Русский
Русский
English
Статистика
Реклама

Шумоочистка

Разбираемся, как подавить шум в речи с помощью глубокого обучения и OpenVINO

31.05.2021 12:16:05 | Автор: admin

Данная статья будет полезна студентам и тем, кто хочет разобраться с тем, как происходит шумоподавление речи (Speech Denoising) с помощью глубокого обучения. На Хабре уже были статьи по данной тематике несколько лет назад (раз, два), но нашей целью является желание дать несколько более глубокое понимание процесса работы со звуком.

Картинка со звукомКартинка со звуком

Задача шумоподавления с помощью глубокого обучения и OpenVINO попала в руки к студентам ITlab учебно-исследовательской лаборатории Университета Лобачевского при поддержке компании Intel. Студенты, начиная со 2 курса, под руководством преподавателей работают над интересными инженерными и научными проектами. Создание высокопроизводительного программного обеспечения требует применения специальных инструментов разработчика и технологий параллельного исполнения кода, и в рамках проектов лаборатории студенты с ними знакомятся. Данная статья является результатом работы студентов Вихрева Ивана, Рустамова Азера, Зайцевой Ксении, Кима Никиты, Бурдукова Михаила, Филатова Андрея.

Что есть звук в компьютере

Подавление фонового шума речи беспокоит людей уже очень давно, а с приходом дистанционной работы и обучения значимость проблемы возникла многократно. Разговаривать через интернет приходится все больше, и аудиосообщения встроены во все популярные мессенджеры. Как бы банально не звучало, но хороший, чистый звук человек воспринимает лучше. Однако хороший микрофон стоит денег, да и звукоизоляция в среднестатистической квартире оставляет желать лучшего, и мы слышим всё - от работы кулеров в ноутбуке и заканчивая дрелью надоедливого соседа (шум дрели у преподавателя особо мешает восприятию материала).

Как получить чистый звук, не покупая студийный микрофон и не обивая всю квартиру звукоизолирующими материалами? Над этим вопросом люди думают ещё с конца прошлого века. Решением стали программы, оцифровывающие и редактирующие входящий из микрофона звук.

Lizemijn Libgott / Vice.comLizemijn Libgott / Vice.com

Записанный звук состоит из множества звуковых волн, одновременно попадающих на датчик микрофона в некоторый промежуток времени, в результате чего мы получаем длинный вектор из чисел - это амплитуды (громкость) сигнала в течение небольшого времени. Частота сигнала проводного телефона 8kHz, это значит что мы за секунду 8000 раз измеряем амплитуду (громкость) суммарного сигнала, звуковые карты как правило используют частоту 44.1 или 48kHz.

На этой картинке 3 секунды звука или график на 120 тысяч значений. При таком сильном сжатии по оси X кажется, что мы закрасили площадь под графиком. На этой картинке 3 секунды звука или график на 120 тысяч значений. При таком сильном сжатии по оси X кажется, что мы закрасили площадь под графиком.

Воспроизвести аудиофайл в Python можно с помощью библиотек soundfile и sounddevice.

import sounddevice as sdimport soundfile as sfpath_wav = 'test_wav.wav'data, fs = sf.read(path_wav)sd.play(data, fs)status = sd.wait()

Запись данных с микрофона тоже происходит очень просто - посмотрите и запустите record.py.

Кстати, важная для нас информация. Наша последовательность является суммой множества звуковых волн, и мы можем вычислить какие волны приняли участи в нашей сумме. Теоретически, любой сложный звук может быть разложен на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду и может быть описан числовыми параметрами (а вы говорили, что матан не нужен). Исследования по данной тематике входят в область цифровой обработки сигналов, на хабре есть информация об открытом курсе Основы цифровой обработки сигналов.

Справа мы видим спектр - вклад каждой из волн в частотное разложение. Схема с сайта nuancesprog.ruСправа мы видим спектр - вклад каждой из волн в частотное разложение. Схема с сайта nuancesprog.ru

Чтобы делать с аудио сложные вещи, такие как распознавание человека по голосу, перевод речи речи в текст или удаление шума с помощью глубокого обучения, нам понадобится вычислить вклад различных частот в аудиопоследовательность спектр. Спектр можно представить в виде спектрограммы изображения, показывающего зависимость амплитуды сигнала во времени на различных частотах. Один столбец в спектрограмме соответствует спектру короткого участка исходного сигнала, более тёплые тона означают большее значение.

Пример спектрограммы, полученной из звукового файла, при помощи библиотеки Numpy.Пример спектрограммы, полученной из звукового файла, при помощи библиотеки Numpy.

Спектр для спектрограммы можно вычислить с помощью дискретного преобразования Фурье, реализованного в библиотеке Numpy.Рассмотрим пример создания спектрограммы, описанный в сэмпле. Для этого используются две функции из файла features.py:

def calcSpec(y, params, channel=None):     """compute complex spectrum from audio file"""     fs = int(params["fs"]) # Константа, обозначающая частоту дискредитации     # В нашем случае равна 16000 - наш wav файл записан с частотой 16 кГц    if channel is not None and (len(y.shape)>1):     # Если аудио содержит два канала (стерео) - берем только один канал         sig = sig[:,channel]     # STFT parameters     N_win = int(float(params["winlen"])*fs) # Расчёт размера окна Хэннинга     # В нашем случае 320     if 'nfft' in params:         N_fft = int(params['nfft'])     else:         N_fft = int(float(params['winlen'])*fs) # Расчёт ширины окна для преобразования Фурье         # В нашем случае 320     N_hop = int(N_win * float(params["hopfrac"])) # Расчёт прыжка для преобразования Фурье     # В нашем случае 160     win = np.sqrt(np.hanning(N_win)) # Окно Хэннинга      Y = stft(y, N_fft, win, N_hop)     return Y 

Функция Stft проводит преобразование Фурье. Массив делится на части определённой длины (рассчитанной в calcSpec) и для каждой из частей применяется функция преобразования Фурье, взятая из Numpy возвращает готовую спектрограмму.

def stft(x, N_fft, win, N_hop, nodelay=True):     """     short-time Fourier transform     x - Входной сигнал     N_fft - Количество точек, на которых используется преобразование     win - Окно Хэннинга     N_hop - Размер прыжка    nodelay - Удаление первых точек из конечного массива (В них появляется побочный эффект преобразования)     """     # get lengths     if x.ndim == 1:         x = x[:,np.newaxis] # Если подано несколько файлов, то создаётся дополнительная ось     Nx = x.shape[0] # Количество точек во входных данных (в нашем случае 160000)     M = x.shape[1] # Количество файлов во входных данных (в нашем случае 1)     specsize = int(N_fft/2+1)     N_win = len(win) # Размер окна Хэннинга     N_frames = int(np.ceil( (Nx+N_win-N_hop)/N_hop )) # На сколько частей делим входной массив     Nx = N_frames*N_hop # padded length     x = np.vstack([x, np.zeros((Nx-len(x),M))])      # init     X_spec = np.zeros((specsize,N_frames,M), dtype=complex) # Заполненная нулями матрица, которая станет спектрограммой     win_M = np.outer(win,np.ones((1,M))) # Создаём матрицу, в которой каждый столбец равен окну Хэннинга     x_frame = np.zeros((N_win,M)) # Заполненный нулями вектор (вектора в случае если на вход дали несколько файлов)     for nn in range(0,N_frames):         idx = int(nn*N_hop)         x_frame = np.vstack((x_frame[N_hop:,:], x[idx:idx+N_hop,:])) # Разделяем входной массив на куски размера N_hop         x_win = win_M * x_frame         X = np.fft.rfft(x_win, N_fft, axis=0) # Преобразование возвращает столбец комплексных, где действительная часть - амплитуда, а комплексная - фазовый сдвиг         X_spec[:,nn,:] = X # Добавляем полученный столбец в спектрограмму      if nodelay:         delay = int(N_win/N_hop - 1)         X_spec = X_spec[:,delay:,:] # Удаляем лишний столбец из начала      if M==1:         X_spec = np.squeeze(X_spec) # Удаляем лишнюю ось      return X_spec

Также важной функцией является calcFeat, позволяющая нам прологарифмировать спектрограмму, растягивая нижние частоты и сжимая верхние. Голос человека лежит в диапазоне 85-3000Гц, а диапазон звуковых частот в нашей записи 16кГц маленький промежуток на всем диапазоне, и помощью логарифмирования мы растягиваем нужные нам низкие частоты и поджимаем ненужные высокие

def calcFeat(Spec, cfg):     """compute spectral features"""     if cfg['feattype'] == "MagSpec":         inpFeat = np.abs(Spec)     elif cfg['feattype'] == "LogPow":         pmin = 10**(-12)         powSpec = np.abs(Spec)**2 # Все значения спектрограммы возводятся в квадрат         inpFeat = np.log10(np.maximum(powSpec, pmin)) # и логарифмируются с обрезанием слишком низких значений     else:         ValueError('Feature not implemented.')      return inpFeat 

Наша глубокая модель удаления шума обучена на логарифмированных спектрограммах, поэтому предобработка данной функцией обязательна.Чтобы преобразовать спектрограмму, полученную применением фильтра (выход нейросети) на образ-Фурье, полученный с помощью функции calcSpec, в звук используется функция Spec2sig. В ней вычисляются параметры обратного преобразования Фурье и вызывается функция istft (обратное быстрое преобразование Фурье).

def spec2sig(Spec, params):    """Конвертирует спектрограмму в звук"""    # частота дискретизации    fs = int(params["fs"])    # ширина окна     N_win = int(float(params["winlen"])*fs)    if 'nfft' in params:        N_fft = int(params['nfft'])    else:        # длина быстрого преобразования Фурье        N_fft = int(float(params['winlen'])*fs)    #длина сегментов окна    N_hop = int(N_win * float(params["hopfrac"]))    # окно Хеннинга    win = np.sqrt(np.hanning(N_win))    # обратное преобразование Фурье    x = istft(Spec, N_fft, win, N_hop)    return x

В istft обратное преобразование Фурье также выполняется при помощи функции взятой из Numpy.

def istft(X, N_fft, win, N_hop):    # get lengths    specsize = X.shape[0] # Спектрограмма    N_frames = X.shape[1] #  кол-во кадров    if X.ndim < 3:        X = X[:,:,np.newaxis] # Приведение размера до 3    M = X.shape[2] # кол-во каналов    N_win = len(win) # длина окна хеннинга    Nx = N_hop*(N_frames - 1) + N_win    # Умножение матрицы win и единичной матрицы размера 1,M    win_M = np.outer(win,np.ones((1, M)))     x = np.zeros((Nx,M))  # нулевая матрица Nx,M для сохранения ответа        for nn in range(0, N_frames):        X_frame = np.squeeze(X[:,nn,:]) # Вектор по данному фрейму        # обратное преобразование фурье для X_frame ,N_fft        x_win = np.fft.irfft(X_frame, N_fft, axis=0)                x_win = x_win.reshape(N_fft,M) # изменяем размер        # получаем окно хеннинга нужного размера         x_win = win_M * x_win[0:N_win,:]        # добавляем результат для данного фрейма        idx1 = int(nn*N_hop); idx2 = int(idx1+N_win)        x[idx1:idx2,:] = x_win + x[idx1:idx2,:]         if M == 1:        x = np.squeeze(x) # Убираем лишние измерения если канал один         return x

Звуковой сигнал, записываемый в реальных акустических условиях, часто содержит нежелательные шумы, которые могут порождаться окружающей средой или звукозаписывающей аппаратурой. Значит, полученное цифровое описание также будет содержать нежелательные шумы.

Речь до и после удаления шумаРечь до и после удаления шума

Чтобы очистить звук, к цифровому описанию необходимо применить фильтр, который убирает нежелательные шумы. Но возникает другая проблема. Каждый из видов шумов требует свой фильтр, который необходимо подбирать вручную или искать в банках данных фильтров. Отфильтровать шум на частотах, отличающихся от человеческой речи, проблем нет, от них избавлялись еще до этих ваших нейросетей. А вот убрать детский плач или стучание клавиш без значительного ухудшения качества голоса было проблематично.

В решении данной проблемы могут помочь модели глубокого обучения. Основное преимущество нейросетей перед заранее подготовленными фильтрами заключается в большем охвате различных видов шумов. Нейросеть можно натренировать, постоянно добавляя всё новые виды шума.

В нашем случае мы воспользуемся моделью NSNet2. Эта нейронная сеть использовалась в Deep Noise Suppression Challenge, проводимом компанией Microsoft. Целью разработки данной сети было создание модели для очистки звука от шума в реальном времени. Данная модель состоит из полносвязного слоя с ReLU, двух рекуррентных GRU (Gated Recurrent Unit) блоков и полносвязных слоев (FF, feed forward) с ReLU и sigmoid активацией.

На речь влияет большое количество внешних условий. Человек может говорить громко или тихо, быстро или медленно, говорить он может в большой комнате или в маленькой, далеко от микрофона или близко к нему. Для моделирования этих более сложных условий, были применены аугментации. В частности, в данном случае, для модификации звука использовались случайные биквадратные фильтры. Благодаря применения таких аугментаций, зашумление звука наиболее приближено к реальным условиям.

Представленные результаты по качеству работы можно посмотреть в статье Data augmentation and loss normalization for deep noise suppression. Построенная модель имеет хорошие показатели для различных типов шума.

Конвертация модели в OpenVINO

При работе с нашей моделью мы использовали OpenVINO (Open Visual Inference & Neural Network Optimization) - продукт, разрабатываемый компанией Intel. Как видно из названия, OpenVINO - это набор инструментов для исполнения и оптимизации нейронных сетей.

Существует множество фреймворков для создания и тренировки нейросетей. Для того, чтобы можно было запускать нейросети из различных фреймворков на любом интеловском железе, в составе OpenVINO есть модуль Model Optimizer.

Мы берем обученную модель в каком-либо фреймворке, конвертируем в OpenVINO и теперь можем запустить хоть на CPU, хоть на iGPU или dGPU, хоть на FPGAМы берем обученную модель в каком-либо фреймворке, конвертируем в OpenVINO и теперь можем запустить хоть на CPU, хоть на iGPU или dGPU, хоть на FPGA

По факту, Model Optimizer - это набор python-скриптов, которые позволяют привести нейронные сети различных форматов к некоторому универсальному представлению, называемому IR (Intermediate Representation). Это позволяет OpenVINO работать с любой нейросетью, независимо от того, из какого фреймворка она взята.

В процессе своей работы Model Optimizer также оптимизирует структуру сверточных нейронных сетей. Например, объединяя результаты сверток, заменяя слои на последовательность линейных операций и т.д.

В последнее время, с появлением API, в Model Optimizer проводится все меньше оптимизаций, и основная его работа сводится к конвертации моделей без каких-либо серьезных изменений.

Конвертация в IR-представление различается для моделей из Open Model Zoo и других моделей. Open Model Zoo репозиторий глубоких нейросетевых моделей, содержащий большое количество обученных моделей, которые могут исполняться при помощи OpenVINO. Данный репозиторий хранит не только модели, но и параметры для конвертации моделей из разных фреймворков в промежуточный формат OpenVINO.

Для конвертации моделей, загруженных из Open Model Zoo, нужно воспользоваться инструментом Model Optimizer и входящим в него скриптом converter.py. Данный модуль имеет доступ к параметрам конвертации моделей из зоопарка моделей.

Консольная команда для конвертации загруженной модели:

python converter.py --name <имя модели> --download_dir <путь до папки, в которую скачали модель>   

Чтобы сконвертировать собственную модель, необходимо использовать скрипт mo.py с дополнительными параметрами:

python mo.py --input_model <путь до модели> --output_dir <путь до папки, в которую поместить конвертированную модель> --input_shape <размеры входа модели>  

Для конвертации нашей ONNX модели в формат OpenVINO (в Windows) вышеприведенная команда выглядит так:

python mo.py --input_model <путь до папки с моделью>\nsnet2-20ms-baseline.onnx -output_dir <путь до папки, в которую поместить конвертированную модель> --input_shape [1, 1000, 161]   

где 1 - количество каналов, 1000 - временных интервалов, 161 - частот.

Также, можно указать больше дополнительных параметров для удобства. Весь список возможных параметров можно посмотреть командой:

python mo.py --help

Отличие converter.py от mo.py лишь в том, что converter.py использует параметры для конвертации из описания модели в Open Model Zoo и передает их в mo.py


Надо отметить, что проблема шумоподавления до сих пор не решена полностью. Методике улучшения речи с помощью нейронных сетей в последнее время уделяется огромное внимание как в научных исследованиях, так и в коммерческих приложениях. Одним из важнейших преимуществ использования нейронных сетей для подавления шума является то, что они способны очищать звук от нестационарных шумов. Ранее известные подходы не позволяли этого сделать.

Нейросети не идеальны и избавиться абсолютно ото всех шумов не представляется возможным. Однако, представленная модель показала хорошие результаты в очистке речи в домашних условиях.

Подробнее..

Распознавание эмоций в записях телефонных разговоров

21.06.2021 02:14:29 | Автор: admin

Технология распознавания эмоций в речи может может найти применение в огромном количестве задач. В частности, это позволит автоматизировать процесс мониторинга качества обслуживания клиентов call-центров.

Определение эмоций человека по его речи уже относительно насыщенный рынок. Я рассмотрела несколько решений от компаний российского и международного рынков. Попробуем разобраться, в чем их преимущества и недостатки.

1) Empath

В 2017 году был основан японский стартап Empath. Он создал платформу Web Empath, основанную на алгоритмах, обученных на десятках тысяч голосовых образцов японской медицинской технологической компании Smartmedical. Недостатком платформы является то, что она анализирует только голос и не пытается распознать речь.

Эмоции, передаваемые человеком по текстовому и голосовому каналу, часто не совпадают. Поэтому анализ тональности лишь по одному из каналов недостаточен. Деловым разговорам, особенно, присуща сдержанность в проявлении эмоций, поэтому, как правило, позитивные и негативные фразы произносятся абсолютно безэмоциональным голосом. Однако бывают и противоположные ситуации, когда слова не имеют эмоционального окраса, а голос ярко показывает настроение человека.

Также важное влияние на форму проявления эмоционального состояния оказывают культурные и языковые особенности. И попытки многоязычной классификации эмоций демонстрируют значительное снижение эффективности их распознавания [1]. Тем не менее, такое решение имеет место быть, а компания имеет возможность предлагать свое решение клиентам по всему миру.

2) Центр речевых технологий

В составе программного продукта Smart Logger II компании ЦРТ есть модуль речевой аналитики QM Analyzer, позволяющий в автоматическом режиме отслеживать события на телефонной линии, речевую активность дикторов, распознавать речь и анализировать эмоции. Для анализа эмоционального состояния QM Analyzer измеряет физические характеристики речевого сигнала: амплитуда, частотные и временные параметры, ищет ключевые слова и выражения, характеризующие отношение говорящего к теме [2]. При анализе голоса первые несколько секунд система накапливает данные и оценивает, какой тон разговора был нормальным, и далее, отталкиваясь от него, фиксирует изменения тона в положительную или отрицательную сторону [3].

Недостатком такого подхода является неверное определение нормального тона в случае, когда уже в начале записи речь имеет позитивный или негативный эмоциональный окрас. В таком случае оценки на всей записи будут некорректными.

3) Neurodata Lab

Компания Neurodata Lab разрабатывает решения, которые охватывают широкий спектр направлений в области исследований эмоций и их распознавания по аудио и видео, в том числе технологии по разделению голосов, послойного анализа и идентификации голоса в аудиопотоке, комплексного трекинга движений тела и рук, а также детекции и распознавания ключевых точек и движений мышц лица в видеопотоке в режиме реального времени. В качестве одного из своих первых проектов команда Neurodata Lab собрала русскоязычную мультимодальную базу данных RAMAS комплексный набор данных об испытываемых эмоциях, включающий параллельную запись 12 каналов: аудио, видео, окулографию, носимые датчики движения и другие о каждой из ситуаций межличностного взаимодействия. В создании базы данных приняли участие актеры, воссоздающие различные ситуации повседневного общения [4].

На основе RAMAS с помощью нейросетевой технологии компания Neurodata Lab создала решение для контакт-центров, позволяющее распознавать эмоции в голосе клиентов и рассчитывать индекс удовлетворенности обслуживанием непосредственно во время разговора с оператором. При этом анализ осуществляется как на голосовом уровне, так и на семантическом, при переводе речи в текст. Система также учитывает дополнительные параметры: количество пауз в речи оператора, изменение громкости голоса и общее время разговора.

Однако стоит заметить, что база данных для обучения нейронной сети в данном решении была подготовлена специально с участием актеров. А, согласно исследованиям, переход от модельных эмоциональных баз к распознаванию эмоций в спонтанной речи ведет к заметному снижению эффективности работы алгоритмов [1].

Как видим, у каждого решения есть свои плюсы и минусы. Попробуем взять от аналогов все самое лучшее и реализовать собственный сервис для анализа телефонных звонков.

Empath

ЦРТ

Neurodata Lab

Разрабатываемый сервис

семантический анализ

-

+

+

+

русский дата-сет

-

нет

+

+

дата-сет спонтанных эмоций

+

-

+

В качестве материалов для создания русскоязычного эмоционального дата-сета со спонтанной речью мне была предоставлена база записей телефонных разговоров от IT-компании Эм Си Арт.

Общий алгоритм работы разрабатываемого сервиса выглядит следующим образом.

Блок-схема алгоритма обработки звонкаБлок-схема алгоритма обработки звонка

При реализации были использованы следующие инструменты:

  1. Шумоочистка RNNoise_Wrapper

  2. Диаризация pyAudioAnalysis

  3. Транскрибация vosk-api

  4. Анализ эмоций текста dostoevsky

Для распознавания эмоций по голосу не нашлось подходящей библиотеки с открытым исходным кодом, поэтому модель для решения данной задачи будем создавать сами.

Для работы со звуковой волной нужно сначала преобразовать ее в цифровой вид. Для этого выполняется процедура дискретизации, после которой будет получен массив чисел, каждое из которых представляет амплитуду звуковой волны через фиксированные промежутки времени. Обучение нейронной сети на этих данных было бы неэффективно, так как их объем очень большой. Чтобы решить данную проблему, можно выполнить преобразование сигнала в набор акустических характеристик. Для этого я использовала библиотеку Librosa.

Я выбрала пять наиболее часто используемых признаков:

  • мел-частотные кепстральные коэффициенты (MFCC)

  • вектор цветности

  • мел-спектрограмма

  • спектральный контраст

  • тональный центроид (Tonnetz)

На основе выделенных из записей телефонных разговоров отрезков я составила 3 варианта дата-сетов с различным количеством выделяемых классов эмоций. Также для сравнения результатов обучения была взята берлинская база эмоциональной речи Emo-DB, созданная с привлечением профессиональных актеров.

Сначала я попробовала обучить простые классификаторы библиотеки scikit-learn:

  • SVC

  • RandomForestClassifier

  • GradientBoostingClassifier

  • KNeighborsClassifier

  • MLPClassifier

  • BaggingClassifier

В результате обучения на дата-сете Emo-DB получилось достичь точности распознавания 79%. Однако при тестировании полученной модели на размеченных мной записях телефонных разговоров, точность оказалась равной всего 23%. Это подтверждает тезисы о том, что при многоязычной классификации и переходе от модельных эмоций к спонтанным точность распознавания значительно снижается.

На составленных мной дата-сетах получилось достичь точности 55%.

База данных

Количество классов

Количество записей

Модель

Точность

Emo-DB

4

408

MLPClassifier

79.268%/22.983%

MCartEmo-admntlf

7

324

KNeighborsClassifier

49.231%

MCartEmo-asnef

5

373

GradientBoostingClassifier

49.333%

MCartEmo-pnn

3

421

BaggingClassifier

55.294%

При увеличении количества выделяемых классов эмоций точность распознавания падала. Это так же может быть связано с уменьшением выборки ввиду сложности разметки по большому количеству классов.

Далее я попробовала обучить сверточную нейронную сеть на дата-сете MCartEmo-pnn. Оптимальной архитектурой оказалась следующая.

Точность распознавания такой сети составила 62.352%.

Далее я провела работу по расширению и фильтрации дата-сета, в результате чего количество записей увеличилось до 566. Модель заново была обучена на этих данных. По итогу точность распознавания увеличилась до 66.666%. Это говорит о необходимости дальнейшего расширения набора данных, что приведет к увеличению точности распознавания эмоций по голосу.

График истории обучения и матрица ошибок полученной CNNГрафик истории обучения и матрица ошибок полученной CNN

При проектировании сервиса была выбрана микросервисная архитектура, в рамках которой создается несколько независимых друг от друга узко сфокусированных сервисов, решающих только одну задачу. Любой такой микросервис можно отделить от системы, и дописав некоторую логику, использовать как отдельный продукт.

Сервис Gateway API производит аутентификацию пользователей по стандарту JSON Web Token и выполнять роль прокси-сервера, направляя запросы к функциональным микросервисам, находящимся в закрытом контуре.

Разработанный сервис был проинтегрирован с Битрикс24. Для этого было создано приложение Аналитика речи. В понятиях Битрикс24 это серверное приложение или приложение второго типа. Такие приложения могут обращаться к REST API Битрикс24, используя протокол OAuth 2.0, а также регистрировать свои обработчики событий. Поэтому достаточно было в сервере добавить роуты для установки приложения (по сути регистрация пользователя), удаления приложения (удаление аккаунта пользователя) и обработчик события OnVoximplantCallEnd, который сохраняет результаты анализа записей в карточках связанных со звонками CRM-сущностей. В качестве результатов приложение добавляет расшифровку записи к звонку и комментарий с оценкой успешности разговора по пятибалльной шкале с прикреплением графика изменения эмоционального состояния по каждому участнику разговора.

Заключение

В работе представлен результат исследования на тему распознавания эмоций в речи, в ходе которой на основе русскоязычных записей телефонных разговоров был создан дата-сет эмоциональной речи, на котором была обучена CNN. Точность распознавания составила 66.66%.
Был реализован веб-сервис, с помощью которого можно выполнять очистку аудиозаписей от шума, диаризацию, транскрибацию и анализ эмоций в аудиозаписи или текстовых сообщениях.
Сервис был доработан, чтобы его также можно было использовать как приложение Битрикс24.

Данная работа выполнялась по заказу компании Эм Си Арт в рамках ВКР бакалавра образовательной программы "Нейротехнологии и программирование" университета ИТМО. Также по этой теме у меня был доклад на X КМУ и была принята на публикацию в "Сборнике трудов Конгресса" статья.

В ближайшее время планируется работа по улучшению точности распознавания эмоций по голосу через расширение набора данных для обучения нейросети, а также замена инструмента диаризации, так как качество его работы на практике оказалось недостаточно хорошим.

Список источников

  1. Давыдов, А. Классификация эмоционального состояния диктора по голосу: проблемы и решения / А. Давыдов, В. Киселёв, Д. Кочетков // Труды международной конференции "Диалог 2011.". 2011. С. 178185.

  2. Smart Logger II. Эволюция систем многоканальной записи. От регистрации вызовов к речевой аналитике [Электронный ресурс]. Режим доступа: http://www.myshared.ru/slide/312083/.

  3. Smart logger-2 не дремлет. Эмоции операторов call-центров и клиентов под контролем [Электронный ресурс]. Режим доступа: https://piter.tv/event/_Smart_logger_2_ne_drem/.

  4. Perepelkina, O. RAMAS: Russian Multimodal Corpus of Dyadic Interaction for Studying Emotion Recognition / O. Perepelkina, E. Kazimirova, M. Konstantinova // PeerJ Preprints 6:e26688v1. 2018.

Подробнее..

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru