность менять эти параметры позволяет кодировать и декодировать информацию посредством исключительно оптических методов.

Кроме того, данное исследование может помочь в топологических квантовых вычислениях, поскольку можно существенно снизить степень шума, который является одной из основных проблем в данной области. Конечно, это лишь теоретические предположения, которые еще предстоит проверить на практике. Тем не менее результатов, полученных в ходе данного исследования, уже достаточно, чтобы более оптимистично смотреть на грандиозные планы ученых.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Спектральный анализ пламени костра. Что делает огонь желтым наночастицы углерода или соли натрия?

05.03.2021 16:08:13 | Автор: admin
Вечерний костер на берегу Кучерлинского озера на АлтаеВечерний костер на берегу Кучерлинского озера на Алтае

В публикациях в интернете по-разному объясняется, как возникает цвет пламени у костра

Существует две принципиально разные версии. В одной говорится, что излучают раскаленные частицы углерода размером около 100 нм, во второй - что желтый цвет возникает при излучении солей натрия, находящихся в древесине.

В многочисленных публикациях одно или другое из этих объяснений. На форумах обсуждается эта тема, но никто не ссылается на результаты экспериментов.

Вот пример типичных публикаций:

То есть, до настоящего времени нет общепринятого варианта объяснения механизма видимого излучения, возникающего в процессе горения костра!

И все же - почему костер желтый?

Я решил провести эксперименты и найти правильный ответ. Мне нужно было измерить спектр видимого излучения пламени костра и объяснить результаты. Если спектр будет сплошным верна первая версия, если мы будем наблюдать двойную линию натрия вторая.

Замечу, в русскоязычном и англоязычном интернете мне не удалось найти подобных спектров.

Для проведения работы я изготовил и настроил спектрометр.

Самодельный спектрометр

В интернете много публикаций и роликов о том, как сделать спектрометр из DVD диска, однако характеристики этих приборы не позволяют провести нужные измерения. Мне же удалось сделать качественный спектрометр.

Основные характеристики

Спектрометр работает в диапазоне 400-700нм с разрешением 0,3 нм. Применяются сменные оптические щели шириной 50, 100, 200 и 300 микрон. Дифракционная решетка с шагом 740 нм изготовлена из DVD диска. Регистрация спектра выполняется зеркальной фотокамерой Nikon D5100. Прибор выполнен в крепком корпусе, позволяющем сохранять настройки при перемещениях.

Измерение спектра пламени костра

Были проведены классические эксперименты - измерены спектры Солнца, лазеров, пламени газовой горелки и всевозможных ламп. Спектрометр прошел проверку и теперь можно было приступать к исследованию пламени костра.

Исследуемое пламя костра в каминеИсследуемое пламя костра в каминеЯ разжигал костер в камине и проводил исследования, фиксируя спектр пламениЯ разжигал костер в камине и проводил исследования, фиксируя спектр пламени

Измерим спектр линии огня - так я назвал увиденную линию.

На фоне очень слабого непрерывного черно-тельного спектра были зарегистрированы две яркие желтые лини с длинами волн 589,0 нм и 589,6 нм. Согласно базе данных NIST - это линии натрия.

Спектры калибровочной лампы, костра в камине, поваренной соли и золы из каминаСпектры калибровочной лампы, костра в камине, поваренной соли и золы из камина

Ниже на фотографии показана часть спектра пламени костра с большим увеличением, чтобы можно было рассмотреть двойную линию натрия 589,0 нм и 589,6 нм на фоне непрерывного спектра раскаленных частиц углерода:

Крупным планом спектральные линии натрия в костре и линии натрия в золе, горящей в спирте.Крупным планом спектральные линии натрия в костре и линии натрия в золе, горящей в спирте.

В дальнейших исследованиях была зафиксирована динамика появления линий натрия в спектре. Пока костер разгорается - в спектре линии отсутствуют. По мере появления углей и увеличения мощности излучения, данные линии появляются и их яркость растет.

Обсуждение результатов экспериментов

Почему мы видим желтый цвет, физиология

Чтобы правильно объяснить результаты экспериментов надо понимать, как наши глаза воспринимают излучения разной длины волны и как мозг обрабатывает эту информацию.

Коротко и очень, очень упрощенно напомню хорошо известные факты. Мы воспринимаем цвет желтым по разным причинам: в одном случае, когда в сетчатку глаза попадает излучение узкого спектра с длинной волны в диапазоне 570нм 590нм, и во многих других, когда в глаза попадает излучение разного спектрального состава. Например, красный и зеленый в правильных пропорциях будут восприниматься как желтый. На экране мониторов мы создаем как раз такой желтый цвет.

То есть наши глаза и затем мозг создают иллюзию цвета и поэтому для понимания физических и химических процессов нам и требуется измерение спектра.

Заблуждение, которое встречается во многих публикациях, в которых объясняют желтый цвет костра - Цвет костра вызван излучением натрия

Данный эксперимент показывает - появление двойной линии натрия не оказывает какого-либо заметного изменения цвета.

Небольшие пояснения

Сравним спектры излучения Солнца и пламени костра.

В солнечном спектре максимум приходится на зеленый цвет, а мощность красного и синего меньше. Излучение именно с такой спектральной характеристикой воспринимается как белый цвет.

В пламени костра из атомов углерода образуются частицы сажи размером до 100нм. Эти частицы и дают непрерывный спектр с максимумом излучения в инфракрасной области, а мощность видимого излучения падает от красного к зеленому и еще больше к синему. Излучение с таким спектром воспринимается человеком как оттенки желтого и оранжевого, в зависимости от температуры области пламени. Желтый цвет костра это случайное совпадение.

Влияние солей натрия

В процессе горения появляется зола в которой содержатся соли, в том числе и соли натрия. Золы совсем немного. Она начинает подниматься в пламени вверх, и яркая двойная желтая линия натрия постепенно появляется в спектре. Однако ее появление не сказывается заметно на цвете костра, так как желтый цвет от непрерывного спектра глаза уже воспринимают.

Мощность излучения натрия значительно меньше, чем суммарная мощность непрерывного спектра.

Выводы

То, что мы видим костер желтым, не означает, что идет излучение в узком спектральном диапазоне натрия. Наши глаза и мозг воспринимают непрерывный спектр как желтый цвет.

Появление дополнительно яркой линии натрия мало влияет на восприятие цвета костра, который остается таким же желтым. Для нас не заметно изменение цвета, так как такой цвет уже был. Кстати, если бы за цвет костра отвечал только натрий, оттенков бы не было, так как мы бы видели чистый спектральный цвет.

Почему же популярной остается версия о том, что желтый цвет костру придает линия натрия? Скорее всего, случайное совпадение цвета линии натрия и черно-тельного спектра углерода и привело к путанице.

Цвет пламени костра дают ярко светящиеся частицы углерода. Влияние на цвет излучения натрия минимально.

О том, как сделать качественный спектрометр и как правильно проводить эксперименты читайте в моей статье "Самодельный спектрометр с высоким разрешением"

Полезные ссылки:

  1. И. А. Леенсон Химия и жизнь 2, 2011 Химия пламени. В статье рассказывается, в том числе, как в пламени возникают светящиеся наночастицы углерода.

  2. Информационная система Электронная структура атомов. Очень удобный русскоязычный ресурс по спектральным данным атомов и ионов. Ссылка для натрия.

  3. Максим Бондаренко, Как мы воспринимаем цвет. Доступно и интересно написано о сложном.

Подробнее..

Праздник к нам приходит проектируем и программируем световое шоу в xLights

29.12.2020 14:10:26 | Автор: admin

Ранее мы рассказывали про историю протоколов управления световым оборудованием. Настало время сделать свое шоу!

Под катом рассказываем о нюансах создания собственного светового шоу, которое пригодится не только на Новый год. Проект не самый простой, но результат стоит того, чтобы потратить на него пару часов своего времени.

Для создания собственного светового шоу требуются умные источники света и пульт управления. Наиболее доступное решение использование адресных светодиодных лент на базе WS2818b и микроконтроллера с Wi-Fi. Подробную инструкцию по работе с адресной светодиодной лентой можно найти в блоге AlexGyver, а программную часть взять у проекта WLED.

В современных домашних инсталляциях для управления светом удобнее всего использовать Wi-Fi и протокол E1.31, а в качестве программы для создания шоу xLights. Мы решили пойти дальше и разработать собственное E1.31-совместимое устройство и запрограммировать с его помощью небольшое светопреставление. Выбор пал на Minecraft.

Энтузиасты проводят в этой популярной песочнице разные мероприятия, в том числе квартирники, спектакли и вебинары. Во всех случаях игра выполняет роль самостоятельной и независимой виртуальной площадки. В нашем случае сценическое оборудование находится внутри игры, а пульт управления снаружи. Эту проблему решает плагин для сервера Minecraft.

Все описанное в статье применимо к любому проекту, где возможно подключение к интернету и есть контролируемые осветительные приборы.

Протокол E1.31


Хотя Art-Net проще, мы выбрали стандартизированный sACN (E1.31). В интернете можно найти реализацию для языков C, C#, Python. Java не лучший язык для обработки байтового потока, но другого не надо. Необходимая нам функциональность получение пакетов E1.31 и извлечение необходимых данных, поэтому мы напишем свой приемник. Пакеты sACN отправляются по UDP и состоят из трех слоев. Структура пакета в нотации языка С, взятая из libe131:

/* E1.31 Packet Type *//* All packet contents shall be transmitted in network byte order (big endian) */typedef union {  PACK(struct {    PACK(struct { /* ACN Root Layer: 38 bytes */      uint16_t preamble_size;    /* Preamble Size */      uint16_t postamble_size;   /* Post-amble Size */      uint8_t  acn_pid[12];      /* ACN Packet Identifier */      uint16_t flength;          /* Flags (high 4 bits) & Length (low 12 bits) */      uint32_t vector;           /* Layer Vector */      uint8_t  cid[16];          /* Component Identifier (UUID) */    }) root;    PACK(struct { /* Framing Layer: 77 bytes */      uint16_t flength;          /* Flags (high 4 bits) & Length (low 12 bits) */      uint32_t vector;           /* Layer Vector */      uint8_t  source_name[64];  /* User Assigned Name of Source (UTF-8) */      uint8_t  priority;         /* Packet Priority (0-200, default 100) */      uint16_t reserved;         /* Reserved (should be always 0) */      uint8_t  seq_number;       /* Sequence Number (detect duplicates or out of order packets) */      uint8_t  options;          /* Options Flags (bit 7: preview data, bit 6: stream terminated) */      uint16_t universe;         /* DMX Universe Number */    }) frame;    PACK(struct { /* Device Management Protocol (DMP) Layer: 523 bytes */      uint16_t flength;          /* Flags (high 4 bits) / Length (low 12 bits) */      uint8_t  vector;           /* Layer Vector */      uint8_t  type;             /* Address Type & Data Type */      uint16_t first_addr;       /* First Property Address */      uint16_t addr_inc;         /* Address Increment */      uint16_t prop_val_cnt;     /* Property Value Count (1 + number of slots) */      uint8_t  prop_val[513];    /* Property Values (DMX start code + slots data) */    }) dmp;  });  uint8_t raw[638]; /* raw buffer view: 638 bytes */} e131_packet_t;


Нам интересны следующие поля:

  • номер последовательности seq_number;
  • номер DMX Universe universe;
  • количество байт DMX-информации в данном пакете prop_val_cnt;
  • байты DMX-информации prop_val;

Так как данные отправляются с большой частотой и по ненадежному UDP, то перепутать пакеты местами достаточно просто. Значение seq_number обозначает номер последовательности и фактически обозначает номер кадра в световом шоу, позволяя отбрасывать пакеты с номером меньше актуального. Значение universe помогает упорядочивать пакеты внутри кадра.

Обратите внимание, что один E1.31-пакет может содержать не больше 511 байт полезной информации. Согласно стандарту DMX, нулевой байт, называющийся стартовым кодом, зарезервирован и должен быть равен нулю.

При наличии более одной DMX-области полученные пакеты необходимо упорядочить и объединить DMX-данные, удалив нулевой байт из каждой DMX-области. Полученные DMX-данные можно использовать для управления освещением.

Настраиваем xLights


xLights свободно распространяемое программное обеспечение для управления DMX-контроллерами. Данная программа поддерживает Windows, Linux и macOS. На момент написания статьи на странице загрузки актуальная версия 2020.56.

Стартовое окно xLights

Сперва необходимо подключить все доступные контроллеры. Контроллер это устройство, которое принимает пакеты E1.31, извлекает из них данные и отправляет подключенным DMX-устройствам. В нашем случае контроллер один сервер Minecraft. Однако если вы используете светодиодные ленты, то скорее всего у каждой ленты будет свой контроллер.

Добавление контроллера необязательная операция, придумать композицию и протестировать эффекты можно и без наличия осветительных приборов.

Мы используем E1.31, поэтому выбираем Add Ethernet и в правой половине указываем необходимые для подключения данные: IP-адрес, протокол E131, номер начальной DMX-области и количество областей.

Количество областей напрямую зависит от количества каналов. Так, при использовании светодиодной ленты WS2812B каждый светодиод требует три канала. Таким образом, одна DMX-область может управлять только 170 светодиодами. Если светодиодов больше, то данному устройству нужно выделить больше DMX-областей.

Добавление контроллера

После указания всех необходимых данных нажимаем на кнопку Save, которая окрашивается в красный цвет при наличии несохраненных изменений. Мы указали две DMX-области по 510 каналов (511 вместе со стартовым кодом). Число 510 выбрано неслучайно, оно кратно трем, а все RGB-устройства имеют количество каналов, кратное трем.

Обратите внимание, что настройки контроллеров и композиции сохраняются в каталог, который указан как каталог шоу (Show Directory).

После настройки контроллеров можно переходить к настройке композиции.

Организация композиции


Вкладка Layout

Переходим на вкладку Layout в xLights. На данной вкладке можно видеть три области:

  • список моделей (левая верхняя четверть);
  • настройки выделенной модели (левая нижняя четверть);
  • внешний вид инсталляции (правая половина).

При первом открытии ни одна модель не выделена, а в настройках доступны параметры композиции. В параметре Background Image можно указать изображение, например, фотографию дома, квартиры или любого места, которое планируется для организации шоу.

Для добавления устройства в композицию необходимо выбрать его тип, а затем нарисовать его в окне композиции. По умолчанию xLights предоставляет базовые элементы и несколько сложных фигур. Тем не менее, предусмотрена возможность создания собственных моделей и отправки сырых DMX-данных.

Пример заполненной композиции. Выделена модель Common lightning.

Доступные настройки зависят от типа используемой модели. Наиболее интересным моментом является сопоставление моделей контроллерам. В нашем случае используется один контроллер, поэтому модели занимают каналы по возрастанию в порядке добавления в композицию. При использовании нескольких контроллеров необходимо явно указывать, кто управляет моделью в параметре Start Channel.

Также рекомендуется уделить должное внимание параметру Name, который задает имя модели в xLights. Грамотное назначение имен впоследствии несколько облегчит процесс программирования шоу.

После изменения параметров модели необходимо нажать кнопку Save, иначе изменения будут сброшены.

Моделей, которые предоставляет xLights, достаточно для создания первых композиций. В меню добавления моделей есть кнопка с иконкой скачивания. Это позволяет загрузить готовые модели из разных источников. Тем не менее, иногда возникает необходимость в собственных моделях. Для этого случая есть два вида решения:

  • Custom (иконка с мордашкой);
  • DMX (иконка с цветным текстом DMX).

Модель типа Custom позволяет создавать световые устройства с собственной разметкой. Для этого необходимо добавить в композицию модель Custom, затем в настройках найти параметр Model Data в группе Custom и открыть редактор модели нажатием на троеточие.

Редактор модели Custom

Модель типа Custom позволяет создавать трехмерные модели с различной адресацией источников света в модели. Создание собственной модели представляет собой заполнение номеров управляющего канала в таблицах. Обращаем внимание, что данный редактор подразумевает использование однородных элементов в модели. Иными словами, все светильники в модели должны использовать одинаковое количество каналов. По умолчанию используются RGB-светильники, которые используют по три канала. Так мы разметили девять источников света, но модель потребляет 27 каналов.

Выбор типа DMX-устройства

В случае, когда тип Custom не способен решить проблему, например, используется DMX-совместимое не световое оборудование, на помощь приходит модель типа DMX. xLights имеет некоторое представление о не световых DMX-устройствах и предлагает выбрать тип устройства из списка. Если используемое устройство не присутствует в списке, то стоит выбрать General и указать количество используемых каналов и их названия в настройках модели в параметре Strand/Node Names. Мы использовали генератор огня, который принимает значения высота огня в блоках и продолжительность огня.

После создания композиции можно приступать к программированию шоу.

Создание шоу



Вкладка Sequencer

Создание шоу наиболее времязатратное действие. Переходим на вкладку Sequencer. Большинство элементов интерфейса будут неактивны, так как последовательность не создана. Последовательность создается через File New Sequence или комбинацией клавиш Ctrl+N.

В первую очередь xLights задаст вопрос о типе последовательности. Это может быть музыкальное шоу (Musical Sequence) или анимация (Animation). Первый тип требует указать музыкальный файл, который будет использоваться в светопреставлении. Вне зависимости от выбранного типа необходимо указать кадровую частоту для шоу. По умолчанию предлагаются значения 20 или 40 кадров в секунду. Данная настройка напрямую зависит от способности оборудования работать с требуемой скоростью. Мы рекомендуем начинать с 20 кадров в секунду.

Последним вопросом при создании шоу будет выбор моделей.

Вкладка Sequencer после создания композиции

После создания последовательности ранее заблокированные элементы интерфейса становятся доступны, а на временной шкале отображаются все созданные и добавленные в последовательность модели.

Рассмотрим панели, расположенные над вкладками. Нижняя вкладка с мелкими иконками панель эффектов. В отличие от моделей эффекты перетаскиваются на временную шкалу, а не устанавливаются кликом. Верхняя панель делится на блоки, слева направо:

  • операции с композицией (создание, сохранение и т.д.);
  • выравнивание эффектов по времени или по клеткам шкалы времени;
  • операции с последовательностью (запуск, пауза, остановка, перемотка, зацикливание);
  • включение или отключение отображения окон во вкладке Sequencer;
  • увеличение и уменьшение масштаба временной шкалы и настройки последовательности;
  • трансляция последовательности на контроллеры (справка, остановить, погасить все лампы, включить отображение на контроллеры).

На вкладке Sequence есть несколько окон:

  • Model Preview;
  • House Preview;
  • Color;
  • View;
  • Effect Settings;
  • Layer Blending;
  • Layer Settings.

Нам интересны только первые пять. Окно Model Preview позволяет увидеть, как выделенная на шкале времени модель отображает эффект, а House Preview позволяет увидеть все модели в контексте композиции.

С помощью окна Color можно задать разрешенные для модели цвета. По умолчанию xLights предполагает, что используются RGB-светильники, и разрешает использовать все цвета. Если вы хотите запретить какие-то цвета, необходимо снять отметки и нажать кнопку Update.

Окна View и Effect Settings позволяют указать время воспроизведения эффекта и задать его параметры. Мы не будем рассказывать про каждый эффект и его настройки, оставим это зоной для ваших экспериментов. Если эффект нравится в предпросмотре xLights, его можно вывести на контроллеры и посмотреть результат вживую.

В окне Effect Settings также присутствует кнопка Update. Ее следует нажимать, если модель, которая воспроизводит эффект, изменилась, иначе может быть некорректное отображение эффектов.

Настройки эффекта DMX

Ранее мы упоминали про DMX-совместимые устройства, которые не являются световым оборудованием, но могут управляться через xLights. В нашем случае это генератор огня, требующий два канала. Если каналы устройства были подписаны при создании композиции, то они отобразятся в настройках эффекта DMX.

Демонстрация эффекта DMX на генераторе огня

Обращаем внимание, что xLights позволяет задавать эффекты не только всему устройству, но и каждой линии (strand) или каждой ячейке (node) сложного устройства. Для этого достаточно дважды кликнуть по устройству на временной шкале.

Демонстрация результатов


Для демонстрации мы взяли фрагмент композиции RADIO TAPOK Потрошитель. Хотя возможности Minecraft по отображению световых эффектов весьма ограниченны, а автор любитель в этой области, постановка получилась достаточно интересной.


Плагин для Minecraft все еще в разработке, но его исходный код уже доступен в репозитории на github.com.

Заключение


Мы кратко рассмотрели процесс создания светового шоу в xLights. Если вас заинтересовала данная тема, то рекомендуем к ознакомлению сайт xlights.org. Там можно найти инструкции и людей, которые могут ответить на вопрос как на форуме, так и в Zoom.
Подробнее..

Бесконтактный, оптический выключатель созвуковым эффектом наArduino

07.01.2021 20:09:56 | Автор: admin


Всем привет!
Сегодня статья про бесконтактный выключатель с звуковым эффектом, который был сделан мной 9 лет назад, а если быть точным то в январе 2012 года.
С тех пор выключатель трудится у меня круглыми сутками на протяжении 9 лет. Что самое интересное, за все это время, он не вышел из строя и даже ни разу не подвис, а также у него никогда не было ложных срабатываний. Вообщем он хорошо себя зарекомендовал и я с уверенностью могу его Вам рекомендовать, для самостоятельной сборки.
Если Вам интересны подробности, то прошу под кат.

У меня в коридоре смонтировано 7 светильников.


И для достижения красивого визуального эффекта, я использовал последовательное включение ламп, для этого мне нужно было протянуть к плате контроллера, отдельный провод от каждой точки освещения.


Саму плату я спрятал в пространстве между гипсокартоном и потолком, благо места там больше чем достаточно.


ИК приемник и светодиод я разместил в подрозетнике. Во избежании ложных срабатываний их нужно изолировать между собой, для этого я использовал термоусадочный кембрик. Что бы подключить этот оптический датчик к плате контроллера, я использовать заложенные в стену провода.


Для того что бы дизайн выключателя не отличался от других установленных декоративных накладок в интерьере, я использовал из этой же серии телевизионную розетку, из которой выкинул все внутренности, а в отверстие вклеил круглое окошко, вырезанное из фиолетового акрила.


Все компоненты были размещены на одной плате, на которой так же установлены винтовые коннекторы для подключения проводов от светильников.


Запитал я эту плату обычным зарядным устройством от телефона.


Основой всего устройства является контроллер arduino Nano V.3, но можно так же использовать любые другие платы, с микроконтроллером Atmega328.


ИК светодиод с фототранзистором можно взять от датчика препятствий, но не обязательно их выпаивать, достаточно перерезать лишние дорожки и припаять к ним 3 провода. Если у Вас уже есть где-то ранее выпаянные эти детали, то перед использованием, лучше сначала проверить их на работоспособность. Инфракрасный светодиод нужно подключить к напряжению 5 В, через токоограничивающий резистор 120 Ом и посмотреть на него через камеру телефона, он должен светиться фиолетовым светом. Для проверки фототранзистора понадобится любой тестер с функцией прозвонки проводников. Переводим тестер в режим прозвонки, а выводы фототранзистора подключаем к щупам тестера. После чего нужно к нему в плотную поднести любой пульт от бытовой техники и нажать любую кнопку. В ответ раздастся прерывистый пищащий звук.


9 лет назад я не нашел подходящих твердотельных реле и мне пришлось их собирать самому из радио-комплектующих. Но на данный момент проще купить 8 канальный модуль твердотельных реле как на изображении, чем заниматься тратой времени на поиск этих компонентов.


Работает выключатель следующим образом

Arduino с выхода D5 постоянно выдает ШИМ сигнал с частотой примерно 977 Гц. К этому выходу через токоограничивающий резистор 82 Ом подключен светодиод, излучающий сигнал в инфракрасном диапазоне. Фототранзистор подключенный к входу D2 детектирует отраженный от руки ИК сигнал и проверяет его на достоверность и если сигнал из 20-ти или больше идущих подряд периодов соответствует частоте 977 Гц, то тогда контроллер включает по очереди все 7 светильников и начинает воспроизводить звуковой эффект через ШИМ выход D11. Все тоже самое происходит и при выключении.


Воспроизведение звуков


Для воспроизведения звуковых эффектов используется формат WAVE без сжатия, с частотой 16000 Гц и глубиной 8 бит, но при воспроизведении данного формата с использованием ШИМ, в аудио тракте наблюдается неприятный свист и шипение. По этому для для улучшения качества воспроизведения, я в коде использовал линейную интерполяцию. При которой, выборка семплов происходит на частоте 62.5 кГц и между оригинальными выборками вставляются еще 3 дополнительных семпла, рассчитанных методом линейной интерполяции. Таким образом на выходе снижается шум квантования, пропадает свист, улучшается качество звука и для воспроизведения не обязательно использовать дополнительные RC фильтры.


Вместо динамика я использовал старую, маленькую компьютерную колонку без встроенного усилителя.


Для конвертирования Wave файлов в Си код, можно воспользоваться онлайн конвертером

Схема


На схеме серыми прямоугольниками отметил твердотельные реле, а тем кто хочет заморочиться, то может собрать схему полностью, так же как сделал я в далеком прошлом.


Компоненты для сборки


1 Arduino Nano V.3
2 Датчик препятствий
3 8-ми канальный модуль реле
4 Резисторы 82 Ом и 1 кОм
5 Динамик 0,5 3 Вт
6 Любой N-P-N транзистор с допустимым током не менее 500 мА

Код для Arduino


Скачать все файлы одним архивом
В этот раз я решил добавить все используемые библиотеки в папку со скетчем, а в самом скетче прописал их локальное использование. Теперь надеюсь у новичков будет меньше ко мне вопросов, по поводу ошибок возникающих у них при компилировании.
В коде вынесены несколько констант, которые можно изменить перед прошивкой.
Константа power_ir отвечает за дистанцию срабатывания выключателя, может принимать значения от минимума 20 и до максимума 200. Требуемое Вам значение можно определить экспериментальным путем.
lamp_num определяет количество используемых Вами ламп. Минимальное число лампочек не может быть меньше 1, а максимальное не более 7. Если подправить код то можно увеличить до 15.
lamp_delay это задержка между последовательными включениями ламп, которая выражена в миллисекундах и может начинаться от 0 и до 4 294 967 295 мс. Хотя я не думаю, что такие огромные задержки кому то понадобятся.

Видео




Заключение


В заключении хотелось бы добавить, что я очень удивлен, что микроконтроллер без WDT, за 9 лет ни разу не подвис. По этой же причине я не стал править код и добавлять в него WDT, так как Arduino со старыми bootloader не умеют работать с ним.

Спасибо, что дочитали до конца!
Если Вам понравилась моя статья то поддержите ее лайком и подпиской
Если у Вас есть вопросы, то можете их задать в комментариях.
Подробнее..

Давление света подтверждение 90-летней теории об импульсах фотонов

22.07.2020 10:16:05 | Автор: admin


На протяжении столетий ученые из разных уголков мира создавали самые разные теории, объясняющие те или иные процессы, явления и феномены. Некоторые из этих теорий были подтверждены или опровергнуты на практике буквально сразу после их высказывания. Другие же оставались на бумаге многие годы, ибо на момент их появления технологии не позволяли провести практические опыты. Сегодня мы познакомимся с исследованием, в котором ученые из Франкфуртского университета имени Гете (Германия) попытались понять, что есть давление света на самом деле, подтвердив в процессе теорию 90-летней давности. В чем именно заключалась теория, какие методики были использованы в опытах, и что нового мы узнали о фотонах? Ответы на эти вопросы ожидают нас в докладе ученых. Поехали.

Историческая справка


Давление света (или давление электромагнитного излучения) это механическое давление, оказываемое на любую поверхность в результате обмена импульсом между объектом и электромагнитным полем.

Первооткрывателем этого понятия является Иоганн Кеплер (1571-1630). В 1619 году, наблюдая за кометой, он отметил, что ее хвост всегда направлен в сторону от Солнца.

Спустя более двухсот лет в 1862 году Джеймс Максвелл (1831-1879) предположил, что свет как электромагнитное излучение обладает свойствами импульса и, следовательно, оказывает давление на любую поверхность, с которой контактирует. Экспериментально это было подтверждено лишь в 1900 году Петром Лебедевым.

Практические опыты с целью изучения давления света крайне сложны. Связано это с тем, что силы, создаваемые световым давлением, крайне малы. Однако в космических масштабах (буквально) суммарный эффект этих малозаметных сил может оказывать большое кумулятивное воздействие на объект в течение длительных периодов времени. Например, если бы во время подготовительных расчетов перед запуском космического аппарата программы Викинг не учитывалось давление света, то аппарат пролетел бы орбиту Марса на расстоянии 15 000 км.


Иоганн Кеплер, Петр Лебедев и Арнольд Зоммерфельд.

Если суммировать все воедино, то мы получим следующее: частицы света (фотоны) ударяются об атомы тела и передают ему часть своего импульса, а тело от этого становится быстрее.

Пока все логично. Однако не все так просто. Ранее проводились опыты, в которых фотоны определенной длины волны выбивали из атомов отдельные электроны. Импульс этих электронов был больше, чем у фотона, который с ним взаимодействовал. Это невозможно, скажете вы, ибо есть второй закон Ньютона, в котором говорится, что на любое действие имеется противоположное равное противодействие (утрированно говоря). Тем не менее, в 1930 году немецкий ученый Арнольд Зоммерфельд предположил, что дополнительный импульс выброшенного электрона происходит из атома, который он покинул. Получается, что движение атома должно быть направлено в сторону источника фотонов, т.е. к свету. Теория весьма смелая, но в те годы подтвердить ее на практике было нереально ввиду отсутствия необходимых технологий.

И вот 90 лет спустя наши современники смогли впервые в мире воочию понаблюдать этой таинственный процесс.

Основа исследования

Авторы труда напоминают, что вектор электрического поля электромагнитной волны ориентирован перпендикулярно оси распространения света. Поскольку это поле управляет фотоионизацией*, стоит предположить, что его направление будет осью симметрии для угловых распределений фотоэлектронов и фотоионов.
Фотоионизация* ионизация молекулы/атома непосредственно при абсорбции фотонов, энергия которых равна или больше энергии ионизации.

Фотоэффект процесс взаимодействия электромагнитного излучения и вещества, когда энергия фотонов передается электронам вещества.

Фотоэлектрон электроны, вытесняемые из вещества, когда на него воздействует электромагнитное излучение.

Фотоион катион (положительно заряженный ион), полученный в результате фотоионизации.
Однако при высоких энергиях фотонов E и соответствующих высоких фотонных импульсах k эта симметрия нарушается, а импульсные распределения фрагментов реакции асимметричны относительно направления распространения света.

Зоммерфельд в своих изысканиях понял, что средний прямой импульс электронов, превышающий импульс фотона (kex > k), влечет за собой то, что средний импульс фотоиона должен быть противоположным для учета сохранения импульса.

Стоит также отметить, что так называемые недипольные эффекты, возникающие из-за ненулевого импульса фотона, также оказывают существенное влияние на однофотонную ионизация. Кроме того, более высокие мультипольные компоненты взаимодействия света и вещества не только изменяют угловое распределение фотоэлектронов, но также открывают дополнительные пути ионизации, которые запрещены диполями.

В данном исследовании эксперименты по однофотонной ионизации были выполнены в двух вариантах:

  • высокоэнергетический (3001775 эВ) на PETRA III (DESY/Немецкий электронный синхротрон) с применением света с циркулярной поляризацией;
  • низкоэнергетический (1240 кэВ) на ID31 (European Synchrotron Radiation Facility) с применением света с линейной поляризацией.

Для измерений состояния заряда и трехмерного вектора импульса фотоионов был использован метод спектроскопии COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy).

Пучок фотонов проходил под прямым углом со сверхзвуковой газовой струей He (низкоэнергетический эксперимент) или N2 (высокоэнергетический эксперимент).

Фотонный пучок был пересечен под прямым углом сверхзвуковой газовой струей He (низкоэнергетический эксперимент) или N2 (высокоэнергетический эксперимент). Ионы направлялись электрическим полем к чувствительному ко времени и положению детектору с отсчетом положения линии задержки*.
Линия задержки* устройство задержки электрических и электромагнитных сигналов на заданный промежуток времен.
Начальные импульсы после фотоионизации были получены от времени полета ионов и положения точки контакта. В экспериментах с N2 рассматривалась исключительно ионизация K-оболочки (электронная оболочка атома первого уровня) с последующим распадом Оже*.
Эффект Оже* выход электрона из атомной оболочки ввиду безызлучательного перехода в атоме при снятии возбуждения.
В таком случае возникает два однозарядных иона, которые совпадают с оже-электроном. Из этих трех векторов импульса был рассчитан импульс иона N2+ в момент после фотоэлектронной эмиссии.

Чтобы получить доступ к ионным импульсам в абсолютном масштабе, важно точно знать местоположение ионов с нулевым импульсом на нашем детекторе. Для данных высоких энергий эта нулевая точка получается из ионов, которые создаются комптоновским рассеянием*.
Комптоновское рассеяние* некогерентное (фотоны до и после рассеяния не интерферируют) рассеяние фотонов на свободных электронах.
В этом случае импульс фотона передается электрону, и поэтому ион остается с распределением импульса, центрированным в начальной точке.


Изображение 1

На графике выше суммированы результаты исследования. Синим цветом показано измеренное среднее значение импульса иона в направлении распространения света kionx как функция энергии фотона (верхняя шкала) или импульса фотона (нижняя шкала). Точки (низкие энергии фотонов) соответствуют однократной ионизации He, а квадраты (высокие энергии фотонов) ионизации K-оболочки N2.

Отрицательные значения соответствуют обратному излучению, то есть в противоположную сторону от направления распространения фотона. Красным цветом обозначено среднее значение импульса фотоэлектрона kex, полученное за счет измеренного импульса иона с учетом сохранения импульса.

Красная и синяя линии демонстрируют прогнозируемые данные в соответствии со следующими формулами:



где Ip потенциал ионизации; с скорость света.

Из вышеописанных данных следует, что это является прямым практическим доказательством теории касательно обратно направленной эмиссии ионов при фотоионизации.


Изображение 2

Изображение выше демонстрирует нам распределение фотоионного импульса для фотоионизации He, где использовались фотоны с циркулярной поляризацией в 300, 600, 1125 и 1775 эВ. Горизонтальная ось составляющая импульса, параллельная k, а вертикальная ось это импульс, перпендикулярный оси фотона. Красным отмечены концентрические кольца, центр которых расположен там же, где и начальная точка импульсного пространства. Радиус колец равен соответствующим фотоэлектронным импульсам ke = 2(E Ip).

События ионизации не накапливаются на этих кольцах, а смещаются вперед в направлении распространения фотонов. Это наиболее четко видно на внешнем кольце, соответствующем энергии фотона 1775 эВ. При этом синие кольца смещаются вперед фотонным импульсом 1775 эВ фотона.

Следовательно, измеренные распределения импульса иона непосредственно показывают, что импульс фотона в основном поглощается ионом, что является следствием сохранения импульса.

В каждом отдельном событии ионизации импульс фотона передается центру масс системы, который почти совпадает с ионом. Соответствующее импульсное распределение электрона показывает окружность того же радиуса, но не смещенную вперед.

Помимо смещения вперед кольца в импульсном пространстве ионов, распределение импульсов на этом кольце также изменяется в зависимости от энергии фотона. Это распределение больше отклоняется в обратное полушарие при увеличении E.

Сохранение импульса требует, чтобы конечный импульс измеряемого иона равнялся импульсу фотона за вычетом импульса фотоэлектрона. Таким образом, распределение ионов на смещенной сфере в импульсном пространстве и угловое распределение фотоэлектронов в лабораторной системе отсчета являются прямыми зеркальными отражениями друг друга (изображение 3).


Изображение 3

Они имеют приблизительную дипольную форму, поскольку начальное состояние является He(1s), и, таким образом, главная составляющая углового момента (момента импульса) в конечном состоянии представляет собой диполь. Кроме того, эта дипольная форма отклонена вперед.

По заявлению авторов исследования, в профильной литературе можно встретить много вариантов объяснения передачи импульса фотона, некоторые из которых далеки от истины. Чаще всего утверждается, что поглощенный фотон передает выбрасываемому электрону собственный импульс. Из этого утверждения следует, что этот удар отвечает за смещение вперед углового распределения электронов, как показано на изображении выше.

Чтобы было проще понять все нюансы, ученые предлагают вспомнить, как именно происходит передача импульса фотона при взаимодействии с электромагнитным полем. Для простоты примера была выбрана фотоионизация 1s-электрона атома водорода.

За пределами электрического дипольного приближения электромагнитная волна ионизирующей плоскости с волновым вектором |k| = k = E/c (импульс фотона) впечатывает локальный фазовый фактор eikr в элемент матрицы перехода.

Вводя координату RH для центра масс атома и координату r для электрона 1s по отношению к RH, абсолютная координата электрона 1s в лабораторной системе отсчета может быть переписана как r = RH + r. Таким образом, соответствующая фаза может быть выражена следующим образом: eikr = eikRHeikr.

Эта фаза, представленная полем, модифицирует элемент матрицы перехода: первый фактор из уравнения выше входит в элемент матрицы перехода |eikRH| 0 между переходными состояниями атомного центра масс, которые описываются плоскими волнами (2)3/2 eiRH с импульсом . Эта амплитуда порождает закон сохранения импульса = 0+k. Таким образом, поглощение фотона атомом привносит в его центр массы импульс k.

Второй фазовый фактор eikr из уравнения отвечает за мультипольные правки за пределами электрического дипольного приближения.

Выше порога ионизации в каждом событии ионизации ион получает импульс фотона и, кроме того, отдачу от фотоэлектрона. Дополнительная передача углового момента орбиты от фотона приводит к смещению вперед углового распределения электрона. Этот направленный вперед средний импульс электрона уравновешивается обратно направленной передачей импульса иону.

По результатам исследования видно, что для s-начальных состояний обратный импульс иона масштабируется -(3/5)k, подтверждая теорию, описанную Зоммерфельдом.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Выведение формул и формирование теорий нельзя назвать простым занятием, но поиски доказательств или опровержений этих теорий порой еще сложнее.
В данном труде ученые смогли доказать правоту теории, которая была сформулирована еще в тридцатых годах прошлого века. Авторы исследования смогли не только измерить импульс иона, но и определить его происхождение. Родителем этого импульса является так называемая отдача выброшенного электрона.

Если фотон имеет низкую энергию, то при теоретическом моделировании его импульсом можно пренебрегать, говорят ученые. Однако при высоких энергиях фотона подобное пренебрежение приводит к значительным неточностям. Экспериментальные данные позволили определить порог, когда импульс фотона больше нельзя не учитывать.

В дальнейшем ученые намерены продолжить начатую работу, поскольку совершенные открытия открывают двери перед более детальным рассмотрением процессов, происходящих в момент распределения энергии между двумя или более фотонами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Краткая история оптической связи от Древней Греции к спутникам Маска

23.02.2021 04:22:12 | Автор: admin


Мы живем в информационную эру, где интернет базовое право человека. Достигнуть текущего уровня развития было непросто, но мы смогли, и сейчас технологии позволяют нам жить в том будущем, которое еще недавно раскрывалось лишь на страницах книг. Понятно, что технологии возникли не вдруг, некоторые из них уходят корнями в далекое прошлое.

Одна из этих технологий оптическая связь. Ее использовали еще в античности. Ну а сейчас у нас есть подводные магистрали, спутниковые лазерные системы и многое другое. Давайте посмотрим, как оптическая связь менялась с течением времени.

Семафоры и гелиографы


То, что скорость света гораздо больше скорости звука, люди поняли очень давно. И это знание они стали применять на практике. Речь идет о световых сигналах, которые активно использовались, например, в Древней Греции. Конечно, догадались использовать свет и другие цивилизации, но у греков все это было развито особенно хорошо.

Графический телеграф реконструкция из музея в г. Салоники, Греция

Греки построили систему, известную как Фриктория. Это башни на вершинах гор. Стража на башнях по цепочке зажигала огни, которые были хорошо видимы на расстоянии до 50 км. Соответственно, отправленное сообщение уходило в нужную точку очень быстро. В некоторых источниках даже говорится о том, что именно так по Греции распространилось сообщение о взятии Трои.


Именно греки придумали специальный код для световых сигналов. У башен было две группы по 5 факелов. Каждый из них представляет собой элемент квадрата Полибия. Соответственно, изменение местоположения элементов в этой матрице позволяло кодировать и передавать самые разные сообщения. Еще один вариант гидравлический телеграф, который использовался по время Первой Пунической войны для отправки сообщений между Сицилией и Карфагеном.

Вот что говорит Википедия по поводу этого телеграфа: На стержнях были нанесены различные заранее заданные коды в разных точках по высоте. Чтобы отправить сообщение, отправляющий оператор будет использовать фонарик, чтобы подать сигнал принимающему оператору; как только они будут синхронизированы, они одновременно откроют патрубки на дне своих контейнеров. Вода будет стекать до тех пор, пока уровень воды не достигнет желаемого значения, после чего отправитель опускает факел, а операторы одновременно закрывают свои краны. Таким образом, продолжительность видимости факела отправителя может быть соотнесена с конкретными заранее заданными кодами и сообщениями.

Применялись семафоры и гораздо позже. В 18 веке была создана иная разновидность оптического телеграфа, сеть которых позже была распространена по всей Франции. Это была коммуникационная сеть военных.


Отдельный элемент системы башня с подвижными шестами. Был разработан алфавит, где каждой букве соответствало определенное положение шестов. Первая линия оптического телеграфа была сооружена между Парижем и Лиллем. Положение шестов меняли при помощи 196 разных положений так что изображать можно было не только буквы, но и отдельные слова. Каждая станция обслуживалась двумя работниками. Один следил за соседней башней и ее шестами, второй копировал положение шестов соседа, и так по цепочке. Проблемой такой системы было то, что работала она лишь в светлое время суток и только при относительно хороших погодных условиях. Облачность, дождь, темнота все это останавливало работу семафоров.


Но в светлое время суток и при хорошей погоде система работала просто отлично. Cкорость передачи данных составляет около 2-3 символов в минуту между соседними станциями. От Парижа до Лилля один символ доходил примерно за две минуты, а это 230 км. Для того времени просто мечта.

Системы, основанные на тех либо иных сигнала широко использовались в XIX и XX веках, особенно в военное время. После изобретения азбуки Морзе все упростилось во много раз.

Изобретение Белла


Сейчас существует много DIY-проектов, где аудиосигнал передается при помощи лазера. Построить такую систему не так и сложно. Но все эти проекты базируются на идее Александра Белла, который еще в 1880 году создал фотофон. Основной носитель информации в нем свет, не лазер, конечно, но солнечный свет. При этом именно фотофон Белл считал самым важным своим изобретением, а не телефон.


Действие этого прибора основано на свойстве селена менять электропроводимость под воздействием солнечных лучей. Они отражаются от зеркала, которое, в свою очередь, вибрирует под влиянием звука. Получатель сигнала здесь как раз кристаллические селеновые ячейки. Зеркало модулировало луч света, фокусируя или рассеивая свет от источника. Белл с партнером создали тестовую установку, которая помогла передать сигнал на расстояние около 213 метров.

Но, конечно, у этого устройства было огромное количество недостатков, включая возможность работы лишь при ясной погоде и на относительно небольшом расстоянии. Но как бы там ни было, изобретение Белла считается предшественником современных волоконно-оптических линий.

Ну а потом стекловолокно


Если исключить парочку военных проектов, то телекоммуникации в XX веке реализовывались посредством коаксиальных кабелей и излучения с частотой 1-10 ГГц. Так все было до момента появления оптоволокна в 70-х годах прошлого века. Очень быстро именно оно стало основным каналом связи с огромной пропускной способностью.

Оптоволокно стало ответом на проблемы коаксиальной связи. Главный ее недостаток заключается в том, что сигнал нужно усиливать примерно через каждый километр, чтобы компенсировать потери при передаче. При беспроводной радиочастотной (РЧ) связи интервал ретранслятора может быть намного больше, но в обоих случаях полоса пропускания ограничена ~ 100 Мбит / с из-за низкой частоты несущей РЧ.


Оптоволокно решало все эти проблемы. И спустя пару лет оптоволокно стало тем, чем оно является и сейчас. Так, еще в 1977 году компания General Telephone and Electronics (сейчас корпорация GTE) отправила первый в мире прямой телефонный трафик через оптоволоконную систему со скоростью 6 Мбит / с. Сегодня всемирная волоконно-оптическая сеть насчитывает более 400 миллионов километров, что почти в три раза превышает расстояние до Солнца.

Оптоволоконную связь улучшили благодаря методам мультиплексирования, включая мультиплексирование по длине волны, временным разделением или пространственным мультиплексированием с разделением. В лаборатории комбинация этих методов показала отличный результат данные удалось передать со скоростью в 11 Пбит/с, с потерями всего в 5% на каждый километр. Ретрансляторы устанавливаются каждые 80 км, что, конечно, гораздо лучше, чем в случае коаксиального кабеля.

Интернет из лампочки


Кроме оптоволокна, есть и другие способы скоростной передачи данных, причем безо всяких кабелей. Это беспроводная оптическая связь, как она есть. LiFi двунаправленная высокоскоростная беспроводная коммуникационная технология.


Правда, для этого способа нужна светодиодная лампочка, а не лампа накаливания. Понятно, что работает технология только в зоне прямой видимости, причем чем дальше о точки передачи данных, тем хуже связь.


Одна из первых иллюстраций, разъяснявших принцип работы системы. Здесь, как видим, наладонники вместо смартфонов

Для LiFi разработан собственный протокол, IEEE 802.15.7, который определяет три физических (PHY) уровня с разными пропускными способностями:

  • PHY I был создан для наружного применения и работает на скоростях от 11.67 Кбит/с до 267.6 Кбит/сек.
  • PHY II позволяет достигать скоростей передачи данных от 1.25 Мбит/с до 96 Мбит/сек.
  • PHY III предназначен для множественных источников с определённым методом модуляции: Color Shift Keyring (CSK), что можно перевести как Манипуляция смещением длины волны. PHY III может достигать скорости от 12 Мбит/с до 96 Мбит/сек.

Технология не получила особого распространения, но кое-где применяется. В основном, речь идет о промышленных системах, в местах с сильными электромагнитными помехами, где почти любая радиосвязь невозможна или затруднена.

А что насчет больших расстояний и беспроводной оптической связи?



К сожалению, здесь похвастаться особо нечем. Многие компании начинали тестовые испытания технологии передачи данных при помощи лазеров или иных оптических систем. Но, как правило, эти испытания не выходили за пределы лаборатории или тестовой площадки.


Например, в прошлом году разработчики из Alphabet построили в Кении экспериментальную беспроводную сеть, которая работает на основе света. Это не оптоволокно, основа системы луч света, который фокусируют на удаленной точке приема приемной станции.

Проект получил название Project Taara. В ходе его реализации удалось добиться передачи данных на расстояние примерно в 20 км без развертывания проводной инфраструктуры. Тесты показали неплохой результат. Но несмотря на это, проект потом решили закрыть.

То же самое можно сказать относительно второго проекта этой же компании, Loon. Несколько лет этот проект развивали, но буквально несколько недель назад приняли решение закрыть.

Есть менее масштабные проекты, которые были реализованы. Например, компания Koruza предлагает лазерную связь на скорости около 10 Гбит/с, но расстояние при этом не превышает 150 м. В некоторых случаях интернет-провайдеры используют лазерные трансмиттеры для обеспечения связью удаленных от основной магистрали объектов. Иногда подобные системы создают и пользователи но такие системы не слишком распространены.

Кроме того, в начале года Илон Маск рассказал о том, что спутники Starlink оснастили лазерной связью для покрытия полярных регионов. И уже через год все спутники Starlink, которые отправляются на орбиту, будут оснащаться лазерной связью.

Благодаря дополнительному виду связи широкополосный доступ в интернет получат и жители Аляски, о чем компания рассказывала в заявке для FCC.

Лазеры дают возможность спутникам держать связь не только с наземными станциями, но и друг с другом, причем неважно, где находится коллега в той же орбитальной плоскости, или в соседней. Соответственно, оператор сможет минимизировать количество наземных станций, расширяя зону покрытия удаленных регионов, где наземных станций вообще нет. Кроме того, снижается и latency, поскольку уменьшается количество посредников между спутниками и наземными станциями.

Подробнее..

Из песочницы Краткий обзор устройств управления сценическим светом, копирующих системы известных брендов

27.07.2020 14:05:23 | Автор: admin
Главная цель данной статьи познакомить интересующихся темой светового оборудования с техническими решениями, используемыми недобросовестными производителями из поднебесной для реализации контрафактной продукции копирующей именитые брэнды. Здесь будет изложено моё субъективного мнение, как человека сталкивавшегося не по-наслышке с подобным оборудованием. Данную статью ни в коем случае не стоит рассматривать как руководство к действию, поэтому никаких ссылок на поставщиков и продавцов не будет. У всех есть интернет и при желании поиском воспользоваться не составит труда.



Высокая стоимость оригинальных решений, очевидно, обусловлена стремлением производителя компенсировать трудозатраты на разработку и производство узко специализированных устройств, не направленных на широкую аудиторию пользователей. Данная статья расскажет, насколько целесообразно пользователю который нуждается в достаточно функциональном устройстве, но который не может себе его позволить по причине высокой цены, искать альтернативу в виде более дешёвой копии оригинального устройства.

Для начала хотелось бы рассказать про основные принципы устройства комплексов сценического света.

Тем, кто знает, что такое DMX512, ArtNet sACN и т.п. эту часть статьи можно опустить.

Основы


Итак, основой всей системы управления света является протокол DMX512..

Протокол передачи данных DMX512 был разработан в 1986 году, как средство управления интеллектуальными световыми приборами с различных пультов управления (консолей) через единый интерфейс, позволяя объединять различные устройства управления с всевозможными оконечными устройствами (диммерами, прожекторами, стробоскопами, дымовыми машинами и тд.) от разных производителей. Он создан на основе стандартного промышленного интерфейса RS-485, который используется для компьютерного управления промышленными контроллерами, роботами и автоматизированными станками. Для передачи данных используется кабель с двумя переплетенными между собой проводами в общем экране.

Стандарт DMX512 позволяет управлять по одной линии связи одновременно 512 каналами (один прибор может использовать иногда несколько десятков каналов). Несколько работающих одновременно приборов, поддерживающих DMX512, позволяют создавать световые картины и элементы оформления самой различной сложности, как внутри помещений, так и снаружи. По одному каналу передаётся один параметр прибора, например в какой цвет окрасить луч, какой рисунок (гобо-трафарет) выбрать, или на какой угол повернуть зеркало по горизонтали в данный момент, то есть куда будет попадать луч. Каждый прибор имеет определённое количество параметров которыми можно управлять и занимает соответствующее количество каналов в пространстве DMX512. Каждый параметр может принимать значения от 0 до 255 (8 бит или 1 байт).

На следующем изображении отражена стандартная схема соединения приборов:

image

Подробнее о принципах работы протокола можно прочитать в статье, указанной ниже в источниках.

Протокол DMX512 имеет ряд преимуществ и недостатков, но сейчас он является основным стандартом для большинства светотехнических систем.

До появления единого цифрового протокола управление проводилось по отдельным проводам с управляющим напряжением, идущим к каждому устройству, или с помощью разнообразных цифровых и аналоговых связей.

Например, широкое распространение получил аналоговый интерфейс 0-10 вольт, по которому к каждому устройству протягивался один кабель. Система успешно использовалась при небольшом количестве приборов, но при увеличении их числа оказывалась слишком громоздкой и неудобной, как в построении, так и в управлении и устранении неисправностей. Эта и другие аналоговые системы были излишне сложными, дорогостоящими и не имели единого стандарта.

Они требовали специальные адаптеры, а также усилители и инверторы напряжения, для того, чтобы подключать световые приборы одного производителя к пультам управления другого.
Цифровые системы также не отличались универсальностью, они были несовместимы между собой, и зачастую используемые интерфейсы скрывались разработчиками. Все это было явной проблемой для пользователей таких систем, поскольку они, выбирая одну систему, были скованы выбором всего оборудования у того же производителя, в соответствии с тем же стандартом.

Недостатками протокола DMX512 являются:

  1. Слабая помехозащищенность.

    Работа приборов в условиях сильных радиоволновых помех которые создают терминалы мобильной связи, (т.е. Мобильные телефоны), близлежащие телецентры, и т.д, электрическое и осветительное оборудование: лифты, рекламные вывески, театральный свет, лампы дневного освещения или просто неправильная прокладка DMX кабеля, может сопровождаться хаотическим подергиванием на фоне нормальной работы приборов. Данную проблему можно решить при помощи специальных устройств (усилителей, разветвителей и т.д.). Недостатком такого решения является удорожание инсталляции за счет применения дополнительных устройств.
  2. Затухание и переотражение сигнала при большой длине линии.

    Стандартом не рекомендуется подключение более 32 приборов к одной линии DMX 512. Если линия прокладываемая между приборами достаточно длинная или в одной цепочке соединены более десяти приборов, то есть большая вероятность того, что приборы будут вести себя не корректно, а одной из главных причин может являться собственная наводка DMX сигнала по линии. Попросту говоря сигнал, пройдя через все устройства отражается и пакеты могут гулять по DMX линии туда сюда. Для таких случаев используется простое устройство под названием DMX Terminator. Терминатор линии DMX состоит из резистора номиналом ~120ом.
  3. Низкая отказоустойчивость

    Так как приборы соединены последовательно с использованием одной линии, то повреждение этой линии приведет к невозможности управления приборами которые расположены после поврежденного участка.

    Проблему помогают решить устройства, которые позволяют осуществлять ветвление и повышать отказоустойчивость.

    Ниже приведено изображение сплиттера помогающего осуществить ветвление сигнала на несколько независимых линий:

    image
  4. Слабая защита от высокого напряжения.

    Во многих световых приборах применяются газоразрядные лампы, которые позволяют обеспечить световой поток большой интенсивности при небольших размерах самого источника света. Для обеспечения работы подобных ламп применятся электронные схемы называемые драйверами или блоками розжига (подобные применяются для ксеноновых ламп в автомобилях). Эти схемы работают при высоком напряжении (несколько сотен вольт). При низком качестве световых приборов, либо их механической неисправности, возможны замыкания электронных схем на металлический корпус прибора, а так же попадание высокого напряжения на линию управления. В последнем случае возможен выход из строя физического выхода на пульте управления и даже интерфейса USB если пульт подключен к ноутбуку или компьютеру, что влечет за собой дорогостоящий ремонт. Избежать этой проблемы помогают все те же устройства сплиттеры, которые, как правило, имеют в своей схеме оптоизоляторы.

Существуют также беспроводные передатчики сигнала dmx. Один передатчик может осуществить транслирование 512 каналов, столько же, сколько одна проводная линия. При этом на прием сигнала от одного передатчика в теории может быть запрограммировано неограниченное количество приёмников. Беспроводные устройства передают сигнал на частотах схожих с Wi-Fi в диапазоне 2.4ГГц. Они находятся на начальном этапе своего развития, т.к. из-за небольшого радиуса действия и большого количества жалоб на нестабильную работу (возможно по причине загруженности радиоканала 2.4ГГц) данные устройства получили распространение только в небольших инсталляциях применяемых например диджеями.

Протокол Art-Net


Дальнейшим развитием протокола стала интеграция DMX512 в сетевой протокол Art-Net.
Art-Net является простой реализацией DMX512 протокола по UDP, в котором информация управления каналами передается в IP пакетах, как правило, по локальной сети(LAN), по технологии Ethernet. ArtNet является протоколом с обратной связью. Как правило в приборах работающих по ArtNet имеется функция ответа на принятые данные. Например прибор получил данные, и может отправить ответ, что он их получил.

Артнет может передавать абсолютно всё, вплоть до файлов. Изначально Артнет может осуществлять передачу значений и позиций фэйдеров, координаты приборов, а так-же может передавать таймкод (адресно-временной код цифровые данные о времени, записываемые и передаваемые совместно с изображением или звуком. Применяется для синхронизации различных медиа систем звук, видео, свет и т.д.).

ArtNet устройства используют для коммутации между собой так называемые Nodes(узлы). В качестве узлов могут выступать преобразователи Art-Net в физический DMX512, либо световые приборы или оборудование, уже имеющее встроенный интерфейс Art-Net. Узлы могут подписываться(слушать) сервер. В тоже время сервер может раздавать пакеты как всем узлам ArtNet, так и отдельно выбранным. Узлы чем то напоминают социальную сеть, они могут быть подписаны на сервер в тоже время сервер может игнорировать какие то узлы. В качестве Art-Net сервера может служить компьютер с световым программным обеспечением или световая консоль. Простейший способ реализации протокола это Broadcast, работающий по принципу радиостанции. Она вещает для всех слушателей, и слушатели могут принимать сигнал или нет.

Каждое пространство из 512 DMX каналов в протоколе Art-Net называется Universe (анг. Вселенная). Каждый узел (устройство) может поддерживать максимум 1024 каналов DMX (2 Universe) на одном ip-адресе. Каждые 16 Universe объединяются в подсеть (Subnet не путать с маской подсети). Группа из 16 подсетей (256 Universe) образует сеть (Net). Максимальное количество сетей 128. Итого в протоколе Art-Net количество узлов может достигать 32768шт (256 Universe x 128 Net), каждый с 512 DMX каналами.

Адреса Артнет обычно используются в пределах 2.0.0.0/8, но и в обычных локальных сетях 192.168.1.0/255 работают без проблем.

Преимущества Артнет:

  1. Возможность осуществить передачу сигнала по уже существующим линиям локальной сети, а так же существенно увеличить дальность передачи сигнала используя недорогое сетевое оборудование и участки до 100м по неэкранированной витой паре 5-й категории.
  2. По одной Art-Net линии может передаваться в тысячи раз больше данных, чем по физической линии DMX512.
  3. Сеть Ethernet имеет топологию звезда. Это повышает надежность системы по сравнению с кольцевой или проходной проводкой, используемой с DMX512.
  4. Возможность использования беспроводного сетевого оборудования, такого как Wi-Fi роутеры, точки доступа и т.д.

Из недостатков можно отметить следующее:

  1. Максимальное расстояние участка кабеля составляет примерно 100 метров по сравнению с 300м у системы DMX512. Однако если учесть более низкую стоимость коммутаторов Ethernet по сравнению с разветвителями DMX512, этой проблемой можно пренебречь.
  2. Чтобы реализовать топологию звезда сети Ethernet требуется больше кабеля. Однако, из-за низкой стоимости витой пары и поскольку Ethernet может передавать гораздо больше данных, чем DMX512, экономия по-прежнему сохраняется. ТАк же звездная проводка Ethernet будет более сложной при прокладке кабелей по ферме. Лучшее решение взять Ethernet с консоли на ферму, а затем преобразовать в DMX512.

Наглядная схема подключения устройств с использованием узлов:

image

Большинство основных производителей ПО для управления световыми приборами поддерживает Art-Net протокол, позволяя использовать сеть Ethernet вместо физических линий DMX512.

Теперь перейдем непосредственно к теме статьи пультах, консолях и интерфейсах управления световыми приборами, выпускаемыми китайцами.

Ознакомимся с базовой терминологией:

  • Интерфейс устройство не имеющее собственных органов управления и позволяющее осуществлять вывод сигналов управления от программного обеспечения работающего на персональном компьютере.
  • Световой пульт представляет собой либо стационарное устройство, способное выдавать сигналы управления, либо контроллер подключаемый к компьютеру или ноутбуку и работающий в паре с программным обеспечением. В качестве органов управления выступают фэйдеры, кнопки, энкодеры и т.п., на которые можно назначить изменение отдельных параметров световых приборов, запуск записанных сцен.
  • Консоль это устройство, по сути объединяющее в одном корпусе ПК с программным обеспечением и контроллер с органами управления и вывода сигналов. Как правило имеет сенсорный экран/экраны и порты ввода-вывода которые можно встретить на большинстве материнских плат ПК.

Sunlite и Daslight


Включил эти интерфейсы в список, так как имел непосредственное отношение к их распространению.

Данные интерфейсы не относятся к пультам или консолям, так как имеют ограниченный функционал и иную логику организации интерфейса и органов управления.

Интерфейс Daslight от Nicolaude в максимальной комплектации позволяет использовать 3072 DMX канала, Вывод 1536 каналов осуществляется через физические выходы на самом интерфейсе. Остальная половина может выводится через интерфейс art-net.

Работает под Windows и Mac. В данный момент производится, последняя официальная версия датируется 13.01.2020

Интерфейс Sunlite Suite 2 FC+ позволяет Выводить 1536 каналов через физические выходы и до 60 Universe через art-net.

Работает только на Windows. В настоящее время официально снят с производства и заменен интерфейсом Sunlite Suite 3. Последняя версия софта Sunlite Suite 2 выпущена в 2019 году.

По поводу цен скажу, что контрафакт дешевле оригинала в 7-8 раз. Если учесть высокую стоимость оригинальных интерфейсов, то копии являются довольно выгодным приобретением.
Из минусов копий можно отметить: невозможность обновлять софт (В случае sunlite это уже невозможно), докупать полезные функции в виде дополнительных art-net universe, каналов для режима standalone и т.п.

Установка софта производится с прилагаемого диска, софт скачанный с официального сайта работать не будет.

При попытке обновления софта могут возникнуть проблемы в виде ошибок определения интерфейса компьютером, так что доступ к интернету для софта лучше ограничить во избежание проблем. Из нескольких десятков проданных интерфейсов была пара жалоб от покупателей, пытавшихся использовать оригинальный софт. Один раз попался интерфейс с заводским браком, но был без проблем заменен продавцом.

Интерфейс T1


image


Имитирует интерфейс T2 марки Avolites. Внешне схож с Sunlite Suite 2 и Daslight. Продавцом заявлено, что интерфейс выполняет те же функции, что и оригинальный Т2, а именно позволяет выводить два потока DMX и полноценно использовать midi команды и LTC-таймкод.

Так же поставляется с софтом Titan на флешке, софт 11 версии. Возможно использовать до 32 интерфейсов T1 одновременно.

Начиная с 12 версии для использования софта потребуется специальный ключ avokey, так что обновлений от китайцев в ближайшее время ожидать не стоит.
Цена в среднем в 3 раза ниже оригинала.

Пульты и консоли Titan Mobile, Fader Wing, Quartz, Tiger Touch


image

Консоли собраны довольно кустарным способом. Основой является обычная PC материнская плата, к которой совершенно диким способом подключены различные устройства такие как контроллер, дисплей и т.д.



image

Непонятно, почему был сделан выбор в сторону обычных USB удлинителей, vga кабелей, приляпанных к разъемам термоклеем с обоих сторон.




image

В оригинальных консолях всё собрано и зафиксировано более цивильно.



Отзывы разнятся, у кого то эти копии много лет стабильно работают, у кого-то ключ слетал постоянно. В общем как повезёт.

Если и приобретать то у надежных поставщиков, по отзывам знакомых.

Цены отличаются в 3-5 раз.

По части сборки пультов Mobile и Fader Wing нареканий нет, есть недостаток в том, что используются более дешевые компоненты такие как фэйдеры и энкодеры, так что часто их ресурс ниже чем у оригинала.

Так же, как и с T1, из-за использования ключа avokey обновить софт до 12 версии и выше не получится.

Консоли и пульты Grand MA2


Консоли представлены копиями моделей MA2 Ultralite, Full и т.п.

Здесь по части сборки наблюдается картина схожая с titan. Те же usb удлинители и термоклей.

Интересно, что китайцы выпускают уникальные аппараты которых нет в парке оригинального производителя.

image
К ним относится интерфейс usb dmx expander, который подключается к компьютеру по USB и позволяет использовать 4096 DMX параметров.

Несколько раз запросы на тестирование с последней версией оригинального софта подтверждались успешно. Так же от хоть пока и небольшого количества покупателей жалоб не поступало.

Ещё одна интересная штука это консоль Boss.

image


Существуют различные модели, отличающиеся функционалом внешним видом и характеристиками железа.

image


Несмотря на недостатки, этот аппарат имеет потрясающие соотношение мобильности и функционала, чем не могут похвастаться оригинальные консоли. Например возможен вывод 3072+512 параметров в т.ч. через физические выходы.

image

Про сборку уже было упомянуто ранее. С одним конкретно взятым экземпляром были такие проблемы, как отваливание сенсорного экрана и т.д. В общем стабильность оставляет желать лучшего.

image

image

Также на рынке присутствуют поддельные пульты Command Wing, Fader Wing, и различные Net Node. В плане сборки и стабильности, как и у пультов titan дела обстоят лучше. Есть опыт успешного использования крыла Command Wing.

Криптографическая защита устройств и ПО Grand MA всё ещё намного ниже конкурентов, это позволяет китайцам выпускать копии устройств которые полноценно работают с официальным ПО.

В качестве итога выскажу мысль о том, что использование копий в России возможно теми, чьи финансы не позволяют приобрести оригинальные устройства управления светом. Насколько мне известно, использование контрафактной продукции (продажа здесь не имеется ввиду) не регламентируется в нашей стране, в отличие от Европы или запада, где это может приравняться к получению выгоды за счет чужой интеллектуальной собственности и повлечь за собой большие штрафы.

Источники:

Wikipedia DMX512

dmx-512.ru

artisticlicence.com
Подробнее..

МГЛ (ДРИ) для освещения в квартире или рабочем месте, практическое применение обзор ламп на 70, 150Вт

02.12.2020 22:20:51 | Автор: admin

Почему я выбрал лампы Philips (рассматривал именно их в прошлых статьях), у них я не замечал довольно редкого явления - "закручивание дуги" (наблюдается у МГЛ Osram). Про GE ничего сказать не могу, только одна лампа на 35Вт в работе. Как это происходит: горит лампа, вдруг яркость света начинает "гулять" %15, в этот момент дуга проворачивается внутри горелки вдоль ее стенок, и начинает шуметь ЭПРА на разной частоте (видимо переключая её) и потом все нормально. Так может быть раз в 5-8 часов и длится несколько секунд (1-3 секунды). У ламп Philips такого не замечал, заснять не получилось, так же нет розовых "вспышек" при запуске, которые присуще лампам Osram/GE (видно на видео запуска лампы).

Небольшое визуальное сравнение ламп CDM 150(T), 70(T), 70Вт (TC)

Сами лампы, до 250Вт, поставляются в такой коробке, на упаковке явно экономили, многие светодиодные лампы упакованы красивее.

Видео полного запуска CDM-T 150/942 с выходом на режим 100% мощности и стабилизацией цвета. График записывал на Arduino Science Journal, он занижает световой поток и менее чувствительный (зависит от производителя смартфона), чем специализированный измерительный прибор, но это не особо важно для данного исследования. Яркость измерялась в "рабочей зоне 1" на высоте стола 0,8м, сдвиг примерно 1 метр от светильника.

Баланс белого на фотоаппарате принудительно установлен на значение 5000k.

Солнечного света в пасмурном Питере не много, особенно зимой, когда продолжительность светового дня составляет всего 7 часов (с 9:30 до 16:05 на 02.12.2020). Для продуктивной работы дома требуется освещение, желательно яркое.

Я сделал замеры освещенности рядом с окном и в ключевых точках комнаты (предвидя некоторые комментарии, дам ответы сразу: я не претендую на "эталонное" измерение, прибор не поверенный, сделан не по ГОСТу, комната не "идеальный" куб, отражение тени кота на стене мешает точной оценке и пр...), просто хочу наглядно показать разницу в освещении комнаты одним точечным источником света (как солнце).

Начнем с кухни ~16м2, замеры я проводил в 3х местах (у окна, на столе и у входа) показания идентичны. Время измерения - 10 утра (02.12.2020), на улице пасмурно. Данные шторы почти прозрачные и мы их не учитываем.

окноокностолстолвход на кухню (частично - дежурный свет коридора)вход на кухню (частично - дежурный свет коридора)

Как видно показатели в 20люкс у окна и 5люкс в рабочей области не добавляют позитива в жизни.

Запускаем МГЛ, на кухне используется CDM-TC 70Вт ЦТ3000k (по факту 3005), яркость 6300люмен CRI ~83

окноокностолстолвход на кухнювход на кухню

Лампа снизу закрыта белым стеклом, которое переотражает "нижний" световой поток лампы на потолок - наверное самое удачное решение, учитывая что основной световой поток МГЛ дает на 360 градусов вокруг поперечного сечения горелки.

вид снизувид снизулампа и её хитиновые друзьялампа и её хитиновые друзья

Теперь сделаем замеры в гостиной ~23м2, время уже 11 утра, погода солнечная, окно занавешено.

 окно занавешено - у окна окно занавешено - у окнашторы открыты - у окнашторы открыты - у окна

Имеем яркость, вплотную у окна 152люкс, внутри комнаты (на рабочих зонах) - 25-50люкс при открытых шторах и <10люкс когда окно занавешено. И это в ясную погоду, днем. Да, солнце не светит напрямую в окно - точнее светит летом, в 6 утра. XDD

яркость света вплотную к окнуяркость света вплотную к окну

Занавешиваем окно и включаем МГЛ, в гостиной используется лампа CDM-T 150Вт, ЦТ4200k (по факту 4000), яркость 12000люмен CRI ~96 (измерения Philips приводят на электромагнитном балласте), если верить Osram - то, на электронном балласте, будет около ~16000люкс.

 окно занавешено - у окна окно занавешено - у окнарабочая зона 1рабочая зона 1рабочая зона 2рабочая зона 2рабочая зона 3рабочая зона 3

Световой поток я сравнивал с этим чудом техники Ecola 150Вт и он совпадает, как по равномерности освещения, так и по яркости, в радиусе 1,5 метра от лампы 700-800лм (рабочая зона 1-2), по краям комнаты ~150-170лм (рабочая зона 3). Все рабочие зоны находятся на уровне стола. Сравнение размеров, светодиодная лампа имеет активное охлаждение. Единственное но, прямо под лампой (ровно перпендикулярно) было 1700люкс, это связанно с тем, что основной световой поток от светодиодов идет прямо и сильно падает при малейшем изменении угла. И после ее запуска у меня в глазах были синие пятна, отвык уже от светодиодного света видимо. :)))

сравнение размеров лампсравнение размеров ламп

Для любителей филаментных "теплых" ламп, тоже есть решение - за место МГЛ, всегда можно поставить ДНаТ (CRI ~20-30), стоят они 250-800рублей (зависит от степени импортозамещения), ЭПРА у них взаимозаменяемы (на одну мощность). Цвет свечения - пламя свечи ЦТ1900-2000k. :)))

Philips SON-T 70WPhilips SON-T 70W

Выводы: лампы сильно нагреваются в процессе работы, это надо учитывать. Самое главное, что им не нужно охлаждение и при подборе светильника - ориентируйтесь на лампы накаливания (галогенки) 70 и 150Вт (можно вставить лампу накаливания и проверить светильник, мой совет - берите без пластика, а рассеиватель "битое стекло" / "сатин"). Пример переделки моих светильников здесь.

P.S. светодиод на 150Вт и лампа на 150Вт в корпусах одинакового размера, нагреваются одинаково, учитывая малый размер колбы лампы ее нагрев 300-500 градусов, это факт. Просто светодиод не успеет нагреться до 500 градусов, он испустит голубой дым уже на 240 :)

Как и считаю, что достоинства светодиодов очень сильно преувеличены, и без всяческих запретов они были бы никому не нужны. Ну разве что для подсветки подъездов и туалет и фонариков. Очень яркий пример - уличное светодиодное освещение, когда меняют лампы ДНаТ на светодиоды и становится темно вокруг, зато слепят в глаза, когда идешь по улице. Хотя можно было бы ввернуть МГЛ, без переделки светильника, и получить белый, качественный свет = но простых путей не ищем. :) Каждый 20 уличный светодиодный светильник уже не работает нормально (вспыхивает или светит слабо), это из тех, которые заменили год/два назад. Когда я, почти ушел от светодиодов, стал обращать внимание что глаза меньше устают, несмотря на более яркий свет МГЛ ламп. И яркий свет светодиодов, теперь считаю слепящим, переизбыточным и "противным" - все познается в сравнении. Попробовать за дешево качественный свет (пусть и желтый), без смс и регистрации рукоблудия - лампочка накаливания.

Мои статьи на тему МГЛ дома, на этом данную тему считаю полностью раскрытой и очень надеюсь, что кому то поможет определиться с выбором и снять многие вопросы по применению HID lamp in home :)

Введение

Основы выбора

Подробнее..

Recovery mode Физика света могут ли быть волны, если нет моря?

28.06.2020 16:16:57 | Автор: admin
Верно ли утверждение, что свет является волной? Да.

Следует ли из этого, что всё пространство вселенной наполнено неким морем эфиром внутри которого идут эти волны? Нет.


Джозу Аз. Волна. с сайта corchaosis.ru

Итак, я думаю, вы уже поняли: в этой статье мы поговорим об исполнении музыки на органе и духовых инструментах.

Если музыкант исполняет музыку с использованием струнного или смычкового инструмента к примеру, с использованием гитары, или с использованием опосредованно струнного инструмента, такого как фортепьяно или рояль, то как выглядит колебание звука? Так же точно, как и с ударными инструментами по синусоиде: за гребнем волны следует провал волны. За верхней точкой синусоиды, следует нижняя.

Может ли гитара звучать в вакууме? Нет.
Можете ли вы поймать ноту, исполненную гитарой (как это с фотоном делает атом вещества), а затем её испустить? Нет.
Так как же этими свойствами обладает свет? Сейчас объясню.

Световые волны это не такие колебания среды, как воздуха при игре на гитаре.
Световые волны это колебания среды, как при игре на органе и духовых инструментах.
Орган, кларнет, дудочка, флейта и тромбон не колеблют воздух так, как это делает струна.
Они добавляют воздух. Аналогично тому как это делает человек, когда он свистит.

Мы ошибочно представляем, что волна это всегда колебания высоты моря (или плотности воздуха) вниз и вверх, в одну сторону и в другую. Однако если мы выльем в лужу ведро воды, то зримо увидим волну, идущую только выше от уровня, каким он был. Нет той части волны, которая была бы ниже уровня, который был изначально ведь мы добавили (испустили) порцию воды, а не колебали имеющуюся воду.

Так можно ли пустить волну в луже, которая уже высохла можно ли пустить волну, если нет среды? Ну если просто начать прыгать на месте высохшей лужи, то волн не возникнет в ней.

Но если на ровную гидрофобную поверхность мы выплеснем то же ведро воды, то будет волна. Таким образом, в среде объектов привычных нам габаритов возможно испускание волны из частицы (из ведра), и возможно распространение волны, в отсутствии всякого эфира. Так же возможно и его поглощение.

Вполне возможно, что фотон имеет связи внутри своего объёма, позволяющие поглощать его целиком или посредством поверхностного натяжения (аналогия капля ртути), или иной природы (аналогия верёвка, цепочка, рыбацкая сеть).

Наконец, самый сложный вопрос возможна ли интерференция волны c волной, если они проходят в разное время? Да, слабая интерференция возможна, если среда не пуста, и первая волна оставляет след на песке.
Подробнее..

Прозрачная энергия превращение окон в солнечные панели

21.08.2020 10:13:31 | Автор: admin


Последнее время то и дело говорят о зеленой энергии, возобновляемых источниках оной, а также о методах ее получения, хранения и использования. И это вполне логично, ведь население планеты неустанно растет, а запасы ископаемых источников энергии стремительно иссякают. Рано или поздно может наступить такой момент, когда вся энергия, используемая людьми, будет вырабатываться солнцем, ветром и т.д. Посему многие исследователи занимаются совершенствованием существующих и созданием новых методик сбора зеленой энергии. Сегодня мы познакомимся с исследованием, в котором ученые из Мичиганского университета разработали прозрачные (точнее полупрозрачные) солнечные панели. Из чего была создана данная технология, каков принцип ее работы, и смогут ли небоскребы стать эффективными сборщиками солнечной энергии? На эти вопросы мы найдем ответы в докладе ученых. Поехали.

Основа исследования


Солнечные панели когда-то были достаточно большой редкостью, но сейчас, благо дело, их доступность и популярность сильно возросли. Недавно я проходил мимо одного жилого дома в своем городе и заметил, что его глухие стены и крыша полностью покрыты солнечными панелями. Это вызвало у меня в равной степени удивление, восхищение и море вопросов касательно эффективности, экономической выгоды и прочего. Тем не менее этот эмпирический пример отлично показывает одну особенность панели были установлены там, где они не будут мешать (т.е. не на окнах).

Конечно, существуют целые поля солнечных панелей, занимающие сотни квадратных метров (а то и больше), но в густонаселенных и, следовательно, густозастроенных городах слишком мало свободного пространства для такого метода установки. Кто-то скажет: если бы сильно хотели зеленую энергию и солнечные панели, то и место нашлось бы. Согласен, но реальность пока иная. Лишнего пространства между высотками может и не очень много, но вот чего много, так это окон, которые сами могли бы стать сборщиками солнечной энергии.

На данный момент уже существует несколько разработок в области полупрозрачных солнечных панелей, эффективность которых достигает 7%. В их разработке важную роль играют органические полупроводники. По сравнению с неорганическими полупроводниками, узкие экситонные* полосы внутри органических полупроводников открывают новые возможности в области органических фотоэлектрических элементов (далее OPV от organic photovoltaics), так как многие органические соединения избирательно поглощают свет за пределами видимого диапазона длин волн.
Экситон* электронное возбуждение в полупроводнике, диэлектрике или металле, перемещающееся по кристаллу, но не связанное с переносом электрического заряда и массы.
Эффективность полупрозрачных фотоэлектрических элементов (ST-OPV) в 7% может радовать ученых и людей, понимающих сложность достижения такого показателя у столь нестандартной технологии, но с точки зрения экономической выгоды это слишком мало. Кроме того, лишь небольшая доля из разработанных ST-OPV достигает видимой прозрачности в 50%, что критично для многих приложений.

В результате для создания ST-OPV необходимо найти баланс между эффективностью сбора энергии и достаточным уровнем прозрачности, что не есть простая задача. Ученые также добавляют, что многие уже созданные ST-OPV имеют весьма неэстетичный внешний вид (оттенок стекла), что также никак не способствует популяризации данной технологии.

На сегодняшний день эффективные ST-OPV нейтрального цвета в основном сосредоточены на использовании материалов с сильным поглощением в ближней инфракрасной области (NIR), включающих структуры многопереходных устройств для минимизации потерь на термализацию, просветляющих покрытий (ARC) или апериодических диэлектрических отражателей (ADR) для увеличения поглощения.

В рассматриваемом нами сегодня труде ученые описывают свой вариант ST-OPV, который достигает PCE = 10.8 0.6% и APT = 45.7 2.1%, что приводит к LUE = 5.0 0.3.
PCE* эффективность преобразования энергии (power conversion efficiency);
APT* средняя светопропускная способность (average photopic transmission);
LUE* эффективность использования света (light-utilization efficiency).
В устройстве используется NFA молекула NFA (нефулереновый акцептор) с высоким поглощением в ближнем ИК-диапазоне, для синтеза которой требуется всего несколько шагов. Несмотря на то, что NFA имеют частично ковалентно конденсированные кольцевые структуры (а не жесткие и полностью конденсированные), в них наблюдались сильные межмолекулярные взаимодействия и плотная упаковка молекул ().


Изображение 1

Комбинация материалов, поглощающих свет в ближнем ИК-диапазоне, выводных (выход фотонов из светодиода после генерации) структур (OC от outcoupling) на выходной поверхности и прозрачных электродов позволила достичь того самого компромисса между эффективностью, прозрачностью и эстетичностью.

Нейтральный по цвету ST-OPV с использованием прозрачного анода из оксида индия-олова (ITO от indium tin oxide) показал PCE = 8.1 0.3%, APT = 43.3 1.5% и LUE = 3.5 0.1%. Показатели света, проходящего через устройство, были таковыми: коэффициент цветопередачи (CRI) = 86; коррелированная цветовая температура (CCT) = 4143 K; хроматические координаты (0.38, 0.39).

Результаты исследования


На изображении показаны молекулярные структуры трех исследованных NFA, один из которых (а именно SBT-FIC) продемонстрировал полностью слившуюся молекулярную основу. Два других NFA (A078 и A134) с частично сплавленными ядрами являются изомерами SBT-FIC, содержащими четыре тиофена, два циклопентадиена и одно бензольное кольцо.

Одним из основных отличий между тремя NFA является сложность синтеза. На изготовление SBT-FIC требуется 10 этапов синтеза, а для создания A078 и A134 всего от 4 до 6 этапов. В дополнение к этому, A078 и A134 привлекательны еще и достаточно большим выходом, а также менее токсичными и более дешевыми материалами для синтеза.

Спектры поглощения NFA в УФ-видимом диапазоне показаны на и . Удивительно, но тонкие пленки A078 и A134 демонстрируют значительные батохромные сдвиги* ~ 135 нм по сравнению с SBT-FIC с пиком поглощения при max = 900 нм.
Батохромный сдвиг* смещение спектральной полосы в длинноволновую область под влиянием заместителей или изменений среды.
Циклическая вольтамперометрия NFA молекул показала, что у SBT-FIC энергии высшей занятой молекулярной орбитали* (ВЗМО) и низшей вакантной молекулярной орбитали (НВМО) составили EH = -5.81 ( 0.02) и EL = -4.15 ( 0.03) эВ. Для A078 показатели были: 5.58 ( 0.02) и -4.06 ( 0.03) эВ. А для A134: -5.54 ( 0.02) и -4.05 ( 0.03) эВ.
Молекулярная орбиталь* математическая функция, описывающая волновое поведение электронов в молекуле.

ВЗМО (высшая занятая молекулярная орбиталь) орбиталь, которая среди заполненных в основном состоянии имеет наибольшую энергию.

НВМО (низшая вакантная молекулярная орбиталь) полностью или частично вакантная молекулярная орбиталь с наименьшей энергией среди всех заполненных.
A078 и A134 демонстрируют более низкую ВЗМО-НВМО запрещенную зону (1.40 эВ), чем SBT-FIC (1.65 эВ), что согласуется с оптическими измерениями.

Далее NFA, смешанные с PCE-10, был использован в OPV со структурой ITO / ZnO (30 нм) / активный слой (100 нм) / MoO3 (20 нм) / Ag (100 нм).


Изображение 2

На графике показаны характеристики плотности тока и напряжения вышеописанных NFA+PCE-10.

В устройстве на базе A078 были достигнуты следующие показатели: PCE = 13.0 0.4%, VOC = 0.75 0.01 В, JSC = 24.8 0.7 мА/см2 и FF = 0.70 0.04.

Устройство OPV на основе A134 показало: PCE = 7.6 0.2% с VOC = 0.75 0.01 В, JSC = 16.7 0.5 мА/см2 и FF = 0.61 0.03.

Для устройства PCE-10: SBT-FIC показатели были такими: PCE = 7.8 0.3% с VOC = 0.70 0.01 В, JSC = 17.2 0.7 мА/см2 и FF = 0.65 0.02.

Стоит отметить, что добавка 1-фенилнаталена (PN) приводит к значительному повышению эффективности устройств A078 и A134 по сравнению с SBT-FIC, что связано с улучшенной молекулярной упаковкой A078 и A134, а также более благоприятной ориентацией молекул в смеси. Также видно, что устройство PCE-10:A134 показывает более низкий PCE по сравнению с OPV PCE-10:A078. Это связано с кристалличностью A134, что приводит к его более низкой растворимости.

График показывает спектры внешней квантовой эффективности* (EQE) различных вариантов устройства.
Квантовая эффективность* отношение числа фотонов, поглощение которых вызвало образование квазичастиц, к общему числу поглощенных фотонов.
Значительное улучшение JSC для A078 по сравнению с SBT-FIC OPV связано с его красным смещением* поглощения на ~200 нм, которое обеспечивает охват солнечного спектра дальше в NIR.
Красное смещение* явление, когда увеличивается длина волны излучения (свет становится более красным, например), а частота и энергия уменьшаются.
EQE A078 OPV достигает 80%, между = 700 и 900 нм, оставляя окно прозрачности между видимыми длинами волн от 400 до 650 нм.


Изображение 3

На графиках - показаны профили различных устройств на базе чистых пленок NFA и смеси PCE-10:NFA с/без добавления 1-фенилнаталена.

При добавлении 1-фенилнаталена показатель поглощения пленки PCE-10:NFA практически не меняется. А вот в смесях PCE-10:A078 и PCE-10:A134 обнаружен новый ярко выраженный пик агрегации около 900 нм. Это указывает на то, что добавка 1-фенилнаталена усиливает межмолекулярные взаимодействия на частично связанных акцепторах, а не на полимерном доноре.

Далее были изучены морфологические свойства разных вариантов устройства.

A078 демонстрирует широкий (100) пик дифракции при 0.31 1 с длиной ламеллярной когерентности Lc = 7.5 нм. В случае A134 пик дифракции был более узким и острым при 0.36 1 с более высоким значением Lc = 15 нм. Из этого следует, что у A134 более высокая упорядоченность, чем у A078, что объясняется заменой объемной боковой цепи молекулы п-гексилфенила компактными линейными алкильными цепями.

SBT-FIC в свою очередь показывает дифракционный пик при 0.34 1 с наименьшей длиной ламеллярной когерентности Lc = 3.7 нм из-за его аморфной природы.

За счет добавления 1-фенилнаталена дифракционные пики (010) PCE-10:A078 и PCE-10:A134 (3E) при 1.79 и 1.82 1 (из-за NFA) смещены и показывают увеличенную длину когерентности (24 против 52 для A078) и (30 против 63 для A134).

А вот внесение добавок в PCE-10 никак не влияет на значение когерентности. Это подтверждает, что морфологические отличия между вариантами устройства происходят от NFA, а не от донора.

Кроме того, при использовании 1-фенилнаталена была обнаружена зависимость от ориентации молекул (параллельная или перпендикулярная). Для PCE-10:A078 отношение параллельная/перпендикулярная увеличивается с 2.37 до 3.64 (3D). Ввиду того, что параллельная ориентация молекул является идеальной для переноса заряда, становится очевидным, почему именно устройство A078 обладает столь высокой эффективностью (по сравнению с другими вариантами).

Ввиду этих данных именно A078 был использован в исследуемых полупрозрачных фотоэлектрических элементах (ST-OPV), структура которых выглядела следующим образом: ITO / ZnO (30 нм) / PCE-10:A078 (95 нм) / MoO3 (20 нм) / Ag (16 нм).


Изображение 4

Полученный ST-OPV показал LUE = 2.8 0.1%, PCE = 11.0 0.7% и APT = 25.0 1.3%. Однако, несмотря на неплохой показатель PCE > 10%, применять данное устройство в архитектуре нельзя, так как там требуется, чтобы средняя светопропускная способность APT была ~ 50%.

Решить эту проблему ученые смогли за счет специально разработанной структуры для управления оптическими свойствами устройства, позволяющей достичь максимального пропускания в видимом диапазоне и максимального отражения в ближнем ИК-диапазоне.

На анод из серебра было нанесено оптическое OC-покрытие, состоящее из четырех слоев: CBP (C36H24N2; толщина слоя 35 нм, коэффициент преломления 1.90) / MgF2 (100 нм, 1.38) / CBP (70 нм) / MgF2 (45 нм). А на дистальную поверхность стеклянной подложки наносили ARC (слой просветляющего материала), состоящий из бислоя MgF2 (120 нм) и SiO2 (130 нм) с достаточно низким коэффициентом преломления 1.12.

ST-OPV с OC и ARC продемонстрировал увеличение средней светопропускной способности (APT) с 25.0 1.3% до 45.7 2.1%, что является улучшением почти на 80% по сравнению с устройством без дополнительных слоев (т.е. без OC и ARC). Значение эффективности преобразования энергии (PCE) практически не изменилось (). Наблюдалось лишь незначительное уменьшение плотности тока (JSC = 20.4 0.8 против 20.9 1.2 мА/см2). При использовании данной конфигурации устройства эффективность использования света составила LUE = 5.0 0.3%. Данный показатель, по заявлению ученых, является самым высоким среди имеющихся на данный момент ST-OPV устройств.

Основные показатели разработанного устройства многообещающие, осталось изучить его внешний вид, что было сделано посредством смоделированного солнечного света (AM1.5G).

Свет, прошедший сквозь устройство с ОС и ARC покрытием, имел хроматические координаты (0.33, 0.39) и CCT = 5585 K. Тем временем, высокая отражательная способность ультратонкого катода из серебра при > 600 нм придает устройству зеленый оттенок. В отличие от Ag, ITO имеет более высокую прозрачность с плоским спектром пропускания в видимой области. Если использовать катод и анод ITO, то в результате можно получить более нейтральный оттенок.


Изображение 5

На графиках и фото выше показаны спектральные характеристики плотности тока, напряжения и EQE устройства ST-OPV на основе ITO со следующей структурой: MgF2 (120 нм) / стекло ITO / ZnO (30 нм) / PCE-10:A078 (105 нм) / MoO3 (20 нм) / напыление ITO (140 нм) / MgF2 (145 нм) / MoO3 (60 нм) / MgF2 (190 нм) / MoO3 (105 нм).

По сравнению с ST-OPV на основе Ag, устройство на основе ITO показывает различия в FF и VOC из-за его более высокой работы выхода* и поверхностного сопротивления (~ 50 Ом/квадрат).
Работа выхода* энергия, которую должен получить электрон для его удаления из объема твердого тела.
Но самые значимые отличия наблюдались в показателях JSC и PCE. Поскольку устройство становится все более прозрачным, отражение от ITO анода в тонкую активную область уменьшается, устраняя двойной проход фотонов. Чтобы свести к минимуму потерю фотонов низкой энергии, OC покрытие было специально разработано с максимальным пропусканием в видимой области спектра и более высокой отражающей способностью на более длинных волнах. Таким образом, устройство с OC покрытием имеет на 15% более высокие значения JSC и PCE по сравнению с ITO устройством без покрытия, хотя видимая прозрачность при этом практически не меняется.

ITO устройство с ОС покрытием демонстрирует LUE = 3.5 0.1%, PCE = 8.1 0.3% и APT = 43.3 1.5%, и имеет почти нейтральный оттенок. Также анализ трестируемого устройства показал, что оно передает цвет объекта за ним (5D).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В городах полно домов (простите за очевидное), следовательно, множество окон. Использование их в качестве площадки для сбора солнечной энергии является весьма разумной, но сложной в реализации идеей. С одной стороны необходимо собирать максимум энергии, с другой суть окна в том, что оно прозрачное.

В данном труде ученые смогли продемонстрировать рабочий прототип устройства полупрозрачного фотоэлектрического элемента с PCE = 10.8 0.6%, APT = 45.7 2.1% и LUE = 5.0 0.3%. Другим словами, эффективность устройства составила 10.8%, а его прозрачность 45.8%. Основным достоинством данной разработки является баланс между этими показателями.

На данный момент эффективность использования света составляет порядка 5%, что уже хорошо, ведь предшественники могли выдать максимум 2-3%. Однако ученые намерены продолжить свой труд и достичь 7%. Еще одной задачей, которую они перед собой поставили, является продление срока службы устройства до 10 лет. Долговечные, эффективные и эстетически красивые фотоэлементы смогут превратить обычное офисное здание в своего рода солнечную электростанцию.

Хотелось бы сказать, что подобные исследования своевременны, однако это не так. Такими разработками, особенно столь массово, как сейчас, стоило заниматься намного раньше, не дожидаясь момента, когда предотвращение экологической и энергетической катастрофы превратится в разбор последствий. В любом случае подобные начинания, хоть и с опозданием, имеют огромную важность не только для будущего человечества, но и для будущего нашей планеты.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Объединение отрицательно заряженных частиц за счет фотонов

26.08.2020 10:09:33 | Автор: admin


Противоположности притягиваются. Этот житейский принцип, касающийся отношений между людьми, далеко не всегда соответствует действительности. Но в физике все так, как говорится: противоположные электрические заряды, к примеру, всегда притягиваются, а сходные отталкиваются. Этот принцип стар, как сам мир, но и его можно подвергнуть некой модификации, если применить другие физические законы и явления. Группа ученых из Саутгемптонского университета (Великобритания) провели исследование, в котором им удалось создать новый тип материала, названный фотонно-связанный экситон. Самый смак заключается в том, что фотоны стали связующим звеном между отрицательно заряженными электронами, которые по логике должны были отталкиваться. Как именно были использованы фотоны, какие особенности изобретенного атома, и в каких областях может использоваться данная разработка? Об этом мы узнаем из доклада ученых. Поехали.

Основа исследования


Как мы уже вспомнили, одноименные заряды (т.е. одинаковые: ++ или -) должны отталкиваться друг от друга, а разноименные (т.е. противоположные: +- / -+) притягиваться. Однако картина такого взаимодействия меняется, если добавить щепотку фотонов, т.е. частиц света. В таком случае добавляется влияние фотоэффекта взаимодействия света и материи, когда энергия фотонов передается материи.

В данном труде ученые создали наноустройство, которое захватывает электроны в наноразмерные квантовые ямы*. Если же фотоны вносят в устройство достаточно много энергии, то это приводит к выходу из ямы электронов. Разместив данное устройство между двумя золотыми зеркалами, можно поймать фотоны в ловушку. За счет этого энергия фотонов будет сфокусирована на электроны, усиливая взаимодействие между светом и материей. Добавление зеркал привело к тому, что отрицательно заряженные электроны оставались в яме (без зеркал фотоны вытесняли их из ямы) и начинали связываться друг с другом.
Квантовая яма* потенциальная яма, ограничивающая подвижность частиц с трех до двух измерений (т.е. частицы начинают двигаться в плоском слое).
Важнейшую роль в работоспособности всей системы, естественно, играют вышеописанные квантовые ямы (QW от quantum well). По словам ученых, на то есть ряд причин.

Во-первых, QW позволяют достичь большей силы связи между светом и материей, которую можно регулировать за счет изменения электронной плотности* в QW.
Электронная плотность* в квантовой механике мера вероятности того, что электрон займет бесконечно малый элемент пространства, окружающего любую условную точку.
Во-вторых, квантовые ямы можно сделать достаточно узкими, что позволит получить одну локализованную электронную подзону, которая не будет иметь никаких межподзонных переходов.

В-третьих, в подобной системе кулоновское взаимодействие не создает связанных состояний.

Из последних двух пунктов следует, что чистые квантовые ямы без окружающего фотонного резонатора вообще не представляют какого-либо дискретного резонанса, а только полосу непрерывного поглощения на частотах, превышающих порог ионизации.

Отсутствие кулоновского взаимодействия обосновано квазипараллельной дисперсией двух электронных подзон, что приводит к отталкивающему электронно-дырочному взаимодействию*.
Электронно-дырочное взаимодействие* (p-n взаимодействие) область соприкосновения двух частиц с разными типами проводимости дырочной (p от positive положительная) и электронной (n от negative отрицательная).
Это сильно отличается от случаев межзонных переходов на более коротких длинах волн, где электронно-дырочное взаимодействие является притягивающим и приводит к созданию узких резонансов вне электронно-дырочного континуума в отсутствие поляритонных эффектов.

Таким образом, формирование поляритонов* может изменять существующие резонансы, но не приводит к созданию новых локализованных электронных резонансов.
Поляритон* частица, являющаяся результатом взаимодействия фотона и возбуждений среды (оптические фононы, экситоны, плазмоны, магноны и т.д.).



Изображение 1: Кулоновский эффект в легированных и нелегированных квантовых ямах. межзонное поглощение нелегированной полупроводниковой квантовой ямы, в котором преобладает экситонный резонанс (EX) ниже энергии запрещенной зоны (EG) и электронно-дырочный континуум над ним; 1b стандартное электронно-дырочное картирование, позволяющее описать одиночную электронную вакансию в валентной зоне как дырку с положительным зарядом и массой; межподзонное поглощение легированной квантовой ямы, содержащей только одно локализованное состояние, и континуум состояний выше первой энергии ионизации квантовой ямы (EI); 1d первоначально заполненная подзона электронов имеет положительную эффективную массу, а электрон-дырочное картирование приводит к положительно заряженной дырке с отрицательной эффективной массой.

Изображения выше являются схемой вышеописанного явления. В случае межзонных переходов в нелегированных квантовых ямах участвующие в переходе электроны изначально занимают валентную зону с отрицательной эффективной массой. Однако в случае межподзонных переходов в легированных квантовых ямах ту же роль играет первая частично заполненная подзона проводимости, имеющая положительную эффективную массу*. При обычном электронно-дырочном картировании это приводит к положительно заряженной дырке с отрицательной эффективной массой.
Эффективная масса* величина, имеющая размерность массы и применяемая для описания движения частицы в периодическом потенциале кристалла.
Эффективная масса электронов в возбужденной подзоне m2 в квантовых ямах GaAs больше массы в первой подзоне m1. Это приводит к отрицательно сниженной массе межподзонной электронно-дырочной пары mr-1 = m2-1 m1-1.

При наличии любого притягивающего потенциала двух тел отрицательная масса приводит к отталкивающему электронно-дырочному взаимодействию, которое, в свою очередь, не может создавать связанные состояния.

Для практического подтверждения наличия связанных состояний, опосредованных фотонами, была создана система, состоящая из 13 квантовых ям GaAs / AlGaAs, встроенных в узкие решетчатые золотые микрополостные резонаторы.


Изображение 2: схема экспериментальной установки. распределение компоненты электрического поля, ортогональной металлическим слоям, для одного периода (D) структуры и для моды TM02 ленточного резонатора; 2b микроскопия набора образцов; экспериментальная установка, используемая для измерений отражательной способности (микроскоп среднего инфракрасного диапазона, подключенный к Фурье-ИК-спектроскопу.

Резонаторы представляют собой одномерные ленты, а электромагнитное поле (схема на ) почти полностью удерживается под металлическими штифтами.

Размеры квантовых ям были достаточно тонкими, чтобы была лишь одна захваченная подзона проводимости, поскольку наличие второй подзоны привело бы к созданию межподзонных поляритонов.

Если бы было две подзоны, то наличие перехода типа связь-связь привело бы к насыщению имеющейся силы осциллятора, что привело бы к подавлению связь-континуумного перехода, который и должен изучаться в данном тесте.

Для проверки этого важного параметра было изготовлено два образца HM4229 и HM4230, различающиеся шириной квантовой ямы и легированием. Образец HM4229 содержал квантовые ямы GaAs толщиной 4 нм (с шириной LQW = 4 нм), каждая из которых легирована с плотностью 5 х 1012 см-2. А образец HM4230 содержал квантовые ямы (LQW = 3.5 нм), легированные при 4.77 х 1012 см-2.


Изображение 3: связь-континуумный характер оптического перехода в чистых QW без окружающего фотонного резонатора. измерение пропускания при 300 K для образцов с QW разной ширины LQW; 3b-3e схемы связь-связь (3b и 3c) и связь-континуумных переходов (3d и 3e) в легированных квантовых ямах.
Переход связь-связь* изменение энергии электрона внутри атома или, реже, внутри молекулы, при котором электрон остается прикрепленным (связанным) к атому или молекуле как до, так и после изменения.

Связь-континуумный переход* (переход связь-континуум) возбуждают носителей в токопроводящие состояния континуума и позволяют использовать перпендикулярный транспорт (носители, движущиеся через переход).
(Infrared absorption of multiple quantum wells: bound to continuum transitions)
На схемах 3b- видно, что переходы разных типов (связь-связь и связь-континуум) в разных одночастичных состояниях QW потенциала претерпевают противоположные частотные сдвиги при уменьшении LQW: у первых возникает синее смещение*, у вторых красное смещение*.
Синее смещение* явление, когда уменьшается длина волны излучения, а частота увеличивается.

Красное смещение* явление, когда увеличивается длина волны излучения (свет становится более красным, например), а частота и энергия уменьшаются.
Это позволило оценить природу оптического перехода за счет анализа спектра пропускания двух образцов до применения золота ().

Здесь наблюдается очень широкое поглощение, которое (будучи поперечной магнитной поляризацией) связано с легированными квантовыми ямами. Также наблюдается и более узкая область около 140 мэВ, которая является краем континуума. Ученые отмечают, что данная функция не приводит к синему смещению при уменьшении LQW, а показывает перенос спектрального веса в красную часть спектра. Связь-связь переход в таком случае привело бы к синему смещению порядка десятков миллиэлектронвольт, доказывая привязанный к континууму характер переходов в чистых QW.

Как уже упоминалось ранее, все образцы были изготовлены в рамках решетки металл-полупроводник-металл и металлических штифтов с шириной р ( и 2b). Поскольку электромагнитное поле чрезвычайно локализовано под металлическими пальцами, система по существу ведет себя как резонатор ФабриПеро*.
Резонатор ФабриПеро* оптический резонатор, в котором параллельно расположенные зеркала направлены друг на друга. Между этими зеркалами может формироваться резонансная стоячая оптическая волна.
Было изготовлено несколько устройств на основе решеток площадью 200 х 200 мкм с шагом в диапазоне от 800 нм до 5 мкм, что позволяет охватить широкий диапазон частот (2b). Данные по отражательной способности были получены для каждого устройства при температуре 78 К посредством Фурье-ИК-спектроскопа, оснащенного очень компактным криостатом (2c).


Изображение 4: экспериментальные данные по отражательной способности. данные по отражательной способности легированного образца HM4229 в зависимости от частоты резонатора; 4b данные отражательной способности для HM4229 (красный) и чистого резонатора (зеленый) для частот с = 157.8 мэВ (сплошные линии), с = 147 мэВ (пунктирные линии) и с = 141.5 мэВ (штрихпунктирные линии); ширина линий для различных колебаний как функция энергии колебаний.

Результаты данного анализа представлены на графиках выше. На представлена карта отражательной способности образца HM4229 при 78 К как функция частоты чистого резонатора. Если выше порога ионизации (показан черной горизонтальной пунктирной линией) наблюдается континуум поглощения, то ниже появляется узкий поляритонный резонанс. Он сдвинут в красную сторону более чем на 20 мэВ по отношению к чистому резонатору.

На цветовую карту были нанесены пиковые частоты, полученные с помощью множественной аппроксимации данных методом Лоренца. Красные треугольники и синие квадраты отображают соответственно частоты ниже и выше идентифицированного порога ионизации. Для сравнения зелеными кругами отмечена частота чистого резонатора, измеренная на нелегированном образце.

Ниже порога ионизации время жизни дискретной поляритонной моды в основном ограничивается временем жизни резонатора. Выше заметен спектр связь-континуум, в котором можно идентифицировать только очень расширенные и неопределенные особенности.

Сравнение спектров легированных и нелегированных образцов показало, что в легированном образце возникает дискретный резонанс ниже края континуума, тогда как в идентичном, но электромагнитно несвязанном образце его нет.

Подобное гибридное дискретное состояние можно описать как поляритон, плотность электронов которого относительно основного состояния равна:
N(z) = P [|e(z)|2 |g(z)|2]
где Р (в диапазоне 01) вес поляритонного компонента материи; g(z) нормированная волновая функция электрона в его основном состоянии; e(z) волновая функция локализованного электронного состояния, порожденного взаимодействием света и материи.


Изображение 5: расчеты P. собственные моды, полученные с помощью теоретической модели с параметрами, выбранными для соответствия экспериментальным данным отражательной способности на цветовой карте; 5b параметры, извлеченные из 5a, которые используются для расчета P для дискретной поляритонной моды.

На визуально отображен результат использования теоретической модели для моделирования наблюдаемого спектра отражательной способности и сравнения его с экспериментальными данными. Эти параметры позволили рассчитать Р (5b).

Из этого модели следует, что дискретный резонанс ниже порога ионизации четко определяется для ненулевых значений P, демонстрируя существенное заполнение генерируемой светом электронной волновой функции e(z).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Данный эксперимент позволил продемонстрировать возможность связывания ионизирующего перехода с фотонным резонатором, что приводит к непертурбативной модификации электронной структуры системы.

В результате получается гибридное поляритонное возбуждение, материальная составляющая которого представляет собой связанное состояние, порожденное взаимодействием света и материи, состоящего из электрона и дырки, удерживаемых вместе благодаря их взаимодействию с поперечным электромагнитным полем.

Как заявляют ученые, возможность настраивать свойства материала за счет связи с фотонным полем микрорезонатора является крайне перспективным направлением.

В данном труде они смогли создать устройство, ограниченное с двух сторон золотыми зеркалами, которые улавливали фотоны и фокусировали световую энергию на электроны, что резко усиливало связь между светом и материей. В ходе экспериментов было замечено, что отрицательно заряженный электрон, выброшенный фотоном, остается в ловушке в квантовой яме, связанный с другими отрицательно заряженными электронами. При этом такая конфигурация остается стабильной за счет воздействия фотонов.

Другими словами, данное исследование показывает возможность создания искусственных атомов нового типа, электронные конфигурации которых можно будет настраивать по собственному желанию.

Фотоника является достаточно молодой отраслью науки, но при этом ее влияние с каждым годом растет, что обусловлено подобного рода исследованиями. Свет, как и многие другие явления, можно сравнить с котом Шредингера: с одной стороны все понятно и очевидно, но если копнуть поглубже, то становится очевидна простая истина сколько бы ответов не получал человек, вопросов всегда будет больше. Тем не менее в поисках ответов на вопросы, по крайней мере в науке, важен не столько сам ответ, сколько путь, ведущий к нему.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Математика палитры почему не бывает красного структурного цвета

16.09.2020 10:17:24 | Автор: admin


Многие считают, что основными инструментами художника являются кисточка, мольберт и палитра. Однако это лишь средства, позволяющие использовать истинный инструмент цвет. Наш мир полон красок всех мастей, от огненно-красного до морозно-синего. Цвет предметов и окрас живых организмов является результатом ряда физических и/или химических процессов. Учитывая разнообразие цветов, порой сложно понять разницу в механизмах из происхождения. Ученые из Кембриджского университета решили выяснить, почему структурные цвета, зависящие от наноразмерной архитектуры поверхностей, а не от химических пигментов, не бывают красных оттенков, а лишь синих или реже зеленых. В чем секрет такого цветового ограничения и как именно удалось установить истину? Пролить свет на эти вопросы нам поможет доклад ученых. Поехали.

Основа исследования



Примеры структурных цветов в природе: А гибискус тройчатый (Hibiscus trionum); В жук тамамуси (Chrysochroa fulgidissima); С бабочка вида Morpho rhetenor; D комар обыкновенный (Culex pipiens); Е морская мышь (Aphrodita aculeata); F жук вида Pachyrhynchus argus; G бабочка вида Parides sesostris

Структурный цвет является результатом интерференции света, который рассеивается наноразмерными непоглощающими элементами поверхности. Это более физический процесс, нежели химический, как в случае с пигментацией, где цвет зависит от избирательного поглощения по длине волны.

У структурных цветов имеется множество преимуществ по сравнению с пигментными:

  • не обесцвечиваются, так как цветообразование определяется архитектурой, а не составом;
  • могут быть изготовлены из экологически чистых материалов;
  • достигают нетрадиционных цветовых эффектов, от яркого металлического до изотропного оптического отклика.


Изображение 1

Учитывая положительные свойства структурных цветов, было разработано множество методик по их воссозданию, а точнее методик создания иерархических структур или структур ближнего упорядочения с независимыми от угла цветами. Результатом таких разработок стало фотонное стекло (PG от photonic glass), которое имеет биологический эквивалент в виде оперения многих птиц (изображение выше).

Нюанс в том, что в природе структурные цвета бывают лишь синих оттенков. Красные и зеленые цвета, как правило, достигаются с помощью структур с дальним упорядочением или с использованием пигментации. Конечно, существуют техники, позволяющие создать искусственный структурный красный оттенок. Однако, как заявляют авторы сего труда, оптические свойства у материала такого цвета крайне плохи.

Возникает вопрос можно ли в принципе создать полноценный структурный красный цвет? Дабы ответить на этот вопрос, ученые решили использовать численный подход, который обеспечивает прямой доступ к спектру отражения произвольной структуры и позволяет исследовать промежуточные режимы рассеяния, то есть между однократным рассеянием и диффузионным поведением.

Результаты исследования


Для начала посредством численного алгоритма были созданы варианты фотонного стекла (прямое и инверсивное) с различными свойствами рассеивания и структурной корреляцией (структурным фактором*).
Структурный фактор* математическое описание того, как материал рассеивает падающее излучение.
Следом были проведены расчеты оптических свойств сгенерированных структур с использованием метода конечных разностей во временной области. Созданная модель была намеренно ограничена двумерным пространством, так как подобные структуры чаще всего встречаются в природе (изображение выше). Концентрация внимания на двумерной структуре также позволяет расширить спектр изучаемых параметров, при этом ограничивая вычислительные затраты. Тем не менее ученые уверены, что полученные результаты можно применить и для описания трехмерных структур.

Если поглощение отсутствует, то рассеяние в фотонном стекле возникает в результате взаимодействия между характеристиками индивидуальных частиц (размер, форма и показатель преломления) или за счет взаимодействия между свойствами группы частиц (доля заполнения и структурные корреляции).


Изображение 2

В случае прямых PG в отражении преобладают резонансы Ми*, определяемые свойствами рассеивателя (). Таким образом, отраженный цвет можно изменить на видимый, изменив размеры рассеивателя.
Резонанс Ми* увеличение интенсивности рассеянного на сферической частице излучения для определенных длин волн, сравнимых с размерами частицы (назван в честь Густава Ми, 1868-1957).
Однако по мере увеличения размера частиц пик резонанса Ми смещается в красную сторону, и второй пик появляется в синей части спектра, что соответствует резонансной моде более высокого порядка. А вот в рассеянии света в инверсивных PG преобладают структурные корреляции (2B). Пик отражения, положение которого хорошо соответствует предсказаниям закона Брэгга*, более выражен, чем в прямых структурах.
Дифракция Брэгга* явление сильного рассеяния волн на периодической решетке рассеивателей при определенных углах падения и длинах волн.

Формула закона Брэгга: n = 2d sin , где d период решетки; угол падения волны; длина волны излучения; n число волн.
Появление отдельного пика в видимом спектре демонстрирует, что использование инверсных PG является эффективной стратегией для минимизации форм-фактора в общем оптическом отклике системы в пользу структурных вкладов.


Зависимость изотропного структурного цвета от показателя преломления для прямого (сверху) и инверсивного (снизу) PG соответственно.

Изменение показателя преломления влияет на взаимосвязь между вкладами формы и структуры. В системах с высоким показателем преломления преобладают резонансы форм-фактора, которые не позволяют им достичь хорошей чистоты цвета в красной области спектра как для прямых, так и для инверсных PG. Для прямых систем, даже когда контраст показателя преломления низкий, резонансы форм-фактора приводят к усиленному отражению на коротковолновой стороне структурного пика. Напротив, в случае инверсивных PG видно, что структурный фактор формирует хорошо разделенный пик в видимом спектре, даже в красной области длин волн.

Из этого следует вывод, что инверсивные PG с низким показателем преломления могут превосходить прямые PG с точки зрения чистоты цвета и насыщенности.


Изображение 3

Уменьшение контраста показателя преломления между матрицей рассеяния (nm) и центрами рассеяния (np) может еще больше способствовать структурному вкладу. На видно, что увеличение np приводит к широкополосному снижению коэффициента отражения и красному смещению структурного пика. Структурный пик уменьшается по ширине и имеет более высокую интенсивность по сравнению с его фоном, что приводит к лучшей чистоте цвета.

Уменьшение контраста показателя преломления снижает роль многократного рассеяния, которое так или иначе присутствует в неупорядоченных системах. Это ограничивает изотропные структурные цвета режимом распространения света между диффузным рассеянием* и баллистическим переносом*.
Диффузное рассеяние* рассеяние, возникающее в результате любого отклонения структуры материала от структуры идеально правильной решетки.
Баллистический перенос* беспрепятственный поток носителей заряда (обычно электронов) или несущих энергию частиц на относительно большие расстояния в материале.
Многократное рассеяние становится преобладающим при увеличении толщины образца, что приводит к широкополосному ненасыщенному отклику.

Соответствующие наблюдения также можно применить и к рассеивателям со сложной геометрией. Как уточняют ученые, в их предыдущих работах была представлена идея использования частиц ядро-оболочка* для разделения вкладов форм-фактора и структурного фактора и достижения отдельного пика в длинноволновой области спектра.
Частица ядро-оболочка* частица, ядро и оболочка которой отличаются по составу, морфологии и функциональному назначению.
На изображении показано, что уменьшение размера центра рассеяния (ядра) при сохранении длины структурной корреляции приводит к увеличению интенсивности и ширины длинноволнового (структурного) пика. В то же время коротковолновый вклад резонансов Ми смещается в сторону ультрафиолета.

На показано, что пониженный контраст показателя преломления может подавить многократное рассеяние, в то время как разделение вкладов форм-фактора и структурного фактора возможно через частицы ядро-оболочка ().

Объединение обоих методов показано на . Это позволяет получить более высокие значения чистоты и насыщенности цвета за счет хорошо разделенных пиков в длинноволновой части видимого спектра.

На следующем этапе исследования ученые уделили внимание оценке насыщенности и чистоты цвета. Для количественной оценки этих параметров спектры отражения прямых, инверсивных PG и ядер-оболочек были преобразованы в цветовые оттенки. Чистоту цвета можно определить как нормализованное расстояние от белой точки на диаграмме цветности по отношению к красной точке (в случае красных цветов). Насыщенность количественно определяет, насколько интенсивность отраженного света распределяется по спектру с разными длинами волн.


Изображение 4

На 4A различные системы для оттенков красного нанесены на диаграмму цветового пространства CIE XYZ. На 4В вычислены соответствующие значения чистоты и насыщения.

Стоит отметить, что все инверсивные PG демонстрируют более высокие значения чистоты и насыщенности цвета, чем красные оттенки прямых PG. Однако включение в систему частиц ядро-оболочка не приводит к значительному улучшению по сравнению со стандартным инверсивным PG. Если же объединить оба подхода, то можно получить более высокие показатели чистоты и насыщенности. Тем не менее они будут гораздо ниже, чем у реального красного цвета (т.е. из модели КЗС красный, зеленый, синий).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученым удалось продемонстрировать, что фотонные стекла имеют внутренние ограничения в достижении насыщенных красных оттенков. Это обусловлено взаимодействием между резонансом, связанным со структурным фактором, рассеянием, связанным с форм-фактором, и фоном многократного рассеяния. Подобный фундамент позволяет легко достичь структурного цвета в УФ-синем диапазоне, но не в случае больших длин волн.

Также было доказано, что высокая чистота и насыщенность цвета для красных оттенков не могут быть достигнуты в изотропных структурах ближнего упорядочения, даже в случае сложных морфологий рассеивателя.

По словам ученых, подобные наблюдения могут свидетельствовать о том, что природа была вынуждена (образно выражаясь) создать альтернативные пути формирования красных оттенков (например, многослойные или алмазные структуры).

Объединение нескольких подходов по созданию структурного цвета красных оттенков может улучшить показатели чистоты и насыщенности, но их все же недостаточно для достижения реального красного цвета.

Также было установлено, что из-за сложного взаимодействия между однократным и многократным рассеянием, желтый и оранжевый, помимо красного, также сложно получить в аспекте структурных цветов.

Подобные исследования позволяют лучше понять структурные цвета, а также выработать новые методики по созданию материалов, способных быть основой для тех оттенков, что не встречаются в естественных структурных цветах. Помочь в этом, по мнению авторов исследования, могут новые типы наноструктур (например, сетевые или многослойные иерархические структуры).

Как бы то ни было, работа над структурными цветами будет продолжаться и дальше. Современные методики изучения наноразмерных структур и средства их воссоздания позволяют детальнее описать процессы, протекающее в материале, что, естественно, способствует достижению контроля над этими процессами.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Танец света секрет синхронизации светлячков

02.10.2020 10:21:39 | Автор: admin


Насекомые по праву считаются самыми многочисленными и разнообразными представителями фауны. Они живут во всех уголках нашей планеты: от тропических джунглей Амазонки до каменистых берегов Гренландии. Среда обитания в сопряжении с эволюционными изменениями породили множество уникальных видов, чей внешний вид, повадки или гастрономические предпочтения не перестают удивлять. Одними из самых необычных представителей класса насекомых можно с уверенностью назвать светляков, способных излучать свет за счет специальных органов (лантерн). Но не только сам факт свечения удивителен, но и то как он применяется. Ученые из университета Колорадо (Боулдер, США) попытались понять, как у светляков вида Photinus carolinus происходит синхронизация свечения. Как проводилось исследование, чем отличается поведение роя светляков от одиночных особей, и в чем же секрет синхронизации свечения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Как мы уже поняли, в мире удивительных видов насекомых полно, особенности которых способны поразить воображение даже самого искушенного энтомолога: жук-бомбардир выстреливает горячей жидкостью для самозащиты, палочник в ходе эволюции стал мастером камуфляжа, муравьи столь многочисленны, что занимают около 25% от общей биомассы планеты, а осу вида Ampulex compressa можно легко сравнить с ксеноморфом. Список интересных фактов можно продолжать бесконечно, учитывая что на Земле обитает порядка 6-8 миллионов видов.


Видео о том, как именно светлячки излучают свет.

Светляки это не отдельный вид, а целое семейство, насчитывающее порядка 200 видов. Обитают они как в тропиках / субтропиках, так и в умеренном климатическом поясе, хоть и в меньшем числе. Светляки по большей степени являются ночными насекомыми, что вполне логично, учитывая их особенность (кому нужен фонарик средь бела дня).

На теле светляков имеются специальные органы свечения (лантерны от итальянского lanterna, т.е. лампа). Это может быть либо одиночный крупный орган на конце брюшка, либо множество более мелких органов, расположенных в определенном порядке по всему телу.

Назначение свечения достаточно поэтично поиск партнера. Когда наступает закат самцы светляков начинают летать и светиться, тем самым привлекая внимание самок. Дамы, чаще всего лишенные крыльев, наблюдают за шоу и выбирают самого подходящего кандидата для спаривания.

Что происходит дальше, зависит от вида светляков. Дело в том, что сигнатура свечения у разных видов разная, от чего и язык общения внутри вида разный. Сгруппировать сигналы можно в такие категории: поисковые, призывные, отказные, агрессивные, посткопулятивные (после спаривания). Самцы одних видов испускают призывные и поисковые сигналы, а самки только призывные. А вот самцы вида Lampyris noctiluca испускают исключительно призывные сигналы. У других же видов отличий в сигналах может и не быть вовсе.


На фото представлены личинка (сверху слева), самец (снизу слева) и самка (справа) светляков вида Lamprohiza paulinoi.

Нестандартное поведение наблюдается в сигналах самок из рода Photuris. Они способны излучать свечение, призывающее самцов из другого рода (Photinus). Делают они это не из-за романтических побуждений. Самки Photuris являются хищниками, а самцы Photinus, одурманенные их свечением, становятся ужином. Любопытно, что самцы рода Photuris призывают своих кровожадных дам, излучая свечение самцов Photinus. Когда самка находится достаточно близко, самец переключает подставное свечение на свое собственное.


Самка Photuris, поедающая самца Photinus.

Другими словами, свечение для светляков это самый настоящий язык, т.е. инструмент коммуникации. Тем интереснее синхронное свечение.

Лишь небольшое число видов обладает способностью синхронно светиться. Когда начинается закат, начинается и свечение, достигающее апогея синхронизации спустя 10-15 минут. Столь красивое явление было впервые описано немецким путешественником и натуралистом Энгельбертом Кемпфером (1651-1716), который наблюдал его во время своего путешествия в Таиланд в 1680 году.


Свечение Photinus carolinus, национальный парк Грейт-Смоки-Маунтинс (Great Smoky Mountains National Park).

В рассматриваемом нами исследовании главным героем является вид Photinus carolinus, особи которого обладают даром синхронного свечения.

Ранее проведенные наблюдения за колониями P.carolinus показали, что самцы этого вида синхронно мигают каждые Tf 0.5 с в течение нескольких секунд, а затем коллективно прекращают это делать. Такие циклы происходят каждые Tb 12-14 с в течение 3 часов после захода солнца.

В попытках понять суть синхронного свечения были созданы математические модели. Как показано в этих моделях, для всестороннего понимания коллективного поведения светлячков требуется не только временная, но и пространственная информация о вспышках, которой у исследователей ранее не было. Именно этот пробел и решили заполнить авторы рассматриваемого нами исследования.

Для этого они засняли процесс синхронного свечения с разных ракурсов одновременно, что позволило смоделировать трехмерную модель сего процесса. Во время наблюдений использовались камеры кругового обзора (т.е. 360).


Изображение 1

Как заявляют ученые, подобный подход не использовался ранее в изучении светляков. Обычные камеры позволяют получить достаточно данных в условиях небольших скоплений светляков, но не дают полной картины поведения многочисленных групп особей, так как камеры необходимо размещать за пределами коллективной динамики, а в кард попадает лишь часть происходящего (). Камеры кругового обзора можно размещать буквально посреди роя и получать полноценную информацию о происходящем.


Видео 1: поведение светляков в естественной среде, зафиксированное 360-камерой.

Наблюдения за светляками проводились как в естественной среде, так и в контролируемых условиях. Также велось наблюдение и за поведением особей в зависимости от численности роя (1, 5, 15 и 40 особей).

Результаты исследования


Трехмерная реконструкция вспышек в естественной среде обитания (5-минутный интервал, начиная с 22.00) показывает, что рой P. carolinus точно следует по склону окружающей местности и, в частности, мигает почти исключительно на высоте 2 м над землей (2d2g; видео 2).


Изображение 2

При рассмотрении сверху существуют ограничения техники визуализации: вспышки дальше 10 м не фиксируются, а визуальная окклюзия создает значительные слепые зоны. Однако в триангулированных положениях видны четкие полосы света (2d).


Видео 2: реконструкция поведения светляков и их свечения (соответствует изображению 2).

На каждом кадре видеозаписи фиксировалось 0, одна или несколько световых вспышек. Временной ряд количества вспышек (2i и 2j) демонстрирует двойной периодический характер. Вспышки происходят через равные промежутки времени (интервалы между вспышками Tb; 2i), при этом записывается максимум около 15 одновременных вспышек, разделенных периодами абсолютной темноты.

Приблизившись к этим вспышкам (2j), можно увидеть иную временную картину: вспышки (общее для роя) состоят из последовательности нескольких мерцаний (отдельно для особи), происходящих синхронно с четко определенным интервалом между Tf 0.5 с.

Частотный спектр (преобразование Фурье) временного ряда мерцаний дополнительно подтверждает регулярность этих двух процессов, демонстрируя ярко выраженные пики на частотах 1/Tb = 0.08 Гц и 1/Tf = 1.75 Гц (периоды 12.5 с и 0.57 с соответственно; 2k и 2l). Тот факт, что эти частоты появляются в виде резких пиков в спектре, указывает на то, что эти два процесса происходят в четко определенные интервалы времени.

Эти простые количественные результаты демонстрируют, что мерцание P. carolinus является синхронным, прерывистым и точным. Подобные выводы уже делались ранее. Тем не менее ранее считалось, что вспышки прекращаются внезапно, но в ходе наблюдений были отмечены треугольная форма вспышек и периоды медленного затухания свечения (2j). Наличие треугольного узора в свечении может свидетельствовать о распространении информации внутри роя. Опыты в лабораторных условиях подтвердили, что подобные наблюдения не являются погрешностями оценки данных или нарушением работы оборудования.

Эти результаты показывают, что стая самцов P. carolinus представляет собой сильно коррелированную систему. Механизмы, лежащие в основе их коллективного поведения, такие как распространение информации, могут быть раскрыты путем изучения пространственно-временных корреляций.

Каждая из записанных вспышек привязывалась к времени ti и трехмерной позиции xi. Затем для каждой пары вспышек (i, j) вычислялись разделение ij = |xj xi| и задержка ij = |tj ti|.


Изображение 3

Коррелированные пики возникают каждые 12.5 с (3a), что соответствует вспышкам, и каждый из них состоит из серии высоких и низких полос каждые 0.55 секунды (3b), что соответствует интервалам между вспышками. Пространственные корреляции между всплесками (3a) распространяются по всему рою (пик в диапазоне 010 м). Следовательно, всплески вспышек охватывают весь рой.

Также стоит отметить, что наблюдения показали отсутствие взаимодействия между двумя светляками, которые находились слишком близко друг к другу. Это можно объяснить визуальной окклюзией.


Изображение 4

Трехмерная реконструкция наблюдаемого роя также дала возможность понять кинематику движущихся светлячков.

Анализ отдельных периодов (вспышки, охватывающих не менее четырех последовательных кадров) показывает широкий диапазон движений светлячков.

Скорости свечения (v) показывают континуум между неподвижностью и быстрыми полетами со скоростью до 30 см/с (4a). Радиусы кривизны (rc) также весьма разнообразны, демонстрируя как крутые повороты, так и пролеты по прямой траектории (4b). Ускорение (a = v2/rc) охватывает два порядка величин с верхним пределом, сравнимым с силой тяжести Земли (4c). Интересно, что распределение rc по сравнению с v показывает две четко определенные ограничивающие ветви (4d). Нижняя ветвь (большая v, маленькая rc) отмечает режим высокого ускорения, соответствующий резким и быстрым поворотам. Верхняя ветвь предполагает, что медленные и прямые траектории невозможны при движении светлячка.

Далее рассматривались траектории, длящиеся не менее 2 секунд, в течение которых происходило как минимум 4 свечения. Эти траектории демонстрируют разнообразие моделей.

Принимая во внимание горизонтальный ход (rxy) между конечными точками траекторий, на 4e можно увидеть континуум между почти стационарными траекториями и другими траекториями, которые покрывают расстояние до 1 м. Вертикальный ход (z) распределяется асимметрично (4f), при этом нисходящие траектории обычно проходят дальше. Траектории никогда не бывают полностью вертикальными (большое значение |z| и малое rxy), но иногда полностью горизонтальными (4h). Это может свидетельствовать о наличии определенных ограничений в возможностях полета насекомых.

Кроме того, отношение длины пути траектории (s) к ее сквозному расстоянию (r) показывает (4g): хотя большинство траекторий довольно прямые, значительная часть кажется очень искривленной и петлеобразной.

Суть разных траекторий полета заключается в разных коммуникационных сигналах и поведенческих особенностях светляков. Например, длинные и нисходящие траектории наблюдались у самцов, ухаживающих за отвечающей самкой, расположенной на земле. А большие горизонтальные траектории могут соответствовать процессу исследования территории.

Следующий этап исследования перенес наблюдения за насекомыми из естественной среды в контролируемые условия. В небольшую камеру (5b) было размещено несколько самцов светляков, что позволило наблюдать за их поведением в зависимости от численности.


Изображение 5

График демонстрирует трехмерную реконструкцию световых вспышек, записанных в камере в течение 15 минут при наличии 40 особей.

За исключением небольшой части точек (около 1%), которые были расположены намного выше других и были удалены с графика, триангулированные точки определяют объем, который очень напоминает геометрию палатки. Массив точек, соответствующий светлякам, практически идеально повторяет форму тестовой камеры. Заметна даже изогнутость крыши камеры (ткань провисает под собственным весом; 5b).

Ученые не отрицают, что тестовая камера радикально отличается от естественной среды. Однако доступный объем камеры был достаточно большим (около 4 м3), чтобы светляки могли свободно перемещаться и летать, как показывают траектории на 6c.


Изображение 6

Если же в камере находился один самец, он непрерывно генерировал световые вспышки в течение всех 15 минут эксперимента (6a1), даже в отсутствии самки. Продолжительность вспышек обычно составляла от 0.10 с до 0.15 с (510 кадров), хотя также регистрировались и более короткие / длинные вспышки (7a).


Изображение 7

Свечения происходили сериями из 1 до 6 вспышек (чаще всего было 4 вспышки; 7b). Независимо от траектории полета, временной интервал между двумя последовательными вспышками был равен около 0.45 с (2530 кадров). Это видно и по распределению интервалов между вспышками (7c), и по пику 1.75 Гц в частотном спектре (6b1). Вспышки происходили и во время полета, и когда особи просто сидели на стенках камеры (6c1).

Важным наблюдением ученые называют факт того, что временные интервалы между последовательными свечениями (т.е. между сериями вспышек) не имели какой-либо схемы, в отличие от интервалов между отдельными вспышками. Время между свечениями варьировалось от 12 секунд до 1 минуты (7d).

Если же в камере находилось 5 самцов, свечение также происходило на протяжение всего периода наблюдения, но добавились и множественные полеты (6a2 и 6c2). Похоже, что светлячки пытались синхронизировать свое свечение, о чем свидетельствует временное распределение вспышек.

Действительно, большинство свечений состояло из как минимум двух одновременно активных светлячков, вспышки которых происходили синхронно (6a2).

Идентификация траектории, обеспечиваемая пространственной локализацией полос вспышек, позволяет лучше понять возникновение коллективной синхронизации.


Изображение 8

На изображении выше показано, что светлячок, который инициирует свечение, имеет тенденцию мигать дольше всех, а последователи начинают свои собственные вспышки уже синхронизированными.

Последователи могут либо остановиться перед мигающим лидером (8b), либо продолжить движение за ним (8a). Это предполагает, что мигающая информация может передаваться ретрансляционным способом внутри многочисленного роя.

Важно и то, что этапы свечения кажутся апериодическими (например, большой промежуток при t = 200 с на 6a2), однако появление пика на низких частотах (6b2) намекает на некоторую регулярность в схеме коллективного свечения.

Эта закономерность становится более выраженной, когда в камере находится 15 особей. В таком случае свечения возникают в определенном периодическом временном ряду (6a3), а заметные пики (и их гармоники) появляются в частотном спектре при 1/Tb = 0.08 Гц (6b3). Замеренная частота совпадает с той, что была получена во время наблюдений в естественной среде. Любопытно, что эта частота отсутствовала в опытах с одним светляком в тестовой камере. Интервал между вспышками на 1.75 Гц остается таким же, как и у одиночного светлячка (6b3).

Следовательно, это предполагает, что появление четко определенного интервала между всплесками является эмерджентным* свойством коллективного поведения.
Эмерджентность* появление у системы (в данном случае рой светляков) свойств, которыми не обладают ее отдельные элементы (в данном случае один светлячок).
Еще одним важным наблюдением является коллективная кинематика роя во время коллективного свечения. В большинстве свечений виден только один летающий светлячок, в то время как другие стоят или ходят по стенкам камеры (изображение 9 и видео 3).


Изображение 9


Видео 3: реконструкция траекторий полета светляков (соответствует изображению 9).

Траектория полета обычно начинается раньше всех и включает в себя наибольшее количество вспышек. Это наблюдение может быть связано с механизмом, который оптимизирует передачу информации при сохранении коллективных энергетических ресурсов группы. С другой стороны, это может выявить поведенческую дифференциацию.

Когда в камере находилось 40 особей, результаты наблюдений были схожи с теми, что и при наличии 15 особей. Однако в таких условиях имеется больше циклов свечения и больше отдельных вспышек, что позволяет более точно проанализировать процесс.

Вспышки возникают сериями, регулярно растянутыми во времени. Каждая серия состоит из нескольких синхронных вспышек и имеет ту же треугольную форму, что и в дикой природе, при этом количество вспышек медленно увеличивается, достигает максимума и затем медленно уменьшается (6a4). Подобное поведение можно назвать расширением парной синхронизации, наблюдаемой в камере с 5 особями.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Важным отличием данного исследования от предшественников является наличие 360 камеры, что позволила запечатлеть куда больше информации, чем обычные камеры. Получив больше данных в естественной среде, ученые перепроверили их в контролируемых условиях.

Результаты наблюдений в контролируемых условиях с прогрессирующим увеличением численности наблюдаемого роя показывают, что синхронное, прерывистое свечение P. carolinus в дикой природе является результатом индивидуального и коллективного поведения. Хотя интервал между вспышками на 1.75 Гц идентичен для одного светлячка и для группы светлячков, появление четко определенного интервала между вспышками требует наличия множества особей.

Периодичность свечений проявляется, когда в камере находится более 15 особей. В ранее проведенных исследованиях утверждалось, что именно это число особей является минимальным порогом для проявления коллективного поведения.

Каждое свечение состоит из нескольких синхронных вспышек и имеет треугольную форму, аналогичную наблюдаемой в дикой природе. В синхронном свечении всегда участвовало подавляющее большинство особей, чего нельзя сказать про полет, так как лишь некоторые летали, пока остальные оставались неподвижны либо просто ползали по стенкам камеры. Также стоит отметить, что синхронное свечение самцов происходит даже в отсутствии самки, а его продолжительность составляет порядка 15 минут.

Ранее создавались математические модели, которые пытались описать синхронное свечение у светляков. Однако, учитывая ограниченность данных, эти модели не были точны. Хотя многие годы они считались абсолютно достоверными.

Полученные в ходе данного исследования сведения позволяют пересмотреть эти модели, улучшить и доработать их в будущем. Светлячки не синхронизируются за счет какой-то особенной нейронной связи, их поведение является простым копированием того, что делают другие особи в рое. Стоит одному светляку задать ритм, как его тут же подхватывают другие.
Ранее считалось, что синхронное свечение связано с ритуалом ухаживания самцов за самками. Однако тесты показали, что отсутствие самки в камере никак не помешало самцам синхронно светиться. Возможно, суть синхронного свечения заключается не в привлечении самок, а в конкурентной борьбе между самцами. Так или иначе, этот аспект поведения столь удивительных созданий еще предстоит изучить, чем ученые и намерены заняться в будущем.

Кому-то подобные исследования покажутся пустой тратой времени, однако такое утверждение будет слишком радикальным. Мы живем не в отрыве от мира, окружающего нас, а внутри него. Человек от природы любопытное создание, и отрицание проявлений любопытства близко к отрицанию собственной природы. Познание мира не всегда должно иметь какой-то практический смысл и капиталистический подтекст. Порой достаточно того, что мы узнали что-то новое, что-то удивительное и интересное. Знания в большинстве случаев это уже достаточная награда.

Пятничный офф-топ:

Говоря про необычных насекомых (как будто бывают обычные), нельзя не упомянуть богомола.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Освещая альтернативу одноклеточные водоросли и цветные светодиоды

07.04.2021 10:06:45 | Автор: admin


Каждый организм нуждается в питательных веществах, поддерживающих его жизнедеятельность. А каждый вид нуждается в определенных условиях окружающей среды, чтобы избежать вымирания и продолжить род. Если эти требования не выполняются, организм или вид в целом может погибнуть. К людям это также относится, однако мы научились перекраивать окружающую среду под себя так, как это не умеет ни один другой вид на планете. Одной из самых очевидных черт нашего вида является потребление планетарных ресурсов. Технологический прогресс привел к геометрическому росту спроса на топливо, которого, как неудивительно, катастрофически не хватает. Если же учесть, что все рано или поздно заканчивается, то выход из сложившейся ситуации в виде поиска альтернативных источников топлива становится чуть ли не единственным. Одной из таких альтернатив могут быть одноклеточные водоросли. Ученые из Американского института физики (США) провели опыты, в ходе которых воздействовали на водоросли Dunaliella salina (дуналиелла солоноводная) монохроматическим красным и синим светом. Зачем было освещать водоросли, что это дало в результате, и как это связано с альтернативным топливом? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования


Многие любители творчества профессора Толкиена, читая его произведения, сопоставляют себя с разными героями. Кто-то видит себя в образе мудрого старца, знающего ответы на все вопросы, кто-то предпочитает воображать себя эльфом с +100 к меткости, кто-то видит себя героем, спасающим весь мир. Но в реальности, если применить существ Средиземья в качестве аналогии, наш вид скорее похож на гномов Мории, которые копали слишком жадно и слишком глубоко. Пусть это сравнение покажется кому-то слишком утрированным либо слишком гиперболизированным, но факт остается фактом людей много, а ресурсов становится очень и очень мало.

Поскольку нефть, газ, уголь и прочие ископаемые сложно назвать возобновляемыми, ученые по всему миру начали мозговой штурм в области топливных альтернатив. Одним из возможных вариантов решения энергетического кризиса может оказаться микроскопическая водоросль вида дуналиелла солоноводная (D. salina).


Dunaliella salina

D. salina известна людям уже довольно давно и даже нашла свое применение в пищевой промышленности в виде биологически активных добавок и в косметологии, так как способна вырабатывать внушительное количество каротина.

Другие микро-водоросли также интересны ученым, однако у D. salina имеется ряд преимуществ над своими собратьями. Этот вид водорослей крайне быстро размножается, обладает высокой устойчивостью к условиям окружающей среде (особенно к уровню солености), а также не имеет клеточных стенок, что облегчает процесс разрушение клетки (важный аспект производства биотоплива).


Озеро в Турции, поменявшее свой цвет из-за водорослей D. salina.

Учитывая все плюсы, почему мы до сих пор не заправляем свои авто водорослями? Проблема в стоимости производства такого биотоплива. Это еще одна причина использовать для этого именно D. salina, так как она одна из немногих микроводорослей, используемых коммерчески из-за ее способности накапливать большое количество каротиноидов и других побочных продуктов. Другими словами, в процессе производства биотоплива наличие используемых где-либо побочных продуктов помогает снизить стоимость этого процесса.

Помимо липидов и каротиноидов, из культивирования D. salina можно также получить белки и углеводы, которые в последствии также можно использовать в корме для сельскохозяйственных животных.

Однако, чтобы получить эту заманчивую выходу, необходимо разработать методику ускорения роста D. salina. А одним из самых важных факторов роста (следовательно, и синтеза биокомпонентов) для водорослей этого вида является освещение. Любопытно, что для D. salina необходима определенная доза света, т.е. рост будет медленный, если света мало, но при его избытке синтез веществ будет подавляться. Поэтому, как отмечают ученые, оптимизация условий освещения очень важна для производства биоматериалов водорослями.

Отличным источником света для выращивания водорослей считается LED, т.е. светодиод, из-за его точности и стабильности в излучении света с определенной длиной волны и высокой энергоэффективности в течение длительного времени по сравнению с люминесцентными лампами. В некоторых исследованиях светодиоды применялись в качестве осветителей в фотобиореакторах, излучающих монохроматический свет для культивирования микроводорослей.

К примеру, в ходе одних исследований фотобиореактор с красной и синей светодиодной подсветкой использовался для увеличения производства бета-каротина D. salina. Также известно, что клетки одноклеточных зеленых водорослей Chlamydomonas reinhardtii и Chlorella variabilis регулируют свои светопоглощающие функции в ответ на разное качество монохроматического света (синий 477 нм, зеленый 514 нм, и красный 666 нм). Согласно некоторым данным, система со смещением длины волны (использование синего и красного светодиодов по очереди по 5 дней) увеличивала плотность клеток и продуктивность бета-каротина D. salina по сравнению с культивированием в условиях освещения без смещения длины волны. Проблема в том, что эти исследования были сосредоточены либо на самом росте водорослей, либо на синтезе ими бета-каротина. Но мало кто уделял внимание влиянию света на синтез липидов.

Авторы рассматриваемого нами сегодня труда решили проверить, какие условия освещения должны быть, чтобы положительно повлиять на рост и производство биокомпонентов, особенно на биомассу и липидную продуктивность D. salina. Дополнительно были исследованы изменения содержания каротиноидов, углеводов и белков.

Результаты исследования


В качестве источников света использовались девять различных светодиодных ламп, излучающих белый свет, монохроматический красный свет (пиковая длина волны 660 нм), монохроматический синий свет (пиковая длина волны 455 нм) и несколько комбинаций синего и красного. Каждый осветитель состоял из семи единиц (т.е. отдельных светодиодов), излучающих свет с определенной длиной волны. Чтобы избежать возможного светового насыщения, освещение было спроектировано с низкой плотностью фотонов. Рабочая мощность каждого светодиода составляла 1 Вт, следовательно, общая мощность для каждой лампы была 7 Вт (1b).


Изображение 1

Лампы, в которых использовались комбинации синих и красных светодиодов обозначены nRmB, где n число красных, а m число синих светодиодов в комбинации (пример на 1b: 3R4B 3 красных и 4 синих). В ходе опытов использовались следующие варианты: 0R7B (синий без красного), 1R6B, 2R5B, 3R4B, 4R3B, 5R2B, 6R1B и 7R0B (красный без синего).

Белый свет использовался в качестве контрольной группы. Спектральные характеристики каждой лампы были проанализированы с помощью анализатора освещения для растений (PLA-30; 1a). Плотность фотонов всех осветителей была измерена с помощью PLA-30 и составила 81.64 4.58 мкмоль/м2/с.

Емкости с культурой водорослей были расположены в картонных контейнерах (25 х 25 х 35 см) с отверстиями ( = 8 см) для освещения, покрытых фольгой во избежание утечки света и для защиты образов от любого внешнего освещения (1b).


Изображение 2

Влияние того или иного освещения на D. salina оценивалось спустя 22 дня. В течение этого времени плотность клеток D. salina постепенно возрастала (2a).

Было обнаружено, что монохроматический красный свет оказывает негативное влияние на рост D. salina. Показатель плотности клеток при красном свете в любой промежуток времени всегда был ниже, чем у других вариантов освещения, даже у контрольной группы (белый свет). Синий свет показал плотность клеток лучше, чем красный, но все еще хуже, чем контрольный белый.

Ситуация радикально менялась, когда использовались различные комбинации красного и синего. К примеру, комбинации 4R3B, 5R2B и 6R1B всегда показывали большую плотность клеток, чем белый свет.

Скорость роста и скорость деления клеток, рассчитанные на основе изменений плотности клеток, также оказались зависимыми от условий освещения (2b). Скорость роста (l) и скорость удвоения (K) при красном освещении была по-прежнему ниже, чем при белом, но комбинированные варианты были лучше контрольного белого света.

Эти два показателя (I и K) в результате повлияли на время генерации (T) D. salina, т.е. на показатель времени, необходимого для завершения роста водорослей. T D. salina при красном свете было самым продолжительным (5.956 0.088 дней), затем следовал синий свет, самое же малое T наблюдалось при белом освещении (5.510 0.065 дней).

Как и предыдущие показатели, T было значительно лучше в случае комбинированного освещения: самое малое T было при 4R3B (5.173 0.022 дня).

Промежуточный вывод заключается в том, что использование чисто красного или чисто синего освещения не имело никаких преимуществ по сравнению с контрольным белым освещением. Однако использование комбинаций красного и синего позволяло достичь улучшенных значений различных показателей (скорость роста, скорость удвоения, время генерации и плотность клеток).


Изображение 3

По завершению периода культивирования плотность клеток при комбинированных вариантах освещения была значительно выше, чем при красном, синем или белом по отдельности (3a).

Максимальная плотность клеток была достигнута в условиях 4R3B и составила 0.873 0.011 х 106 мл-1, что на 19.60% больше, чем при белом свете, на 35.02% при синем и на 47.07% при красном.

Сравнение плотности высушенной биомассы D. salina (3b) разных вариантов освещения не показало существенных отличий. Единственным исключением был вариант 6R1B, при котором была достигнута максимальная плотность в 0.407 0.004 г/л.

Любопытно, что каждая клетка при обработке чисто синим светом была намного тяжелее, чем клетки при других условиях освещения. Подобное наблюдалось в ранее проведенных исследованиях Chaetoceros muelleri. Следовательно, комбинации монохроматического красного и синего света были полезны для роста D. salina, а синий свет имел тенденцию ингибировать деление клеток, но способствовал накоплению клеточного содержимого, что и приводит к увеличению высушенной биомассы.

Далее ученые сравнивали показатели липидов, каротиноидов, углеводов и белков D. salina в условиях разного освещения.


Изображение 4

При синем и комбинированном освещении содержание липидов были значительно выше, чем при белом и красном свете (4a). Наибольшее содержание липидов было именно при синем освещении и достигло значения 70.128 7.499 пг/клетку (1 пг (пикограмм) = 1012 грамма). При этом влияние хорошо показавшего себя в предыдущих сравнительных анализах комбинированного освещения на содержание липидов было не столь существенным.

Показатели каротиноидов D. salina также отличались в зависимости от освещения (4b). После 22 дней культивирования D. salina под воздействием белого света был получен самый высокий выход каротиноидов (2.335 0.033 пг/клетку) по сравнению с другими источниками света. К примеру, при красном освещении этот показатель был вдвое ниже.

Белый свет обогнал конкурентов и по содержанию углеводов (4c), показав максимальное значение в 44.818 2.636 пг/клетку. А вот при комбинированном свете 5R2B было достигнуто минимальное содержание углеводов в 31.678 7.985 пг/клетку.

Содержание белка в клетках D. salina увеличивалось с разной скоростью в разных условиях освещения (4d). Существенную разницу показал лишь синий свет, в случае которого содержание белка увеличилось до 122.988 9.201 пг/клетку.

Из этих результатов следует, что в аспекте накопления биокомпонентов самым продуктивным был синий и белый свет. Но в аспекте роста D. salina первенство все же за комбинированным освещением.

В заключении была выполнена оценка влияния разного освещения на общую выработку сухой биомассы, липидов, каротиноидов, углеводов и белков D. salina.


Таблица сравнения выработки сухой биомассы, липидов, каротиноидов, углеводов и белков D. salina при разном освещении спустя 22 дня культивирования.

При красном свете наблюдалась минимальная выработка. Белый свет оказался лучше всех в аспекте выработки углеводов (0.106 0.002 мг/л в день) и каротиноидов (1.486 0.075 мг/л в день). По сухой биомассе и липидам лучшими оказались комбинированное и синее освещение. В случае выработки белков превзойти белый свет удалось лишь одной комбинации красного и синего, а именно 6R1B. Максимальные значения выработки биомассы и белков для 6R1B составили 18.506 0.175 и 3.800 0.172 мг/л в день, что на 14.61% и 9.07% выше значений для белого света.

При этом выработка липидов всех комбинированных вариантов была выше, чем у контрольной группы. Максимальная липидная выработка была достигнута в условиях 4R3B и составила 2.325 0.130 мг/л в день, что на 35.33% выше, чем при белом свете. Другими словами, именно 4R3B была идеальной комбинацией, если совокупно оценивать все показатели, от скорости роста до значений выработки липидов.

Для более дентального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог


Для развития того или иного организма, одноклеточного или многоклеточного, требуются определенные условия. Во многом нам они известны, но порой не до конца изучены. В случае D. salina нам было известно, что для роста этих одноклеточных водорослей нужен свет, но никто особо не задавался вопросом, что будет, если свет будет разноцветный.

В данном труде ученые провели опыты, в ходе которых на культивируемые клетки водорослей D. salina воздействовал белый, синий, красный и красно-синий свет. На первый взгляд самым эффективным освещением казался классический белый. Скорость роста, скорость удвоения, время генерации и плотность клеток при синем или красном освещении были существенно ниже, чем при белом. Однако комбинация первых двух показала совершенно иную картину.

Что касается биокомпонентов клеток D. salina (липидов, каротиноидов, углеводов и белков), то их содержание также варьировалось в зависимости от освещения. Какой-то свет был лучше для липидов, но негативно влиял на белки, и наоборот: липидов было больше всего при синем и комбинированном свете, белков при синем свете, а каротиноидов и углеводов при белом.

Учитывая, что одни показатели хороши в одних условиях, а другие в других, ученым необходимо было установить, какая комбинация каких цветов освещения позволит получить лучший результат. Для выработки биомассы и белков такой комбинацией стала 6R1B (т.е. 6 красных и 1 синий), а для выработки липидов 4R3B (4 красных и 3 синих).

По словам ученых, эти результаты многообещающее, но требуют дополнительного анализа, так как идеальная комбинация, удовлетворяющая всем параметрам, пока еще не была найдена. В будущем они намерены провести еще немало тестов, чтобы найти ее, а также уделить внимание анализу состава жирных кислот, синтезируемых в водорослях при благоприятном комбинированном освещении для увеличения производства липидов.

И то, и другое напрямую связано с перспективой использования водорослей вида D. salina в качестве сырья для биодизеля, характеристики которого зависят от состава жирных кислот, меняющегося при разном освещении.

Говорить о скором появлении биодизеля на водорослях пока не приходится, так как процесс его производства пока еще слишком сложен и дорог, чтобы это было выгодно. Однако это направление остается очень заманчивым и многообещающим, остается лишь отшлифовать процесс производства для максимизации качества и объемов выработки. Как бы то ни было, остается надеяться, что подобного рода исследования в области альтернативного топлива дадут плоды раньше, чем иссякнут запасы ископаемых ресурсов.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Свет внутри неинвазивная биолюминесцентная визуализация

14.05.2021 10:12:48 | Автор: admin


Увидеть танец светлячков в сумеречном свете или свечение волн океана из-за необычных микроорганизмов это захватывающее и даже немного сказочное зрелище из мира дикой природы. Светлячки, к примеру, используют свое свечение для коммуникации, поиска партнера, а порой и для охоты. Для светлячков биолюминесценция является вполне естественным эффектом химических процессов, протекающих в их организме. Человек же может воссоздать подобный эффект с помощью технологий и применить его, к примеру, в медицинской диагностике. Последние несколько лет идет активная разработка различных систем биолюминесцентной визуализации (BLI от bioluminescent imaging), и вот ученые из университета Миссури (США) предложили свой вариант недорогой, простой в использовании и, что самое главное, портативный. В чем особенности устройства, как именно проходит диагностика с его использованием, и насколько точны полученные таким методом данные? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования



Биолюминесценция у светлячков.

Если рассматривать BLI детальнее, то этот метод основан на использовании в качестве репортера* фермента люцифераза, который генерирует биолюминесцентный свет при окислении его субстрата люциферина.
Репортер* ген, который специально присоединяет к регуляторным последовательностям других генов для исследования проявлений генов в культурах клеток.
Одно из первых применений BLI основывалось на конститутивной экспрессии фермента люциферазы в раковых клетках для мониторинга роста опухоли и метастазирования. Среди более современных применений стоит выделить клеточные зонды на основе люциферина, позволившие расширить спектр применения BLI для функциональной визуализации ферментативных и метаболических процессов. Главный принцип таких зондов основан на том, что люциферин с химическими клетками не является субстратом для люциферазы до тех пор, пока он не высвобождается или не освобождается в результате определенного представляющего интерес биологического процесса (например, селективного ферментативного расщепления; 1a). Интенсивность биолюминесцентного сигнала количественно коррелирует с количеством свободного люциферина, что отражает уровень функциональной активности биологического процесса, который исследуется этим методом.

Несмотря на свои преимущества, нынешние варианты BLI обладают рядом ограничений и проблем. К примеру, текущая система BLI основана на использовании клеток и животных, экспрессирующих трансгенную люциферазу, а потому может применяться к весьма ограниченному числу животных моделей болезней человека.

В дополнение к этому, современные инструменты для визуализации обычно включают небольшой светонепроницаемый черный ящик и охлаждаемую камеру с зарядовой связью (CCD от charge-coupled device) в качестве светового детектора. Эти технические особенности делают BLI стационарным, крайне дорогим и сложным в использовании, а также ограничивают использование BLI только для мелких животных, таких как мыши и крысы. К тому же во время подобных BLI исследований животное должно находиться под длительным наркозом, который может негативно повлиять на его здоровье и нарушить метаболизм.

Результатом вышеописанных технических особенностей является гибель огромного числа животных, ввиду высокоинвазивности методики. В качестве примера ученые приводят токсикологическое тестирование потенциальных терапевтических кандидатов для активации цитохрома P450 (CYP450), фермента печени, ответственного за дезактивацию большинства клинически используемых лекарств. Каждый год от этого тестирование гибнет сотни тысяч собак.

Посему изменение нынешних BLI систем важно не только с точки зрения экономии, простоты использования и точности анализов, но и с точки зрения сохранения жизней.

Чтобы решить эти проблемы, авторы рассматриваемого нами сегодня труда предложили свой вариант BLI устройства, которое они назвали PBL (от portable bioluminescent), т.е. портативная биолюминесцентная система.

Их разработка дает возможность проводить неинвазивные измерения биологических процессов в живом организме с использованием биоразлагаемой инъекционной пробки на основе люциферазы в сочетании с люцифериновым клеточным зондом и высокочувствительным портативным детектором света.

Ученые решили сконцентрировать свое внимание на исследовании ферментативных процессов, так как существует острая потребность в более эффективных методах оценки активности ферментов (например, CYP450) в живом организме. Для исследования возможностей PBL в аспекте внеклеточных ферментов был выбран дипептидилпептидаза 4 (DPP-4), так как этот фермент крайне важен в поиске лекарств от диабета второго типа и некоторых видов онкологии.

Результаты исследования



Изображение 1

На 1b показана схема системы PBL, состоящая из трех основных компонентов:

  • функциональный биолюминесцентный зонд соединение люциферина в клетке, которое может распознавать определенный биологический процесс (например, CYP450 или DPP-4; 1a);
  • биосовместимая биолюминесцентная светопродуцирующая пробка (репортер) на основе люциферазы или устройство для инкапсуляции клеток;
  • портативный датчик (детектор) света.

Как правило, в ходе классического исследования животному сначала вводят однократную дозу люциферинового зонда, инкапсулированного в клетку, с последующей подкожной инъекцией люциферазной пробки спустя несколько минут. Устройство клеточной инкапсуляции с трансплантированными клетками, экспрессирующими люциферазу, используется для длительного мониторинга биологических процессов (до 5 месяцев).

Затем световой датчик немедленно прикрепляется к люциферазной пробке, и биолюминесцентный сигнал записывается через определенные интервалы времени для получения максимального светового потока (1c).

После инъекции инкапсулированного зонда свободный люциферин высвобождается в исследуемом органе (например, в печени) в результате освобождения зонда за счет определенного биологического процесса или фермента (к примеру, CYP450; 1d).

Потом свободный люциферин мигрирует в кровоток и в конечном итоге достигает репортера на основе люциферазы, помещенного под кожу подопытного животного. Количество света, генерируемого люциферазной пробкой, пропорционально концентрации люциферина в кровотоке, что приводит к производству биолюминесцентного света, которое напрямую коррелирует с уровнем функциональной активности биологического процесса, который изучается в ходе конкретного исследования.

В рассматриваемом нами сегодня труде ученые во всех опытах использовали D-люциферин (X = O; 1a; далее по тексту будет просто люциферин). Но это не значит, что их методика работоспособна только с этим типом люциферина, она может быть адаптирована под любые люциферазы и соответствующие им субстраты.

Одним из важнейших элементов устройства является детектор света с высокой чувствительностью и низким уровнем шума, специально разработанный для PBL системы. Особенность этого датчика в том, что он мог отслеживать потоки биолюминесцентных фотонов, которые обычно относительно невелики.

В датчике присутствует большой кремниевый фотодиод (1 см2) в фотоэлектрическом режиме с трансимпедансным усилителем (утрировано говоря, преобразовывает входной ток в выходное напряжение), установленный в цилиндрический корпус диаметром 30 мм и высотой 40 мм. Полученное устройство напоминает стетоскоп и может быть легко применено к маленьким и крупным животным, а также к человеку.

Рабочая поверхность устройства механически защищает чувствительные электронные компоненты и содержит круглую оптическую апертуру диаметром 1 см.

Ученые выбрали фотодиод, а не камеру, по той причине, что первый может работать при комнатной температуре, обладает низкой стоимостью и низким уровнем шума (низкий темновой ток).

Для обнаружения низких уровней освещенности использовался операционный усилитель с низким уровнем шума, сконфигурированный как трансимпедансный усилитель. Коэффициент усиления был установлен на 1010 В/А с резистором обратной связи R = 10 ГигаОм.

Детектор выводит значение напряжения, которое пропорционально оптической мощности излучения, поглощаемой поверхностью диода:
V = P/r, где P мощность излучения, V напряжение, а r коэффициент пропорциональности, называемый чувствительностью. Для определения r выполнялась калибровка детектора.

Вторым важным элементом системы является инъекционная пробка на основе люциферазы (или коротко люциферазная пробка). Эта пробка содержит рекомбинантный фермент люциферазы вместе с его кофакторами и полимерную матрицу, чтобы фермент и его кофакторы оставались неповрежденными под кожей подопытного (1b и 1c).

Пояснение принципа работы BLI.

Чтобы оптимизировать состав инъекционной люциферазной пробки и добиться яркого стабильного сигнала в живом организме, был проведен тест влияния различных компонентов на светоотдачу с помощью стационарного прибора BLI, оснащенного чувствительной CCD камерой. Анализ показал, что люминесценция, генерируемая люциферазной пробкой, прямо пропорциональна количеству фермента люциферазы, добавленного к пробке, и относительно не зависит от концентрации АТФ в диапазоне 110 мМ.

За счет этих данных был выбран определенный состав люциферазной пробки для всех последующих опытов на мышах (общий объем равен 100 мкл): 83 мкл Matrigel, 10 мкг фермента люциферазы, 10 мМ АТФ, 1 мМ Mg2+ и PBS.

Матрица Matrigel была выбрана для этого исследования, так как она нетоксична и легко вводится подкожно, а также производит более яркий и стабильный сигнал по сравнению с другими матрицами. В результате пробка на базе Matrigel сохраняла стабильность в течение 60 минут после инъекции, что позволяло непрерывно измерять биолюминесцентный сигнал.

Поскольку интенсивность света на поверхности зависит от глубины источника света, необходимо было оценить зависимость биолюминесцентного светового потока от глубины люциферазной пробки. Для этого был использован весьма необычный образец кусок мяса из магазина. С его помощью ученые количественно оценили потерю сигнала в зависимости от толщины ткани. Как и ожидалось, интенсивность детектируемого света зависела от глубины источника света.

Любопытно то, что падение интенсивности сигнала не было столь значительным, как ожидалось при использовании обычной люциферазы светлячков (примерно в десять раз на глубине в 0.8 см). Даже на глубине в 1 см был виден отчетливый сигнал.

Далее необходимо было выяснить, пропорционально ли количество света, генерируемого люциферазной пробкой, концентрации люциферина в крови подопытных. Для этого разные концентрации раствора люциферина вводились подопытным внутрибрюшинно, после чего подкожно вводилась люциферазная пробка. После чего биолюминесцентный световой поток непрерывно измеряли для определения максимальной мощности оптического излучения (фотонов в секунду, т.е. максимальный поток фотонов).


Изображение 2

Анализ данных показал, что поток фотонов от люциферазной пробки линейно коррелирует с количеством введенного люциферина в достаточно большом диапазоне дозировок (150, 15 и 1.5 мг/кг). Следовательно, пробка может успешно использоваться для точного определения концентрации люциферина в крови подопытных (2a). На снимках 2b показаны световые сигналы подопытных (полученные с помощью CCD), которым вводили люциферазную пробку и три различных концентрации люциферина.

Далее были проведены аналогичные опыты, но уже с применением портативного детектора света (2c). Результаты (2d) показывают аналогичную линейную корреляцию между концентрацией люциферина и максимальной оптической силой, измеренной портативным детектором света. Даже уровень погрешности обоих методов сопоставим.

Это говорит о том, что метод PBL идеально подходит для высокоточной количественной оценки концентрации свободного люциферина в крови нетрансгенных животных, которые не экспрессируют фермент люциферазы.

На следующем этапе ученые проверяли, насколько эффективен их метод для определения ферментативной активности у живых мышей, а именно активности внеклеточного фермента. Для этого было подготовлено четыре группы мышей (по 5 особей).

Две разные дозы 5 и 10 мг/кг селективного ингибитора DPP-4 ситаглиптина (SIT от sitagliptin) в буфере PBS* вводили двум группам мышей, в то время как третья группа мышей получала чистый PBS (контрольная группа).
Натрий-фосфатный буфер (PBS)* водный раствор солей, содержащий хлорид натрия, гидрофосфат натрия, хлорид калия и дигидрофосфат калия.
Спустя тридцать минут трем группам мышей делали инъекцию люциферинового зонда в клетке DPP-4, а еще через 10 минут подкожную инъекцию люциферазной пробки. Четвертой (контрольной) группу также делали инъекцию пробки, но не вводили люцифериновый зонд.

От всех четырех групп мышей был получен сигнал, зафиксированный как классическим методом (IVIS Spectrum), так и с помощью портативного датчика света.


Изображение 3

Наблюдалось дозозависимое снижение сигнала, полученного от животных, получавших ингибитор DPP-4. Подобные измерения полностью согласовывались между показаниями IVIS Spectrum и портативного светового детектора (3a и 3b).

Из этих результатов следует, что PBL может обеспечить точное считывание внеклеточной ферментативной активности у нетрансгенных животных неинвазивным способом. А полученные таким образом данные сопоставимы с данными, полученными с помощью классической технологии (т.е. IVIS).

Далее было проведено тестирование PBL в работе с внутриклеточными ферментами (CYP450). Для этого был использован CYP450 изофермент цитохром P450 3A (Cyp3a), который является наиболее распространенным и универсальным изоферментом, участвующим в метаболизме лекарственных препаратов.

В этом случае было задействовано две группы мышей. Особям из одной внутрибрюшинно вводили дексаметазон (DEX от dexamethasone, доза 50 мг/кг), который вызывает активацию Cyp3a. Вторая группа мышей (контрольная) получала обычный раствор растительного масла. Через 24 часа обеим группам мышей вводили зонд люциферин-IPATM с последующей анестезией и получением сигнала с помощью IVIS Spectrum.


Изображение 4

На изображениях 4a-4c видно, что биолюминесцентный сигнал от мышей, получивших DEX, был приблизительно в три раза выше, чем сигнал от контрольной группы. Это указывает на то, что зонд может успешно обнаруживать активацию Cyp3a непосредственно в живом организме после обработки мышей дексаметазоном.

Теперь необходимо было провести аналогичные опыты, но с применением метода PBL. Опять же было две группы мышей контрольная и та, которой вводили DEX. Как и ранее, через 24 часа мышам вводили зонд люциферин-IPATM, а потом анестезировали, вводили люциферазную пробку и проводили визуализацию с помощью портативного детектора и IVIS Spectrum (для сравнения).

Как показано на 4d-4f, значительно более сильный биолюминесцентный сигнал был получен от особей с DEX, чем от контрольной группы, как в случае применения IVIS (4d-4e), так и портативного светового детектора ().

Одной из важнейших задач, которые поставили перед собой авторы PBL разработки, является возможность проводить неинвазивную визуализацию крупных животных (например, собак) и людей. Прежде всего был выполнен токсикологический анализ, установивший, что никаких отклонений в ответ на D-люциферин у собак не было выявлено.

Изображение 5 (предупреждение: на 5c снимки руки трупа человека)


Далее была выполнена оценка пропорциональности генерируемого люциферазной пробкой света к концентрации введенного люциферина. Собак анестезировали, и люциферазную пробку имплантировали подкожно в брюшную полость. Затем вводили люциферин в различных концентрациях (15, 1.5 и 0.15 мг/кг) внутрибрюшинно с последующим размещением портативного детектора света непосредственно на области люциферазной пробки ().

На 5b видно, что максимальный световой выход линейно коррелировал с количеством введенного люциферина в большом диапазоне концентраций люциферина.

Данные, полученные во время тестов на собаках, полностью согласуются с данными тестов на мышах. В некоторых случаях сенсорный сигнал у собак был в 30 раз выше, чем у мышей (при дозе в 15 мг/кг).

В заключение была выполнена оценка эффективности PBL методики в рамках применения ее на людях. Для этих экспериментов было подготовлено 100 мкл люциферазной пробки с тремя различными дозами люциферина (конечные концентрации: 2 мкМ, 200 нМ и 20 нМ) с последующей инъекцией смеси под кожу трупа человека в область плеча (5c). Затем переносной световой детектор помещали непосредственно на люциферазную пробку. Длительность регистрации сигналов составляла 15 минут.

Даже при самой низкой концентрации люциферина наблюдался очень сильный сигнал, в три раза превышающий мощность фонового сигнала. В данном опыте сила сигнала также была пропорциональная концентрации люциферина в широком диапазоне величин (5d).

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


В данном труде ученые решили усовершенствовать имеющуюся на данный момент технологию биолюминесцентной визуализации, сделав ее портативной, неинвазивной, легкой в применении и, что самое важное, безопасной для животных и человека.

Принцип работы устройства достаточно прост. В тело вводится зонд для визуализации, который достигает нужного участка (например, печени). Уровень биологической активности участка определяет количество люциферина, которое попадает в кровоток. Когда люциферин достигает области, где размещено устройство, возникает биохимическая реакция с выделением света. Портативный детектор света прикладывается к участку тела, где устройство ближе всего, и замеряет интенсивность света, уровень которого коррелирует с количеством присутствующего люциферина.

Такой способ помогает определить биологические процессы, протекающие в то или ином органе/тканях, в ответ на лечение. Следовательно, медики и ученые, разрабатывающие лекарства, могут понять, работает ли препарат или нет.

Данная разработка также порадует тех, кому не безразлична судьба подопытных животных, которые при обычных условиях могут сильно пострадать или даже погибнуть в ходе биолюминесцентной визуализации. Из-за высокой смертности ученые вынуждены использовать большое число подопытных, чтобы получить необходимый результат того или иного исследования. Неинвазивность PBL метода не только значительно снижает риск для животных, но и нивелирует необходимость в использовании большого числа животных.

Точность портативного PBL не уступает своим стационарным конкурентам, что может сильно ускорить и упростить диагностику пациентов до и во время лечения. Если попытаться одним словом описать, что же PBL в итоге дает, то это слово будет время. Скорость и простота выполнения PBL диагностики экономят драгоценное время медиков, которое в противном случае ушло бы на выполнение какой-то сложной диагностической процедуры без каких-либо гарантий, что она покажет нужные результаты.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы


Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru